ICOT Technical Report: TR-637

TR-637
Potential of General-Purpose Reasoning
Assistant System EUOQODHILOS
hy
H. Sawamura & T. Minami (Fujitsu)

April, 1991

@ 1991, ICOT

Mita Kokusai Bldg. 21F {0313456-3191~5

" :D | 4-2% Mita 1-Chome Telex ICOT 132964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Potential of General-Purpose Reasoning Assistant System
EUODHILOS®

Every universe of discourse has its logical structure
5. K. Langer {i925)

Hajime Sawamura, Toshiro Minami

International Institute for Advanced Study of Social Information Science (TLAS-5IS)
FUIITSU LABORATORIES LTD.
140 Mivamoto, Numazu, Shizuoka 410-03, JAPAN
hajime@iias.flab.fujitsu.cojp minami@iias.flab.fujitsu.co.jp

Kaoru Yokota and Kyoko Ohashi

Software Lab., FUIITSU LABORATORIES LTD.
1015 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211, JAPAN

Abstract

Much work has been devoted to special-purpose reasoning assistant systems whose underlying
logics are fixed. In contrast with such a trend, this paper is devoted to a new dimension of
computer-assisted reasoning research, that is, a general-purpose reasoning assistant system that
allows a user to define his or her own logical system relevant for the intended problem domain
and to reason about it.

In the first half of the paper, the need, significance and design principle of EUODHILOS :
a general-purpose system for computer-assisted reasoning, are discussed. Then the system
overview is described, with emphasis on the following three points : (1) a formal system
description language based on definite clause grammar, (2) a methodology for proving based on
several sheets for logical thought, (3) visual human-computer interface for reasoning. In the
latter half of the paper, the potential and usefulness of EUODHILOS are demonstrated through
experiments and experiences of its use by a number of logics and proof examples therein. These
have been used or devised in a circle of computer science, artificial intelligence and so on.

Key words: Logic, Automated Theorem Proving, Reasoning, Prolog

* Part of this work had been done during the first author's stay at the Automated Reasoning Project of Australian
National University, The main pari was presented at the Seventh Imtemational Conference on Logic
Programming, held in Jerusalem, Israel, June 18-20, 1990.

1. Introduction

A new dimension of computer-assisted reasoning research is explored in this paper. It aims at a
general-purpose reasoning assistant system that allows a user to interactively define the syntax
and inference rules of a formal system and construct proofs in the defined system. We have
named this system EUODHILOS, an acronym reflecting our philosophy or observation that
gvery ygniverse of discourse has jts logical structure.

In these days, various logics play important and even essential roles in computer science
and artificial intelligence (e.g., [39], [38]), and surprisingly in aesthetics which has been thought
of as being in a directly opposite position to logic (e.g., [20], [19]), as well as in other scientific
theories (e.g., [4]. [27], [43]). Specifically, it can be said that logics provide expressive devices
for objects and their properties, and inference capabilities for reasoning about them. It is also the
case that symbols manipulating methods provided in logics are basically common to all scientific
activities. So far, people have made use of a wide variety of logics, including first-order, higher-
order, equational, temporal, modal, intuitionistic, relevant, type theoretic logics and so on.
However, implementing an interactive system for developing proofs is a daunting and laborious
task for any style of presentation of these logics. For example, one must implement a parser,
term and formula manipulation operations (such as substitution, replacement, juxtaposition,
etc.), inference rules, rewriting rules, proofs, proof strategies, definitions and so on, depending
on each logic under consideration. Thus, it is desirable to find a general theory of logics and a
general-purpose reasoning assistant system that captures the uniformities and idiosyncrasies of a
large class of logics so that much of this effort can be expended once only. A similar observation
and motivation can be found in the papers of [14] and [15], although the approaches differ. In
this paper, we aim at building a general and easy to use system which handles as many of these
logics as possible and allows us to reason in various ways [35][23].

There are three major subjects to be pursued for such an interactive and general reasoning
support system. One is a language expressive enough to describe a large class of logics. The
second is the kind of reasoning styles suitable for human reasoners which should be taken into
account. More generally, reasoning (proving) methodology, which reminds us of programming
methodology, needs to be investigated. The third subject is reasoning-oriented human-computer
interface that may be well established as an aspect of reasoning supporting facilities. An easy o
use system with good interface would be helpful in the conception of ideas in reasoning, and in
their further promaotion.

We believe that a general-purpose reasoning assistant system incorporating these points
should cater to the mathematician or programmer who wants to do proofs, and also to the
logician or computer theorist who wants to experiment with different logical systems according
to the respective problem domains.

This paper is organized as follows. In the first half of the paper, following the discussion
of the need, significance and design philosophy of EUODHILOS, a system summary of

1 -

EUOQDHILOS under development is described. We emphasize the following three points @ (1) 2
formal system description language based on definite clause grammar, (2) a methodology for
proving based on several sheets for logical thought, (3) visual human-computer interface for
reasoning. In the latter half of the paper, the potential and usefulness of EUODHILOS are
shown through experiments and experiences of its use by a number of logics and proof
examples therein. These have been used or devised in computer science, artificial intelligence
and other related fields. They include first-order logic for a logical puzzle, an inductive proof and
the halting problem, second-order logic, propositional modal logic, intuitionistic type theory,
Hoare logic and dynamic logic for program verification, and the intensional logic for Montague's

Semantcs .

2. Need, significance and design philosophy

Much work has been devoted to special-purpose reasoning assistant systems whose underlying
logics are fixed (e.g., [12], [41], [18], [40], [7]). However, we are exploring a new dimension
In a general-purpose reasoning assistant system.

We first take up some issues concerned with the generality in reasoning assistant system
and several aspects of viewing such a generality. We have already found and recognized that in
these days a logic or logical methodology forms a kind of paradigm for promoting computer
science, artificial intelligence and so on. And we stated that it is desirable to find a general theory
of logics and a general-purpose reasoning assistant system that captures the uniformites and
idiosyncrasies of a large class of logics so that much effort for providing reasoning facilities can
be expended once only and hence we aim at building an easy to use and general reasoning
system which handles as many of these logics as possible. This was our first motivation for
pursuing the generality in reasoning assistant system. The second issue comes from a rigorous
approach to program construction. Abrial [1] claims that a general-purpose proof checker could
be perhaps one of a set of tools for computer aided programming when we consider program
construction from various theories. We are certainly in a situation that before embarking on the
construction of a program we need to study its underlying theory, that is to give a number of
definitions, axioms and theorems which are relevant to the problem at hand. Note that every
program (universe) to be constructed (studied) has its underlying theory (logical structure). The
third issue concerns the construction of a logical model, or more generally methodology of
science. We observe that human reasoning process consists of the following three phases : (1)
making mental images about the objects or concepts, (2) making logical models which describe
the mental images, (3) examining the models to make sure that they coincide with mental images.
It is not conceivable that phase (1) could be aided mechanically since some part of phase (1) is
very creative. On the other hand, it is very likely that phases (2} and (3) could be largely
supported mechanically by allowing the modification or revision of the definition of the language
used for the modeling and by introducing certain reasoning devices. These are just the points that

S92 .

a general-purpose reasoning assistant system is intended to support. Philosophical aspects of the
generality from a logical point of view can be found in [20] and [10]. A logic is, in a broad
sense, a way of doing things. In this sense it is not a surprising fact that there may exist a
number of logics for things. Also it is well known that a logic has various styles in its
formulation such as Gentzen's LK, NK, Hilbert's linear style, etc., and that these are
mathematically equivalent. However, if a logical system 1s to be viewed as a form of
representation of a system of self-consciousness, then we will have to think of these various
logic formulations as different [10].

All this discussion may be summarized as, to borrow Langer's statement [20], "Every
universe of discourse hays its logical structure". Thus it eventually supports our discussions
about the need and significance of the generality in reasoning assistant system from the
philosophical point of view.

The above discussion led us to the research and development of general-purpose reasoning
assistant systemn EUODHILOS with the following outstanding features :

» Formal system description language based on the definite clanse grammar (DCG)

« Proving methodology using sheets of thought

« Reasoning-onented human-computer interface.

In what follows, we will sketch each of these features in more detail .

3. An overview of EUODHILOS

3.1 Functional features

We list the main features of EUODHILOS and explain them briefly (see [42] for the details). We
start by describing the language of a logic to EUODHILOS. Fundamentally, EUODHILOS has
almost no defaults except some logically proper conventions in representing a logic.

3.1.1 Formal system description language
What is a logic? What language should be expressive enough to describe or deal with logics?
The answers to these questions could turn out to define the formal system description language
for capturing the uniformities of a large class of logics so that it can be used as the basis for
implementing proof systems. There have been some attempts to pursue the formal system
description language. In this, these attempts have shared the goal of EUODHILOS, e.g., Prolog
is employed as a logic description language in [34], AProlog in [9] and [24], typed A-calculus
with dependent types in [14] and [15], a specification language for a wide variety of logics in
[1], an atmribute grammar formalism in [32], a metalanguage ML in [13] and a higher-order logic
in [28].

Almost all of contemporary logics may be considered as having a logical framework
consisting of a proof theory and a model theory. A proof theory specifies the syntactical part of a
logic and a model theory specifies the semantical part of a logic. In this paper we are mainly

23 .

concerned with specifying the syntactical aspect of a logic. The syntax of a formal system is
made up of two constituents : language system and derivation system.

(1) The language system

A language is a tool for talking about objects and is formed from underlying primitive
symbols. A logical language is one in which propositions are expressed and reasoned about. It
is usually specified by utilizing some of the following: variables, constants and functions as
individual symbols, predicates (including equality), logical connectives, auxiliary symbols, etc.
Attributes such as type, sort, arity, operator precedence are sometimes associated with some of
these symbols. Once these primitive symbols are specified, complexities such as terms,
formulas, etc., are constructed from them by fomation rules. Also, notational conventions for
defining or abbreviating symbols are usually required. At this point, we face our next

fundamental question: what kind of metalanguage is natural and sufficient to describe such an

object languape?

(2) The denvation system

The derivation system gives us a means of manipulating a logical language. It is specified
by axioms, inference rules, derived rules, rewriting rules, and concepts of proofs, etc. Insofar
as we confine ourself to the existing types of formal systems, we can enumerate primitive
operations. Included in these are substitution, replacement, juxtaposition, detachment,
renaming, unification and instantiation, These are common operations within various logics
except for the differences of languages. Since we are considering a general-purpose reasoning
systern for logics, we have to provide a general method for those symbol manipulations. So, our
next fundamental question is: what sort of primitive operations and constraints on objects are
sufficient to manipulate logics and how could these be provided in a generic manner ?

In addition to these questions, we need to pay attention to the concepts "free”, "bound”
and "something is free for a variable in an expression”. These can also be dealt with in a
recursive fashion.

In what follows, we will attempt to answer these fundamental questions.

3.1.2 Specifying a logical syntax and the expressiveness of the definite clause
grammar

In EUODHILOS, an object language system to be used is designed and defined by a user. The
meta language is definable also. This is indispensable for the schematic specifications of axioms,
inference rules and rewriting rules and schematic proofs. A current solution for formal system
description language is to employ so called definite clause grammar formalism (DCG) [30],
where the problem of recognizing or parsing a string of a language is ransformed into a problem
with a proof that a certain theorem follows from the definite clause axioms which describe the
language. The DCG formalism for grammars is a natural extension of context-free grammar
(CFG). As such, DCG inherits the properties which make CFG so important for language

-4 -

theory such as the modularity of a grammar description and the recursive embedding of phrases
which are characteristic of almost all interesting languages, including the languages of logics. It
is, however, well known that CFG is not fully adequate for describing natural language, nor
even many artificial languages. DCG overcomes this inadequacy by extending CFG in the
following three areas [30]: (i) context-dependency, (ii) parameterized nonterminal, (iii)
procedure attachment.

These also yield great advantages for specifying logical grammars, compared with those
mentioned above. DCG provides for context-dependency in a grammar, so that the permissible
forms for a phrase may depend on the context in which that phrase occurs in the string. DCG is
somewhat similar to attribute grammar in the sense that context free grammar is made context
sensitive by associating a semantical facility with grammar rules [32]. The necessity for context-
dependency is often encountered in defining logical syntax. The following examples show how
naturally and economically DCG allows us to express the context-dependency which occurrs in
ordinary logical practice and allows arbitrary tree structure to be built in the course of the
parsing, with the help of (ii) and (iii).

Let us describe some concrete examples of the syntax definition in order to see the
paradigm of definite clause grammar formalism. The defining clause of first-order terms such as
“[If f 15 a function symbol of arity 2 and t and s are terms, then f(t, s} is a term” is represented as

term(f(T,S)) --> functor (f), "(", term(T), ".", term(S), ")", {arity(f, 2)}.

The defining clause of terms in the intensional logic [11] such as "If A is a term of type (a, b)
and B a term of type a, then A-B is a term of type b" is represented as

term(A<B, b) --> term(A, (a,b)), "s", term(B, a).

It should be noted that DCG originally possesses the apparatus for describing the
correspondence between the external expressions manipulated by a user and the internal
expressions manipulated by a computer in terms of the parametrized nonterminal.

3.1.3 Automatic generation of a parser and an unparser

Once a definite clause grammar definition for a logical syntax has been given, it is first converted
to the definite clause grammar associated with the internal structures of expressions. The
conversion is done with the help of an operator declaration provided by a user, which is for
indicating which syntactical element should be viewed as an operator in the grammar rule. Then
the bottom-up parser for the new grammar is automancally generated, employing the BUP
generation method for the definite clause grammar [22]. The reason why we do not generate a
top-down parser for the defined language is to avoid the anomaly of left-recursiveness which
often appears in the ordinary definition of a logical syntax. The automatic method for generating
the internal structures of the expressions of a language have been provided by us [26]. The

-5 -

unparser for the internal structures is also automatically constructed with the help of the operator
precedence declaration provided by a user. The generated parser and unparser are internally
nsed in all the succeeding phases of symbol manipulations.

It is clear that our approach based on DCG is far superior to the other approaches based on
attribute grammar (e.g., [14], [32]), in which we have to provide the internal and external
representations of expressions, and hence those automatic generations of a parser, an unparser
and intermnal structures greatly lighten a user's burden in setting up his own language and taking
care of it. Readers interested in the details of the algorithms can find these in [26].

3.1.4 Specifying a derivation system
A derivation system consists of an inference system and a rewritng system. They are givenina
natural deduction style presentation [31] by a user. An inference rule, especially, is stated as a
triple consisting of three elements, where the first is the derivations of the premises of a rule, the
second the conclusion of a rule, and finally the third the restrictions that are imposed on the
derivations of the premises and conclusion, such as variable occurrence condition (eigenvariable)
and substitutability such as "t is free for x in P". Well-known typical styles of logic presentations
such as Hilbert's style, Gentzen's style or the equational style can be treated within this
framework.

Inference rules are presented in terms of a schematic rule description language in a natural
deduction style as follows :

[Assumption;] [Assumption,] ... [Assumption,]
Premise, Premise, Premise,
Conclusion
where brakets are used to encompass a temporary assumption to be discharged, ":" denotes a

sequence or 4 subtree of formulas which is a part of a proof from the assumption and each
assumption is optional. If a premise has the assumption, its subtree of a proof indicates a
conditional derivation. In forward reasoning, an inference rule may be permitted to apply if all
the premises are obtained in this manner and the application condition is satisfied. Then, the
dependency of a conclusion on temporary assumptions 15 automatically calculated by the
ordinary method [18][{31]. In backward reasoning, discharging the asumptions, generating some
assumptons and checking the application conditions are in general impossible and hence delayed
until completing the partial proof mee under construction.

Defining the derived rules is allowed if they are justified for validity on a sheet of thought
described below. The derived rules would become useful when we wish to shorten the lengthy
and tedious derivation steps. In a sense, they play a role of tactics, although we have not had
operations for combining tactics to form wacticals [12].

Rewriting rules are useful for handling equational reasoning often appearing in ordinary

mathematical practice. These can be simply presented to the system in the following schematic

-6 -

format ;

exp)

EXpPa

The rule is applied to an expression when it has a subexpression which matches to the exp;, and
the resulting expression is obtained by replacing the subexpression with the appropriate
expression of the exp;.

3.1.5 Proof construction facilities

The major drawback of reasoning in formal logic is that derivations tend to be lengthy and
tedious because of the detailed level of derivations required in reasoning. Furthermore,
performing formal derivations is time-consuming and error-prone. Readers may notice that such
a situation is quite similar to the formal development of programs in which programs can be
derived or transformed and properties of programs can be established. Using computers for
formal reasoning can overcome the problems with errors and the time-consuming task. The
current version of EUODHILOS has the following unique facilities which are able to support
natural and efficient constructions of proofs in the defined formal system.

(1) Sheets of thought

This oniginated from a metaphor of work or calculation sheet and is apparently analogous
to the concept of sheet of assertion which is due to C. §. Peirce [29]. A sheet of thought, in our
case, is a field of thought where we are allowed to draft a proof, to compose proof fragments or
detach a proof, to reason using lemmas, etc., while a sheet of assertion 1s a field of thought
wher: an existential graph as an icon of thought is supposed to be drawn. Obviously, proving
by the use of sheets of thought yields proof modularization useful for proving in the large, It
may be beneficial to note that proof modularization is approximately equal to the concept of
program modularization, to borrow the term of software engineering. Technically, a sheet of
thought is a special window with multi-functions for reasoning in the multi-window

environment of a Personal Sequential Inference machine (PST).

(2) Tree-form proof

As mentioned above, inference and rewriting rules are presanted in a natural deduction
style. This naturally induces the construction of a proof into a tree-form proof with a justification
for each line (node) indicated in the right margin. Consequently it leads to the explicit
representation of a proof structure, in other words, proof visualization.

(3) Schema (meta) variables
The Schema vanables are useful not only for the schematic specifications of axioms,
inference rules or rewriting rules, but also for schemartic proofs. Substitution and unification

viewed as the commaon and primitive symbol operations are supposed to operate on schema

-7 -

variables, in addition to the usnal variables.

3.1.6 Proving methodology
The predominant style of interactive reasoning is goal-directed, in other words, top-down or
backward reasoning, whereby the user breaks a goal into subgoals. It is, however, desirable
that reasoning or proof construction can be done along the natural way of thinking for human
reasoners. Therefore EUODHILOS supports the other typical methods for reasoning as well.
They include bottom-up reasoning (forward reasoning), reasoning in a mixture of top-down and
bottom-up, reasoning by using lemma, schematic reasoning, etc. These are accomplished
interactively on several sheets of thought

As examples of deduction process on several sheets of thought, let us illustrate some of the

reasoning styles in more detail.

{1) Forward and backward reasoming

In order to deduce forward by applying an inference rule, one has to start by selecting the
formulas used as premises of the rule. Then one may select an appropriate inference rule from
the rule menu which has been antomatically generated at the time of logic definition, or one may
input a formula as the conclusion. If one selects a rule, then the system applies the rule to the
premises and derive the conclusion. If he/she gives the conclusion, then the system searches the
rules and tries to find one which coincides with this deducrion. In the case of backward
reasoning, the reasoning process is converse to the forward reasoning, so that the intermediate
proof may branch off to partially justified proof fragments and the complete justificiation of
those partially justified proof fragments is delayed until the completion of a final proof mee.

(2) Schematic reasoning

EUODHILOS allows us to construct an abstract proof in the sense that metavariables
ranging over syntactic domains of an object language are permitted to occur in the process of the
proof, that is, we can make a partially instantiated proof. Such a proving facility is very
convenient for having an indeterminate or unknown predicate (such as invariant assertion in

Hoare logic) unspecified temporarily in the proof constructing process.

{3) Reasoning by lemmas and derived rules

Theorems constructed on the sheet and validated derived rules can be stored in the theorem
database and rule base respectively. They are referred to and reused in the later proofs for other
theorems. After using EUODHILOS systematically and over a long period of time, the theorems
turn out to build up theories.

{4) Connection and separation functions on sheets of thought
(a) Connection by complete matching
Two proof fragments can be connected through a common formula occurring in them

-8 -

when one of them is a hypothesis and the other a conclusion. The process begins by selecting
the two formulas and invoking the proper operations. As a result, the proof fragments are
connected into the one proof fragment. Schematically, This amounts to attaining the following
inference figure which can be viewed as valid :

I' |- C (on a sheet {:_rf thought) ACZL - A (ona sheet of thought)
ATZI |-A (on a sheet of thought)

where I', A and £ might represent sequences of formulas (possibly empty), and A and Cdenote
formulas in some defined logical system.

{b) Connection by the use of a rule of inference

This is essentially a forward reasoning and may be called a distributed forward reasoning.
The process is similar to the above except that the connection is done from the distributed proof
fragments through an appropriate rule of inference. Let us take an example schema of modus

ponens :

I |- A> B (on a sheet of thought) A - A (ona sheet of thought)
I"A |- B {on a sheet of thought)

with the same proviso, adding that B represents a formula.

{¢) Connection by unificanon

Two proof fragments can be connected through two unifiable formulas occurming in them
when one of them is a hypothesis and the other a conclusion. The process begins by selecting
the two formulas and invoking the proper operations. As a result, the proof fragments are
unificd to the most general proof fragment. It is, however, noted that the unification can be done
through schema variables mentioned above.

Besides, connection methods such as analogical matching, instantiation, etc., would
beome extremely beneficial to intelligent reasoning system, which is left as a future subject.

(d) Separation

The separation is converse to the connection by complete matching. The separation process
begins by selecting a formula occurring in a sheet of thought and invoking the proper
operations. As a result, the proof fragment is detached into the two fragments. Schemaucally,
This amounts to the converse to the connection by complete matching above. So it 1s omiited.

3.1.7 Human-computer interface for reasoning

In the interactive reasoning system, it is up to the user to guide the search for a proof and
discover a proof with the machine’s help. And the process of finding a proof 15 often one of trial
and error, and various attempts can become very large. Therefore a good user interface should
make it easy to manage proofs. In EUODHILOS the following facilities are now available as a

human-computer interface for ease in communicating and reasoning with a computer, in

9.

particular facilities for inputting formulas and formula visualization.

{a) Formula edior

This is a structure editor for logical formulas and makes it easy to input, modify and
display complicated formulas. In addition to ordinary editing functions, it provides some proper
functions for formulas such as rewriting functions.

(b) Software keyboard and Font editor

These are used to make and input special symbols often appearing in various formal
systems. It is a mater of course that provision of special symbol which reasoners are accustomed
to use makes it possible to reason as usual on a computer.

(c) Stationery for reasoning

Independently of the logic under consideration, various reasoning tools such as decision
procedures become helpful and useful in reasoning processes. In a sense it may also play a role
of a model which makes up for a semantical aspect of reasoning. Currently, a calculator for
Boolean logic is realized as a desk accessory.

The screen layout in Appendix 1 shows a proof in which formula editor and software
keybord are being used.

3.2 Implementation

Exploiting the bit-map display with muld-window environment, mouse, icon, pop-up-menu,
etc., EUODHILOS is implemented in ESP language (an object-oriented Prolog) on PSI-
[/SIMPOS. The system configuration of EUODHILOS is illustrated in Appendix 2. The system
consists of two major parts: one for defining a user's logical system and the other for
constructing proofs on sheets of thought.

4. Experiments and experiences with EUODHILOS

We have tried to apply EUODHILOS to various types of reasoning. Logics and proof examples
that we have dealt with so far on EUODHILOS include
(1) first-order logic (NK): various pure logical formulas, the unsolvability of the halting
problem and an inductive proof,
(2) second-order logic: the equivalence between the principle of mathemancal induction and
the principle of complete induction,
(3) propositional modal logic (T): modal reasoning about programs,
(4) intensional logic (IL)[11]: the reflective proof of a metatheorem and Montague’s
semantcs of natural language,
(5) Martin-Léf's intuitionistic type theory[21][2], and
(6) Hoare logic[17] and dynamic logic[16]: reasoning about program properties.
Note that these logics constitute a currently well-known and wide range of logics or formal
systems. Furthermore we realized a general logic[23][37] on EUODHILOS as well.

- 10 -

In this section, in order to demonstrate the potential and usefulness of EUODHILOS, we
first show how EUODHILOS can be used to specify a logic and construct a proof under the
specified logic, taking up an intuitionisic type theory, Hoare logic, dynamic logic and intensional
logic. Then, we will list some other proof experiments with different logics, together with brief
annotations. The important point here is not the complexity of the examples, but rather the
holistic understanding of a whole story played with EUODHILOS. These proof experiments
with different logical systems would help to convince the readers of the potential and usefulness
of EUODHILOS in a much wider range of applications.

4.1 Martin-Lo6f's intuitionistic type theory and a constructive proof

The first reasoning system we have chosen as an example is a tiny subset of the intuitionistic
type theory described in [21] and [2]. The principal expression in the intuitionistic type theory is
a judgement of the form "a e p", reads "a is a proof of a proposition p” in one interpretation,
where "a" is an expression in A-calculus and "p" is a first-order formula interpreted as a type.
The judgement is narurally and well described in the framework of DCG. The inmitionistic type
theory is defined by a number of natural deduction style inference rules [21] which are of course
best suited to our treatment of rules.

Tiny language for the type theory
The language definition basically consists of three parts: an object language, a meta language and
an operator definition.

Syntax af object lanpauge :
judgement --> term, " ", type ;
term --> bind_op, vanable, ".", term1 ;
bind_op --=>"A";
term --> term1 ;
terml —-> terml, "s", term?2 ;
terml -->term2 ;
term?2 --="{", term,)" ;
term2 === or_intro, "(", term, "}" ;
or_intro --> "inr" | "inl" ;
termi2 > variable ;
variable --> x;
type --> type, "2", typel ;
type > typel ;
typel -->typel, "v", type2 ;
typel --> type ;
type2 --> "-", type2 ;
type2 --> "(", type, ")" ;
type2 --> basic-type ;
bﬂﬂi{:-[y‘l}ﬂ __::‘ HP" I "J_“ r

Syntax of meta language :
term1 --> meta_term1, (", term,)" ;

terml --> meta_terml;
term2 --> meta_termil;

S 11 -

type2 --> meta_type;

variable --> meta_variable;
meta_terml —->"F" 1"a"1"b";
meta_terml --> meta_variable;
mem_w -.} '|FA11 | FIB";
meta_variable --> "X" 1 "f".

Operator definirion with or withow precedence :

with_precedence

— T A

without_precedence
or_intro, meta_term1.

It is noted that the syntax definition for the meta language is provided for defining
inference rules schematically, and the operators displayed under the heading "with_precedence”
have precedence in the indicated order and the operators without precedence, e.g. "inl" in the
term "inl(x)", are listed simply by themselves or the nonterminals by which they are denoted.
The operator declaration is to tell the parser that the terminal declared to be an operator or the
terminal denoted by the non-terminal is entitled to become the principal operator of the internal
structure for an expression generated by the grammar rule.

Inference Rules

The intuitionistic type theory is defined by a number of natural deduction style inference rules
[21][2]. For the purpose of illustration we consider just four rules and one rewrite rule. These
are the rules for function introduction and elimination, the two rules for v—introduction, and the
rewrite rule in lieu of the definition ~A=A> L.

[X e Al

F(X) € B
AX.F(X)e A > B

{A-introduction (A-I))

ae A fe A B
feqa = B

{o-elimination (=-E))

Aae A

7 e e -

inl{a)e Av B

(inl-introduction (inl-I})

be B
intf(h) e Awv B

{inr-introduction {inr-1))

Aol
A (definition as rewTiting rule)

We have specified both the language system and derivation system which are possibly
sufficient to the proof in Appendix 3. We may often want to revise or modify the defined logical

-12 -

system, due to the inconveniences encountered later. By the inconveniences, we mean the
logical system being 100 weak, too soong, redundant, or irrelevent. Once a logical system has
been specified, the revision or modification of it is critical and must be done carefully since
already established facts may not be guaranteed to hold. The current version of EUODHILOS
does not warrant such a theory revision as yet. However, a revision is safe in the case where the
logical system is augmented by adding symbols, axioms and inference rules to the old system as
far as the addition is consistent with the old one.

Appendix 3 dispalys the proof of the theorem ~~(P v ~P), with the justifications of the
form (a rule name {dependencies}) indicated in the right margin of the proof line. The theorem
means that the law of excluded middle cannot be refuted. This is an instance of Glivenko's
theorem that if P is any tautology of the classical propositional calculus then the proposition ~~P
is always constructively valid.

4.2 Hoare logic and program verification

Hoare logic [17] is the most well known logic for the axiomatic semantics of a programming
language and the verification of a program. The principal formula in Hoare logic is a form of
P(S)Q, reads "if P holds, then after exccuting the program S, Q holds”, where P and Q are
first-order formulas and S is a program in an ALGOL-like programming language. These
syntactic objects are easily described in the framework of DCG, as well as the inference rules of
Hoare logic.

Syntax definition in terms of DCG
Syntax of object langauge :

h-formula --> formala, "{", program, "}", formula ,

formula --> formula, "2", formulal ;
formula --> formulal ;

formulal --> formulal, "v", formula2;
formulal --> formula2 ;

formula? --> formula2, "A", formula3 ;
formula2 --> formula3 ;

formula3 --> "{", formula, ")" ;

formula3 --> "~", formula3 ;

formula3 --> basic formula;

basic_formula --> "true" | term, " =", term ;

term > variable | constant | "(",term,”)" |term, "+", term | term, "+", term |
term, "1";

vaj'iah]_g __} llxil l 1l}rlr |IIZ“;

constant -->="1"1"0";

program --> program, ";", program1;
program --> programl;
program] --> assignment_statement |
"while", formula, "do", program, "od" |
"if", formula, "then”, program, "else”, program, "fi" |

- 13 -

) "(", program,”)";
assignment_statement --> variable, ":=", term ;

Syntax of meta language
meta_program --> "A" | "B";
meta_var --> "X" ;
meta_term > "T";
meta_formula --> "P" | "E" | "F" I"G";
basic_formula > meta_var;
term --> meta_term;
variable --> meta_var,

program --> meta_program,;
programl--> meta_program.

Operator definition
111 H, -n*u, u+ !r: -|-=|-| : "n..- 11: “.ﬁ 11; ”V -r; 1.-:' !r; u:: " : "“rhi]c" ; “if“ T 11{".

Axioms and Theorems

(IDEAF2E (Conjuction-elimination)

(2IPX)AX=T2P(T) (Substitution)
(3)P(T) {X :=T} P(X) (Assignment axiom)

(4) true © 1 =0! (Arithmetic)

Rewriting rule

z =yl))
zx (y +1)= (y+1)! (Arithmetic rule)
Inference Rules
EoF F{A)G
E(A]G (Consequence rule 1)
E{A}JF F> G
E{A]G (Consequence rule 2)

E{A}JF F(B)G -
E{A:B1 G (Composition rule)

EAF[A)G EA~F[{B)G .

E{if F then A clse B f1)G (Conditional rule)

 FAGIAJF
F{while G do A od)F A =G

(Repetition rule)

In Appendix 4, we show the screen layout of the proof of the following partial correctness
assertion of a factorial program:
mue{z:=1; y:=0; while ~(y=x) do y:=v+1;z:=2*y od}z=x!
with the precondition "true” and postcondition "z = x!".

- 14 -

4.3 Dynamic logic and reasoning about programs

Dynamic logic [16] is a kind of mult-modal logic which is an extension of classical logic. The
principal formulas in dynamic logic are the dynamic formulas of the form [a]p and the dual
<a>p, read informally "after executing the program a the proposition p holds”, where “a"is a
regular or contexi-free program and "p" is a first-order or dynamic formula. They can be easily
dealt with in the framework of DCG.

Syntax definition in terms of DCG

Syntax of ebject langauge :
dynamic_formula --> "<", regular_program, ">", formula3 ;
dynamic_formula > "[", regular_program, "]", formula3 ;

formula --> formula, "=", formulal) ;
formula --> formulaQ ;

formulal --> formulaQ, "=", formulal ;
formula() --> formulal ;

formulal --> formulal, "v", formula2;
formulal --> formuia2 ;

formula?2 --> formula2, "»", formula3 ;
formula? —> formula3 ;

formula3 --> "(", formula, ")" ;
formula3 --= "=" | formuia3 ;
formula3 —> dynamic_formula ;
formula3 --> "true" ;

formula3 -->term, " =", term ;
formula3 --> term, ">", term ;

formula3 --> tarm, "2", term ;

term --> varable | constant ;

term --> term, “+", term | term, "-", term | term, "x", term | term, 1" (", term, ")
vaniable -->"x"1"y" I"2" 1 "'n";
constant --="1"1"0";

regular program --> regular_program, ";", regular_programl ;
regular_program --> regular_program,"!", regular_program1;
regular_program --> regular_program] ;

regular_programl --> regular_program2, "*",
regular_program| --> regular_program2 ;

regular_program?2 --> assignment_statement ;
regular_program? --> formula, "7";

regular_program?2 --> "(", regular_program, ")" ;
assignment_statement --> variable, ":=", term ;

Syntax of meta language

regular_program?2 --> meta_ program ;
formulad --> meta_formula, "(", term,)" ;
formula3d --> meta_formula ;

term --> meta_term ;

variable —> meta variable :

- 15 -

meta_term --> meta_variable ;
meta_pmg __} HAH I HBII I'
meta_variable --> "X" :

meta_formula --> "P" | "Q" | "R" | "§".

Operator definition

with_precedence
LTSN) (T T (T, T, T, TET) AT T
T ETY TR)
without_precedence
meta_formula.

Axioms and Theorems

(1) [Q?P=(Q D P) (test)

(2) [X:=TIP(X)=P(T) (assignment axiom)

(3)[A; B]P=[A][B]P (composition)

(4) <A ; B>P = <A>P (composition)

(3) [A I B]P =([A]P A [B]P) (nondeterministic selection)
BYPX)AX=T2P(T) (substtution)

(M x=02(x=0>true) (arith)

(B) <(x = 0)?>true = (x =0 > wue) (theorem)

(9) n20 A x =n+l D <(x>0)?>(x = n+1) (theorem)

(10) x =n+1 D <z :=x x z>(x = n+1) (theorem)

(11)x=n+l D2 <x:=x-1>(x=n) (theorem)
(12}zxx!=nlAx>0=[z:=xxz](zx(x-1)! =n!) (theorem)
(13 zx(x-1}!=n! D[x:=x—1](zxx!=n!) (theorem)
(14)x=n>[z:=1](zxx! =n!) (theorem)
(15)zxx!'=n!'2{(x=0)?(z=n!) (theorem)

Rewrining rule

[A]P
~<A>-p (def)

F=Q

(neg-clim)

P (double-neg-elim)

n={0Ax=n
xz 0

(arithmetic)

true » P)
—p [(true-clim)

_16 -

Inference Rules

P P Q
0 {modus ponens)

P> Q [
[AIP 2 [AJQ

necessitatnon)

P> [AIP)
P o [A%]P [A*]P (invariance)
n20 » P(n+1) > <A>P(n)
n=0 ~ P(n) > <A*>P(0)

(convergence)

Po<A>Q Q> R
P> <A ; B>R

{composition 1)

P> [AIQ Q= [B]R

{composition 2)

P> JA; BIR
P> <A>Q R o [A]S derived-rulel]
PhR:{A:“[DhR} (L1 -I'I.I!::]
P(Q) Q=R

P(R) (replacement 1)
P>Q Q=R

P= R (replacement 2)
P=0Q

Q=P (symmerricity)
In Appendix 5, we show the screen layout of the proofs of the following properties of a
factorial program :
Termination : x 20> <z:=1:;((x>0?;z:=xx z:x:=x- 1)*; (x =0)7>true
Partial Correctness : x=n>[z:=1;(x>0)?;z:=xxz;x:=x-1)*; (x =0)?(z=n!)
Total Correctness :x20ax=n>a<z:=1;(x>0)7:z:=xxz;x=x-1)*; (x=0)7>

(z=n!)

4.4 Intensional logic, reflective proof and Montague's semantics

Intensional logic [11] is a higher-order modal logic based on the simple type theory, which
requires context-sensitive constraints on terms, It includes a lot of complicated logical concepts
which however are all well described within the framework of DCG and the rule description
conventions.

217 -

Syntax definition in terms of DCG
Meta language :

meta_formula --> pred-const, "(", term(_), ™)" ;
meta_formula —> meta_formula, "=>", meta_formula ;
pred_const --> "beweis” ;

meta_formula —> meta_term({_) ;

meta_variable —="X"|"Y";

meta_term({_) > "R" "S"I"A"I"B"I"P" | "F":
meta_term(_) --> meta_variable ;

meta_term(_) --> meta_term{_), colon, type(_};
meta_type() --=>"a" | "b" 1 "e” 1T 1T T2 TS

Object language :

term(t) --> term(t), "2", term1(1);

termi(T) --> term 1(T) ;

term1(t) --=> term1(t), "v", term2(1) ;

term1(T) --> term2(T) ;

term2(t) --> term2(t), "A", term3(1t) ;

term2(T) —-> term3(T) ;

term3(t) --> term3(T), "=", term7(T) ;

term3(T) —= term7(T) ;

term7(T2) --> tenn'.n'({s (T1,T2)), "{", term(T1), "}" ;
term7(T) --> term4(T) ;

term4(t) --> bind_op, variable(T), ".", term5(t) ;
bind_op -->"¥"1 "3";

termd(T) —=> term5(T) ;

term4((T1,T2)) --> bind_op, variable(T1), ".", term5(T2) ;
bind_op --> "L";

term5(t) --> "~", term5(t) ;

term5(T2) --> term3((T1,T2)}, "o, term6(T1) ;
termS(T) --= term&{T) ;

term6((s,T)) --> "*", erm6(T) ;

term&(T) --= """ term6{(5,T}) ;

termé(t) --> "[]", werm6(1) ;

term6(t) --> "<>", term6i(t) ;

term6(T) --> "(", term(T), ")" ;

term6(T) --> variable(T) | constant(T);
term&(T) --> meta_term2(T), " (", term(_),)" ;
meta_term2(T) --> meta_term{T) ;

term&(T) --> meta_term{T) :

variable(T) --> var_sym, ":" t},rpc{'r} | meta_variable, ":", type(T) ;
constant(t) --> m:th_vnlu: . type(t) ;
constant (I)--> const_sym, ":", type(T) :
truth_value --> "mue" | "false";

var—sy“] -_} “xll | ||yrr| llpH ;

const_sym --> "fish" | "believe” | "walk" | "j";

t}"m{ﬂ} --} “t" ;

[}"FEU} - lrt“ .

type(T) —> meta_type(_) ;

t}rwtﬂ'l '12}} __} H‘(“ t}rpE{TI} L) l}'pﬁ(n) 1IJ" .
type((s.T) --> "(", "s", ", type(T),)" ;

-18 -

Operator definition

with_precedence
E":“, lr'l-} ; i:“h",, uvul fl[]'", il{}il} ; {".“1, “....-H] ; ll{1l ; bil‘ld_l:)p ; r|=-| ; "h" ; “V" ;
(">, "=>") ;
without_precedence
meta_term2, pred_const.

Axioms and Theorems
Axioms :
(1) G:(tt) » rue:t A Ge(tt) » false:t = WX LGt e Xt
(2) X:a=Y:aoFaeX:a=Fte*Y:a
(3) VX:a.(F:(a,byeX:a = G:(a,b)eX:a) = (F:(a.b) = G:(a,b))
(4) (AX:a. A(X:a))*B = A(B)
(5) [J(VF:(s,a) = ¥G:(s,a)) = (F:(s,2) = G:(s,a))
(6) VrA:a= A

Theorems:

(1) (P:t=true:t) =Pt
(2) AX:a.Q:b=32X:a.Qb

Inference rules
Meta-Rule :

beweis(A) .
=3 (Reflection-1)

A
beweis(A) {(Reflection-2)

(A]

B
.IEL = ﬁ {=}I ::I
Ohject-Rule (IL Rule) :

AR) R =35

AB) = A(R) R =S
A(B) = A(S) (Replace-2)

R =

§ = R (Symmetricity)

Awn

- 19 -

Rewriting rules

_?I.X:E.P:t = AX:a.true:t
wX:a.Pa

AR}
(VA)eR

(W-Definition)
{Brace convention)

FeG 1 _
F(G) (Notational convention)

The following metatheorem is ingeniously proved with the help of the reflection principle

((41]).
Pt => L Wx:a Pt (Generalization rule)

In Montague's language theory, natural language sentences are first translated into
expressions in intensional logic, which in turn are analyzed by using the posible world
semantics. Under the defined intensional logic, the following complicated intensional formula :

(Ap:(s,e) Ixe. (fish:(e,t)oxe A pi(s,(e)){xe})) o
AMhy:e.(believe:((s,0),(e,)) » Mwalk:(e,l) » vie) « je)

which is a translation of a natural language sentence "John believes that a fish walks”, easily and
precisely reduces to a more simple and legible one :

Sxe.(fish:(e,t)ex:e A believe:((s,0),(e,t)) e Mwalk:(e,1) o x:e) * j:e).

For other logical experiments, we will merely list the typical theorems which were proved
by using EUQODHILOS.

4.5 First-order logic (with NK)
(1) Smullyan's logical puzzles (originally examples in combinatory logic)

Axioms :
1.Vx mex = xox (Mackinghird condition)
2 WxVydzVw zew = xe(yew) (Compasition)

Theorems :
1. = ¥x3y(xey = y) (Every bird of the forest is fond of at least one bird)
2. |- 3xixex =x) (Al least one bird is egocentric or narcissistic)

(2) Unsolvability of the halting problem

Premises

1. Ix(AKX) & Vy(C(y) 2 VzD(x,y,z))) = Iw(C(w) & Vy(Cly) 2 VzD{w,y,z)))

- 20 -

(Church’s thesis)

2. Yw(C(w) & Vy(Cly) vzD(w.y.z)) = VyWz{(Cly) & H(y,z) > H(w.,y.z) &O(w,g))
& (C(y) & ~H(y,z) > H(w,y,z) & O(w.,b))))

3, Iw(C(w) & Vy((Cly) & H(y.y) D H(w.y.y) & O(w,g)) &(Cly) & ~Hly.y) 2
H(w,y,y) & O(w,b)))) 2 3v(C(v) & Vy((Cly) & Hly,y) > H(v,y) & O(v,g)) &
(C(y) & ~H{y,y) = H{v,y) & O(v,b))}}

4. v(C(v) & Vy((C(y) & H(y,y) D H(v,y) & O(v,g)) & (C(y) & ~H(y,y) 2 H{v,y) &
Ow,b) o 3u(Cw) & Vy(C(y) & Hiy,y) 2 ~H(uy)) & (C(y) & ~H(y,y) 2 Hw.y)
& O(u,b)))

Conclusion .

- ~3x(A(x) & Vy(Cly) 2 VzD(x,y.2)))
(no algorithm to solve the halting problem exists)

(3) Proof by structural induction on list
I- ¥x¥yVz append(append(x,y).z) = append(x,append(y.z))
(associativity of append function}

(4) Category theory
An clementary category theory have been built up on EUODHILOS, proving a number of

theorems.

4.6 Second-order logic and a simple equivalence proof
- YP[P(0) A ¥n(P(n) o P(n+1)) > ¥nP(n)] =
YR[Vn(Vj(j <n > R(G)) o R(n)) > VnR(n)]
(The principle of the mathematical induction is equivalent to the principle of the complete
induction.)

4.7 Propositional modal logic (T) and modal reasoning about programs
F<palllpog)o<pAag)
(A strong correctness assertion is implied from a termination assertion and a weak

correctness assertion.)

4.8 General logics
General logic is a formal system which yields a unified account of fairly wide range of logical
systems. Diverse logics are displayed as variations on a single theme [23)(37]. These general
logics have been very successfully and smoothly handled on a general reasoning system
EUODHILOS by specifying those variations on a single theme as rewriting rules [36]. The
proof examples in the various systems covered in Slaney's general logic[37] include:

true : (~p ->q) ->{~q->p)

p->q,p->r:p->q&r

-21 -

p,qvr:p&qvr (Distributon)

true : ~(A & ~A)

X:B:A&~A |- X :~B (Reductio ad absurdum)
true : Fy.(g(y) -> Vx.g(x)) (Baffling formula).

5. Related work

Much work has been devoted to building the systems for checking and constructing formal
proofs in various logical systems, e.g., see [5], [41], [18] and [40] for proof checker, see [12],
[7] and [34] for proof constructor, see [6], [35], [14], [15], [253] and [8] for general system of
computer-aided reasoning. Here we will confine ourselves to various approaches to the general
system for computer-assisted reasoning to which much attention have been recently paid. And
also, we will have to restrict ourselves to seeing only the distinction of a formal system
description language in each approach since there have not yet been so much work as to the
other aspects such as proving methodology for computer-assisted reasoning and reasoning-
oriented human-computer interface, to such an extent that comparative studies become possible.
In [34], Prolog is employed as a logic description language as well as an implementation
language of a proof constructor. In [9] and [24], &-Prolog, which is a higher-order version of
Prolog and hence more expressive than Prolog, is proposed to specify theorem provers. In [14]
and [15], a typed A—calculus with dependent types is used for building a logical framework
(LF) which allows for a general treatment of syntax, inference rules, and proofs. It also has the
advantage of a smooth treatment of discharge and variable occurrence conditions in rules. In
[32], the axioms and inference rules of a formal logical system can be expressed as productions
and semantic equations of an attribute grammar. Then, dependencies among attributes, as
defined in the semantic equations of such a grammar, express dependencies among parts of a
proof. In [28], a logic is to be encoded to a subset of a higher-order logic. What they are aiming
principally at seems to be automatic check of rule conditions basically in one way reasoning,
with which we are confronted in applying a rule. In our approach, we have to attain this in the
framework of our proving methodology, that is, in the environment that allows us to reason
forward, reason backward, reason in a mixture of them and so on. The uniform meatment for
them, however, is left open. In a current version of EUODHILOS, the problem of automatically
checking the application condition of a rule is supplanted by presenting the rule condition to be
checked to a user when he or she chooses and applies a rule with the conditions and entrusting
the confirmation to a user. In the forthcoming version of EUODHILOS, checking the side
conditions will be attained by introducing them as built-in primitive concepts. In [13], the
metalanguage (ML) for interactive proof in LCF [12], a polymorphically typed, functional
programming language, is used to show how logical calculi can be represented and manipulated
within it. In [1], constructing a general-purpose proof checker is underaken through devising a
theory of proofs. It is "general purpose” in that it may take as input the axiomatization of a

22 -

formal theory together with a proof written within this theory. A theory of proofs is a kind of a
specification language for formal system from the viewpoint of software engineering, and also a
formal system description language. His approach is based on the rigorious approach to
program construction : to define a theory and then to apply it.

In addition to such a purely theoretical interest as what a general theory of logics is, an
important benefit of these treatments of formal systems is, although their approaches are
different, that logic-independent tools for proof editors, proof chekers, and proof constructors
can be constructed. As to logic-dependent tools, we think that it would be better to provide them
by designing an appropriate metalanguage such as ML [12].

Among the present general reasoning assistant sytems, it seems fair to say that it is only
EUODHILOS and [8] that attempted to integrate such a distinctive feature as proving
methodology plus logic defining capability, emphasizing visual interface for reasoning.

6. Concluding remarks and further research topics

In this paper, we have presented the unique features of a general-purpose reasoning assistant
system EUODHILOS. We have shown the advantages and potential of our approach through a
number of formal systems and their proof examples. Specifically, the following have been
demonstrated:

{i) Advantages of generality

The generality of EUODHILOS have been tested by using it to define various logics and to
verify proofs expressed within them. All the logics with their proofs were created in several
hours. If we had had 1o develope a reasoning system with the same functions as EUODHILOS
for each logic from scratch, it would have taken much time to do it, and we would have had to
repeat almost the same task for constructing a reasoning system every lime we were working on
a new logic. EUODHILOS has demonstrated the usefulness of generality in a much wider range
of applications.

{ii) Definite clause grammar approach to the definition of logical syntax

The definite clause grammar formalism was employed for specifying logical syntax. We
have found it more natural and easier for users to define a logical syntax, compared to the other
approaches to logical system description languages mentioned before. And the DCG framework
allowed us to automatically generate a parser with the function which generates the internal
structure of an expression, and an unparser(generator). Therefore a user does not need to
commit himself in those generations at all. Another positive feature is that the framework
requires less expressive knowledge from the user in order to describe the logics. This shows the
advantage of a logic programming approach to a general reasoning system. It is needless to say
that the search and unification operations, which the logic programming have, are essential for
traversing a search space for a proof and manipulating formulas and proofs, especially in a
general setting for a general reasoning system.

-23 -

A formula editor and a debugging facility to test the defined language serve to check the
intended syntax. We have shown that these greatly lighten a user's burden in setting up his own
language [26].

() Proving methodology based on sheets of thought

Lots of experiments for proving have convinced us that reasoning by several sheets of
thought naturally coincides with human thought processes, such as analysis and synthesis in
scientific exploration, from the part to the whole and vice versa. It may be also expected that they
wrn out to give a promising way towards proving in the large.

(iv) Visual interface for reasoning

It is not so easy to objectively assess the interface. But I believe that the visual interface for
reasoning not only has been useful but also has served to easily define the logics and to conceive
ideas for constructing the proofs.

An attempt at constructing a general-purpose reasoning assistant system is, however, at the
initial stage of research and development, and lacks a number of significant issues which should
be taken into consideration. We shall touch upon some of future research themes which may be
helpful to augment and improve EUQDHILOS.

(1) Augmentation of formal system description language

Much eftort has to be spent on making the logic description language more expressive. For
examnple, in the current framework, rule descriptions for tableau method, Fitch style presentation
of an axiomatic system, some formulation of relevance logic, etc., seem not to be tractabie.
Furthermore, automatic mechanism for checking the side conditions of rules is not satisfactory
as remarked in the previous section. To overcome these deficiencies, we would need some more
powerful rule description language and method.

(b) Investgation of higher-level supporting functions for reasoning

Issues of designing a language for proof tactics/tacticals and amalgamating an object theory
and a meta theory are inevitable, in particuler for the large proof development in applications.
They would be helpful to attain the naturalness and efficicncy of proofs at the same time.

It is also a remarkable recognition that reasoning generally consists of the manipulation of
information, not symbols and they are just one of the many forms in which information can be
couched[3][33]. We believe that when we intrinsically consider reasoning it become crucial to
incorporate such an aspect into syntactical reasoning.

(c) Theory revision and theory inheritance

Various theories or logics are involved in a larger proof. Let us consider the following
situation : There exists a number of theorics or logics together with various kinds of databases,
they may be mutually dependent in the sense of the referential relations and we want to modify or
revise a theory or underlying logic. Then obviously, relational inconsistencies among theories
may arise with such a modification and revision of theories or logics. The reader will notice thar
this is a kind of non-monotonic phenomenon. On the other hand, theory inheritance among

e 7

theories is expected to yield a way to build up a large theory from its components since it could
allow the theorems and proofs of a smaller and weaker theory to be inherited as those of a bigger
and stronger theory. In doing so, we might need such a concept as theory morphism.

(d) Opening up a new application field of reasoning by EUODHILOS

The unique fearures and potentials of EUODHILOS could suggest a new direction to CAI
system for logics. Especially our system will provide a settting for a general-purpose computer-
aided learning system which is new and promising for learning various logics and solving
reasoning tasks. Besides we are particularly interested in clarifying the feasibility of using
EUODHILOS as a tool of logical model construction and a specialized use of EUODHILOS such
as a reasoning tool for computer-aided programming.

() Improvement and refinement of human-computer interface for the reasoning system

We have tried to analyze intrinsically how reasoning-oriented human-computer interface
should be, However, it seems to lack a uniform and systematic point of view for such an
interface in the present form.

Acknowledgements

The first author would like to thank Prof. J. A. Robinson{Syracuse University), Dr. R. K.
Mever, Prof. M. A. McRobbie and Dr. J. K. Slaney(Australian National University) for their
valuable comments and discussions on an earlier version of this paper.

Earlier versions of the paper were presented at the Automated Reasoning Project in
Australian National University, Department of Computer Science in Victoria University of
Wellington, and Department of Computer Science in University of Queensland. This paper
benefited from discussions at all these places.

This work is part of 2 major research and development of the Fifth Generation Computer
System project conducted under a program set up by the MITL

.25 -

[2]

[3]

[4]

[5]

[6]

[7

I 8]

[9]

[10]

1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

References

Abrial J. A.: The mathematical construction of a program, Science of Computer
Programming, Vol. 4, pp. 45-86, 1984.

Backhouse, R. and Chisholm, P.: Do-it-yourself type theory (Part 1), Bull. of EATCS,
No. 34, pp. 68-110, (Part 2), ibid., No. 35, pp. 205-245, 1988,

Barwise, J. and Etchemendy, J.: A situation-theoretic account of reasoning with
Hyperproof(extended abstract), STASS Meetng, 1988.

Batog, T.: The axiomatic method in phonology, Routledge & Kegan Paul LTD, 1967.

de Bruijn, N. G.: A survey of the project automath, in: Seldin and Hindley (eds.), To H.
B. Curry : Essays on Combinatoty logic, Lambda calculus and Formalism, Academic

Press, pp. 579-606, 1980

Coquand, T and Huet, G.: Constructions : A higher order proof system for mechanizing
mathematics, LNCS 203, pp. 151-184, 1985,

Constable, R.L., et al.: Implementing mathematics with the Nuprl proof development
system, Prentice-Hall, 1986.

Dawson, M., Sadler, M. and Mainbaum, T.: Generic logic cnvironment, Proc. of CASE
‘88, pp. 215-218, 1988.

Felry, A. and Miller, D.: Specifying theorem provers in a higher-order logic programming
language, LNCS, Vol. 310, pp. 61-80, 1988.

Fujimura, T.: Why does logic matter to philosophy?, Philosophy of Science, Vol. 14, The
Journal of Philosophy of Science Society, Japan, pp. 1-5, 1981 (in Japanese).

Gallin, D.: Intensional and higher-order modal logie, with applications to Montague
semantics, North-Holland, 1975.

Gordon, M. 1., Milner, A. J. and Wadsworth, C. P.: Edinburgh L.CF, LNCS, Vol. 78,
Springer, 1979,

Gordon, M. J. C.: Representing a logic in the LCF metalanguage, in: D. Neel (ed.), Tools
and notions for program construction, Cambridge U. P., pp. 163-185, 1982.

Gnffin, T. G.: An environment for formal system, ECS-LFC5-87-34, Univ. of
Edinhurgh, 1987.

Harper, R., Honsell, F. and Plotkin, G.: A framework for defining logics, Proc. of
Symposium on Logic in Computer Science, pp. 194-204, 1987.

Harel, D.: Dynamic logic, in Gabhay, ID. and Guenthner, F. (eds.): Handbook of
pl;ilosnphica] logic, Volume IT : Extensions of classical logic, pp. 497-604, D. Reidel,
1984,

Hoare, C. A. R.: An axiomatic baisis for computer programming, CACM, Vol. 12, No.
10, pp. 576-580, 583, 1969,

Ketonen, J. and Weening, J. 5.: EKL - An interactive proof checker, User's reference
manual, Dept. of Computer Science, Stanford Univ., 1984,

Kunst, I.: Making sense in music I - The use of mathematical logic, Interface 5, pp. 3-68,

26 -

[20]

[21}

(22]

[23}

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]
[34])

135]

[36]

[37]

1976.

Langer, S. K.z A set of postulates for the logical structure of music, Monist 39, pp. 561-
570, 1925,

Martin-L&f, P.: Intuitionistic type theory, Bibliopoplis, 1984.

Matsumoto, Y., Tanaka, H., Hirakawa, H., Miyoshi, H. and Yasukawa, H.: BUP: A
bottom-up parser cmbedded in Prolog, New Generation Computing, Vol. 1, pp. 145-158,
1983.

Meyer, R. K.: A General Gentzen System for Implicational Caleuli, Relevance Logic
Newslerter, Vol. 1, No. 3, pp. 189-201, 1976.

Miller, D and Nadathur, G.: A logic programming approach to manipulating formulas and
programs, Proc. of IEEE Symposium on Logic Programming, pp. 380-388, 1987.

Minami, T., Sawamura, H., Satoh, K. and Tsuchiya, K.: EUODHILOS : A general-
purpose reasoning assistant system - concept and implemetation -, LNCS 383, Springer-
Verlag, pp. 172-187, 1990.

Ohashi, K., Yokota, K., Minami, T., Sawamura, H. and Ohtani, T.: An automatic
generation of a parser and an unparser in the definite clause grammar, Transactions of
Information Processing Society of Japan, Vol. 31, No. 11, pp. 1616-1626, 1990

{in Japanese).

Parker, J. H.: Social logics: Their nature and uses in social research, Cybemetica,
Vol. 25, No. 4, pp. 287-307, 1982.

Paulson, L. C.: The foundation of a generic theorem prover, J. of Automated Reasoning,
Vol. 5, pp. 363-397, 1989,

Peirce, C. §.: Collected Papers of C. S. Peirce, Ch. Harishorne and P. Weass (eds.),
Harvard Univ, Press, 1974,

Pereira, F. C. N. and Warren, D. H. D.: Definite clause grammars for language analysis -
A survey of the formalism and a comparison with augumented transition networks,
Artificial Intelligence, Vol. 13, pp. 231-278, 1980.

Prawitz, D.: Nateral deduction, Almgvist & Wiksell, 1965.

Reps, T and Alpern, B: Interactive proof checking, ACM Symp. on Principles of
Programming Languages, pp. 36-43, 1984.

Robinson,]. A.: Private communication, 1989,

Sawamura, H.: A proof constructor for intensional logic, with 55 decision procedure,
IIAS R. R, Mo. 65, 1986.

Sawamura, H. and Minami, T.: Conception of general-purpose reasoning assistant system
and its realization method, 87-SF-22, WGFES, IPS, 1987. (In Japanese).

Sawamura, H.: Specifying general logics and constructing proofs: A case study in
EUQDHILOS (in preparation), 1991.

Slaney, J.; A General logic, Australasian J. of Philosophy, Vol. 68, No. 1, pp. 74-88,
1990.

_27 -

[38]

[39]
[40]

[41]

[42]

[43]

Thistlewaite, P. B., McRobbie, M. A. and Mevyer, R. K.: Automated theorem-proving in
non-classical logics, Pitman Publishing, 1988,

Turner, A.: Logics for artificial intelligence, Ellis Horwood Limited, 1984,

Trybulec, A. and Blair, H.: Computer assisted reasoning with MIZAR, LJCAI '85,pp. 26-
28, 1985.

Weyhrauch, R. W.: Prolegomena to a theory of mechanized formal reasoning, Astificial
Intelligence, Vol. 13, pp. 133-179, 1980.

Yokota, K., Ohashi, K., Sawamura, H. and Minami, T.: General-purpose reasoning
assistant system EUODHILOS - its unique functions and implementation -, 1990 (in
preparation) {in Japanese).

Zanardo, A. and Rizzotti, M.: Axiomatization of genetics 2. Formal development, J.
Theoretical Biology, Vol. 118, pp. 145-152, 1986,

.28 -

ha

X tont_sdikor ¥E

God"a_awiakance
Homra_logic

categdry_thasry
dygnmnie lagic
general _lugls

highar_ordar_logic
indugtive.proof

Appendix 1.

¥ nww HE
ealoulator 3w

W wxp bl EF

M
Praleg

Iting.problan

int

Reasoning-oriented human-computer interface

=it

HE _HEYHLUARL-

{Hakd

S0F TWARE _KEYEIARD

e [l][l] [s]
. Joonon=ag:
B AREEPOM |
B pEEeR |
* [ccasol:R
| AEERR B |

—— Logic

[PEE0

i

i@ (e, RN (2} hilid
And guh pw
RA Plime {0, Tlgnl Cub) PEPY (Pol inddse
fdut {133

SR LIE LA R TE AN EFRL S E L - PR T]
{dat 11

B AW (O, Tl D) B il (P b
idat {130

-

« FWIAF a FLANED

-

3

B b
H: 1 - :
I+ [B3
L [l &
s » v H
: b . :
; RO L -.
; .-1 5
b il i
: i
i &
b iy
I AT TR PR TETRTTR T e]
B A
e e e e o B o e !

Appendix 2. An illustration of EUODHILOS

Input
~ support ™

Y
—languag = rse o
Syntax)(Symbol)|=»(unparser editor
()(-) enerato
_ | _ Derivation P
= (Bxlom) L keyboard
! ERewriti o /Fomnul)
Theory [iference rugRewting rul " oee]
ala-
base ~Sheet of thought= unparser)
uman
~ - =
T [E;;fié [A] , | Formula Reasoner
IL_____+ T I\ editor /[
- A—B-Et
X Input/output

- support—’

~29 -

Appendix 3. Inuitionistic type theory and a constructive proof

SYNTAN @ inkust

; ?
Y naw BT 1M ORMAT L OM o] ssve make test struclures print exal '-'
3 font_editar &% SOFT _KEYEOARD o] judgement ==3 terw, spwllon, igps]
=3 caloulator iz SYNTAY @l spailem ==X "N7|
=t anit ¥ INFEREMCE_RULE o] 1erm <o> mind.so; var tane, L eems
God"s_sxistance REWR]TIRGC RLE L tarm ==k bersl] |
= 1
re_logle AETOH ‘_' Tarml == variehle, spe, Vel |
M DERIVED_RULE tarml ==k {8rsE]
Prolog THEDREW 4 -
] te -
category_thaeary PROOF A parms]
dyranic_logic ik FXIT 2% Fi tarma —ex dmg =7 Hermy i) "
Pl tarss —-3 wariselsicsnatent;
gererel_logic
If v === typs; tmp iy tupail
g AP ==k LypEi]
; bygsl ==3 bygped,ae, LgeePl
] vt - tuped;
.. HULE! ___aa I
2 cimi T {1 S ¢
[PEPY CIFSLI L) ARD (e FREY (P
(ST i3, L1]
dmymi (mhay
[—— 1Y) : ——
T i S e
dimr T (2] 2 B - oo acan
B A, (LM G D (P [E S ETRETR A, Foasacs
] L3E G §
= AWLre (. (8 felhEa
— CREEFD
i# R, Pl (k. TBIsE el PO EPIPILIALIEL
: tda i [} H
Ry FEEE (. PELR (D b (Y EFDL) S
et {hF
AP Amgne Ch. dlin L fe] e (v |
LR
B A e Do, (@I L (0] F R (PP

= w < r t TIT T et F ot e L maraw

Tax : Foare_logec ANICHM ¢ Hoara_logic

T anwn makn task structure print awit apvn wif_sditar eawit
L SOFT_KEYBOWRD or EX Tormuln =5 @orm iy |, e ws
i SYNTAX s &R P b == Cormm e TS it =T) BOLATS
E IKWFERENCE_RULE [a» Jarmulad --3 formles, ar, formgled
REWRITING.RILE [ence Tormulad == foreuled]
AXTOH ic i
Tarmilad =3 formmilnd sna, darscine; Ty
DERTVED_RULE Tarmulad -5 tormuied]
THEDREM Lt s (. tarmie, ") i T
" == {7, formuls, 370 S R TR R =]
PROOF anry ::ur:l.:d- == nal; lorsl & : i
¥ EXIT w4 gin Tafmlad men badie, barm e } R
Fag g 1]

B i i il W s

At iyl = ig=111

By Pt B) S o

UL R LR
Ty eIz {ge I Fodysibt ER{ipad I ignlb! gl Syl Ruyagl
- —{awmseal i1
wgl ey Dl w1 b gyl pdyegl g7 manyl
(com
AruaSla@l LeQ!falel}aed! Eoy Ay s mye) EE wrmy) eyl
- Cwwnawal f § drmpaad {j b

trws {x =i el B] [| Sl Bt L R SRS] W T A e

P

s {8l w08 a-yd ! e |y mie | E e el Bl P Ay
I S L& o
drum (ES S L] ul eB) (el | e ad s S P S Ead b D AR

wrus frzm i ys wd; Dk Deeynmsoy: mgsd; 3; eamged i geal

-30 -

Appendix 5. Dynamic logic and reasoning about programs

DERTWED_RULE
THEQREM
PHIDOF

gz EXIT 2%

halting_p

SYNTAX : dumamic_legie
anve maka Eask abrustura

print

axit

dgrmalm ==3 form i, sguioel emcs, §erm | ob;
Tgrmaim =3 Farmsled;

dpromalal s=x ormmylwf, D]y, domemdla];

Bgmmnl . darmmila ==w Dad il s, regu e progess, ©§ght_d) ssesd, farsulsl;
gl o formule ==5 Lol i B, fdgul Sr o progren righs e, formsl el

[a)m
—t -

TR R

TR Franct

tarmulad == fpresial;
aave wif_sditor exit
Toremd el & lprmalsl, e, farelad]
[F T 1] = doremsl el r
LT | P agiy
formules ==k {orsd)sE, wnd, dermaind;
formmilad -7 Tarsslsd] () aTIF P (T

fa;MiFsranElP

ol EFe [[AIPALR]IPY

PR axe Tl (T
wabindualznrunt
£ (i TR R fue e (RO

mpapens |5 Ces0] Tr fewne)

FaRe FECEETTENEEE L B R PP LT -3]

P Lpa)i

2 f3: wide inelaren)

yitant o (adh] rtm e b) B3 (a= 10 Lam)

pwt mmd anelo e e

T =l 1 amt
CE g 1]

FM (=] p AR

CRETESRT R L ER T

A—— o | £} B
ay WEOT (RO) P
s (compl 1)
i mp) AT

e AW LR AT)

—_—

P TR M ST S TR P RS R L LIRS 1]
- {1
pEmlmmt Ll ki @ aXrhjwrma—1Tmh] ixkxient]

RSl Lz wl] ({07 Kl ®xEE]

wEmal

DA R Wl (T R e aKg] [ml wn= NI R {17 uaATER])

P e e A PR =Y. L 1]

wi b}

- CtrL Ok T
Toh, wwd¥isdgwnlh

int

induct ive_proot

intensiorml logie
intuitioniatic_type_theory
wocking bird {puzelsal
modal_legic
pradicate.logic
ram] 1 zar (EON}
ralavanca_logic (Ringd

Appendix 6. Intensional logic and a reflective proof

ARV

waka

teat atructure

print ai.t

tarws 1]
il ==

Larwf (Th

varsd (TH

e (T ¢

are (TTE i araF T, TEIY, apply, termE (T

spply —-» @

matn tarm2 (T ==x meie. terw (T}

imkladT)

wex meadg tarmSEd]

=k aral{Ti]

- RiA] =L tarmGlia, T1) == Lngsnaien, tarsG(l)]
] ————— infamalon --w =55 =
L TermE (T —-3 awisnaion, sermsd i, THiE
- oo axtansian =on =emg
barmfl 1] == AepEaadady, lereR il
o o= M o==> "07;
2 EX[T I - e varmbit] = pamslsle, tarmiin)]
‘-“: % ety <o
= k2l b (T ==m [y varmiTh, <17}
halking_problen ?_‘Ef - Jrersct) ==r cariesie (1) ieenstent (7]
highar_ordar_lagis -

E il LR P R P T T T T A

--r mela-termiTl;
=ex wme_uimg oo lon, typs CTE

1
[t CF; 10]
He LI} }
[

ML D1y e E

Fi Clig b ®02 (d bk D

ntansianal _log:1e

fP: pmyrus: R} eP: g
A {1}

B e AR b B
[T RIS E
[SEETE g Rl P YRR s, PR
i Raw {15 b

i
idmd {150

—_— iR I E T
(TT T DL R]

teliid

e o £ CF] 5) i | 30 (HOE; & P2 000

