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Abstract

A unifier is a substitution thal makes two terms syntactically equal. In this
paper, we discuss more semantical nnification; equational unification, which
computes a substitution that makes two terms equal modulo a congruence re-
Lation. As a result we will give a general complete procedure that enumerates
equational unifiers for a given pair of lerms under a given congruence.

1 Introduction

We assume the reader lias cleiwentary knowledge on universal algebra, in partie-
ular, on term rewriting svstems (TRSs for short )3,

In this paper, we define a TRS as an arbitrary set of pairs of terms. An element
of a TRS is called a rewrite rule. Reduction by a TRS R is denoted by symbols =,
that is, we write ¢[I0] > ¢[r8] il there is a rewrite rule (I, r) € R, a substitution #, and
a context f |, The reflexive transitive closure of = is denoted by = and the reflexive
transitive svmmetric closnre by <. Note that < is a congruence relation on terms.

T.et = he a congruence relation on terms, A substitution # is called a ==-unifier
of terms & and t if 86 =~ {6, The set of all = unifiers of s and ¢ are denoted U{s, ).
A substitution @ is said to be more general than another substitution ¢ under ~
idenoted # < @) if there is a substitution v such that (v0)¢ =~ vg for any variable
v. A subset C of [7(s,1) is said to be complete if, for any # € [/(s,1), there exists
a unifier " € (' such that # < #. Moreover, a complete subset ' is called the
mipimum if 8 = # for any 8,8 £ C such that # < . Il the minimum complete set
exists, it is unique up to renaming of the variables in the substituted terms.

In the case of ordinary unification, the most general unifier always exists for any
unifiable pair of terms[7l. In the case of ~-unification, the existence of the most
general unifier is not guaranteed. In this situation, a complete set of ~-unifiers plays
the role that the most general unilier plays in ordinary unification: a representative
of all unifiers.
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From a theoretical point of view, the minimum complete set may be the most
interesting since it 15 unique and not redundant. However, there is no reality of
computation of the minimnm complete set for the following reasons. First of all, the
minimurn set may not exist. That is, there may be a complete set ' of ~-unifiers
with the following property: for any # € (', there is a unifier ¢ € (' such that #" < #
{that is, 0/ < # but & &£ )8, Fven of the minimum set exists, there may be no
algorithms to enumerate its elements. Even if it 1z enumerable, it may need more
cost to compite than other (redundant) complete sets.

Tet R be a finite TRS and < he the congruence relation induced by . In what
follows, we will discuss S-unification. It is clear from the definition that, for any
terms s and ? the set {7(2.1) is recursively enumerable and complete. However, it is
too redundant Lo be worthy of computation. The main problems in S-unification are
the fellowing.

(1) Is S-unifiability decidable?

{2} Does the minimum complete set of <-uniliers exist? Can it be enumerated?
(1) ls there a finite complete set of S-unifiers?

{1} s there an efficient algorithm to enumerate a complete set of S-unifiers?

It 15 undecidabic in general whether two given terms have a S-unifier.  As for
ihe answers to these problems on specific TRSs, there is a wide-ranged survey hy
Siekmann(20. The result on AC-unification, in which TRS consists only of the asso-
ciative and the commutative laws, secms to be the most important from a practical
point of view. That is, the minimam complele set of AC-unifiers always exists and it
is finite and computablel22 7 13,

In this paper, we address problem (1) for a general TRS. A S-unification algorithm
is sald to be complete if it enunerates a complete set of & unifiers of s and ¢ for a
given TRS and terms s and ¢, As stated before, enumeration of [7(s.1) is a complete
{but not interesting ) <-unificalion procednre. What is interesting is a more efficient
algorithm than simple enumeration of all unifiers.

-unification algorithms based ou narrowing!” and basic narrowing(15 4] have been
proposed nnder the assumption that T'RS is confluent and terminating. These are
efhicient but the assumption s seldom satisfied in actual cases. Gallier and Snyder
proposed a general S-unification algorithmU, but it does not seem efficient enough
for actual applications.

We propose another general algorithm and prove its completeness. Its effective
ness was confirmed by experiments. The procedure is based on combination of the
Knuth Bendix completion'® 14] {or, more precisely, completion without failurel?l) and
narrowing. Let s and { be given two terms whose €-unifiers arc wanted. The pro-
cedure applies narrowing Lo 5 and {, while constructing a confluent and lerminating
{infinite) TRS. Since, as shown in [11] and [2], a confluent and terminating TRS can
he obtained virtually even if the completion process does not terminate, the narrowing
process eventually enumerates a complete zet of unifiers. Moreover, since the proce-
dure is an extension of the Knuth-Bendix completion, it may obtain a finite confluent
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and terminating TRS on the way of <-unification. Once such a TRS is obtaned, the
subsequent process becomes ordinary narrowing. Therefore, Fay's resultl® is viewed
as a special case.

The essential idea is common with the refutational theorem proving in first-order
logic with equality proposed by Hsiang and Rusinowitch[11. 18, The purpose of this
paper is not to claim originality of the idea but to claim its naturality and effectiveness
and to give a proof of its completeness from the viewpoint of equational unification.

2  TInference rules for equational unification

In the following discussion, let = be a fixed strong simplification order on terms,
namely, a simplification order® which is total on ground terms. In the examples in
this paper, we use the lexicographic subterm ordennglt?] as such an order.

In the following discussions, we assume that given terms and rewrite riles do not
liave common variables for simplicity of discussion.

First we change the concept of reduction by TRS. Usnally, a rewrite rule in a
TRS is assumed to be used left 1o right oniv. In this paper, however, we do not
assume this, that is, rewrite rules in a TRS are used in both directions. For the new
definition of reduction. it is better to consider a rewrite rule as unordered pairs of
terms. Therefore, from now on, we do not distinguish rules ({,r) and (. 7).

To be precise, the new definition of reduction is the following: a term f is reduced .

to another term u (denoted § = u) if w < ¢ and there is a rewrite rule ({,r) or (r.{}),
a context ¢ |, and a substitution o such that ¢fle] = {, ofre] = u. It is a routine to
verify that & is a congruence relation.

This change of the definition of reduction has hoth an advantage and a disadvan-
tage. The advantage is that, since < is well-founded(s- 19 reduction = is always lerini-
nating. T'he disadvantage is that congruence relation < 1s somewhat weaker than that
siven by the old definition. For example, et us consider TRS {(2 + w.v + )}, Then,
reduction = is not terminaling in the vid sense since s+1 = t4s = s+t = t+s > -,
but v=+u & w+vin Lhe new sense fur any variables v and w since neither v4w = w—+v
nor w4 v = 4w,

Herealter, for notational convenience, we use symbaol ~ to denote the congruence
relation induced by a TIRS in the old sense of reduction. Then, the word problem
involves the decision of not < bl ~. However, in many cases, we can assume that
terms are groind without loss of generality by substituting fresh constants to variables
in the terms. And, for ground terms, relations ~ and < coincide since = is total.

Next, we define narrowing, which is somewhat modified of that by Fayl® as well.
A term & is said to be narrowed to another term t {denoted s ~» t) if there are a
non-variable subterm s, of s, a rewrite rule ({7} such that ssf = [, sl A 1. and
t = ¢[r]d, where s = ¢[sy] and # is the most general unifier of 55 and [ If necessary,
we suffix the most general unifier, for example, as s ~+5 ¢ In what follows, we olien
discuss narrowing of a pair of terms. Notation (8y.5;) ~ag (1, 13) means thal either
5 ~g 1, and s,8 = 1,. or 5,8 =1, and s, ~+s ;.

Let us extend the definition of critical pairsli® as well. Let (l;,rq) and (I, r7) be

3
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rewrite rules and s be a non-variable subterm of [, uniliable with . If 1,8 £ r,8 and
6 # o8, then pair {¢c[r]8,r,0) is called a critical pair, where I, = ¢s] and @ is the
kst g{."ll{.‘l'ﬂ-]. uniﬁi.‘l‘ U‘F !1 aﬂd &

Let a TRS R and terms s and ¢ be given. A ~~-unification procedure for s and ¢
vnder R 15 given below in the form of inference rules.

(E,R.G,U)
(EU {{u,u)}, R, GU)
E-reduction: = {{uhn?]}‘H'G‘D_} ty = uy by arulein R
(EU{(u.uy)}, RGO
(EU{{uu)}, B G0T)
(E R, G0
(E U {{nua) ), RGO
(B, RU {(ir.u2)}, G, U}
(£ B GU w031, U)
(LR G U A (g g 8), (), ul, 0089317

(g, ua) ~rge [uf,ul) by arule in R

E-generation: (w1, uz) is a critical pair between tules in R

F-deletion:

F-generation:

(+ gencration:

(E, RGO (g, ug 8) 1,1
(ERGU {{u, g, @)}, 17U {0:8'))
#" is the most general unifier of w; and u,

[’-generation:

Both F and R are sets of rewrite rules. (7 is a set of iriples (1, g, 0) (called goals)
where wy and w; are terms and # is a substitution. We do not distinguish triples
(1, ug. 0] and (ug,uy, #) similarly to rewrite rules. [ is a set of substitutions. At the
beginning of the procedure, these are set as follows:

E=R R=¢ CG={(s.t.5)}, 1" -4

~-unifiers of s and { are enumerated as elements of {/.

When one of the inference rules is applied, a quadruple (£, B, (7. 17} is transiormed
to another quadruple (£, B.G'. 17"}, denoted by (L, R.G.U) b (E' R.G'. 7). If
necessary, the name of the applied inference rule are suffixed to symbaol . Let

i:EU'rI?Oi-GUiL?ﬂ_} = (El.Rl,‘r_}rl. E"-]_:l - {l‘l‘.alj, }{2’(;21{;2] -~

be a sequence of applications of the inference rules. We denote =, B by E.., o B
by Ro. UZo Gy by Gy and U, 0 by U, An inference sequence is called fair, if
it satisfics the following conditions,

(1) Any critical pair between rules in A is contained in E...
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(2) UZo Mo E, = ¢
(3} Any goal obtained [rom a goal in .. and a rule in R by (G-generation is
contained in (/..

{4) Any substitution obtained from a goal in G.. by {/-gencration is contained in
'E'Ira.'--

We claim that any fair inference sequence can enumerate a complete set of =-
unifiers as [ ...
Example 2.1 Consider TRS Re = {(f{z,x).g(x)), (h{a),a}} and terms s = fihkiu), a)
and t — g(h{a)), where < is the lexicographic subterm ordering hased on total order
a < h <= g < [ on the lunction symbols. Then, the following 15 a fair inference

sEqQuUence.
(Eoy={{fle,x).glx)). (hla).a)}, Ro=¢, Go={(f(hly).a),glhlal).c]}, Vo=4g}
F Rgeneration  (E1— {(hla). @)}, Ry ={{f(z.2).glen}. Gi=Go Uy=9)
FR generation (E2=¢. Ba=RiU{{ka)a)}, Go=Ch, U0
(Ey=¢, Ry=Rz, Ga=G2U{(f(hly). n}gu,} 1}, Ua=¢)
(Eq=d, Ro— Ry, Gy=0aU{(fla.a).gla) [afu])}. Ui=g)
(Ei=6, By=R,, Gy=0U {:_..r,r[a]._q[qy, afyl)) Va=a)

EE\ET{DH Rﬁ:R:’n Gﬁ:(:51 E?ﬁ:{[ﬂ-"fy]?}

Fe generation
FG-,E_,*?HET&I 1011
FG-gencration

Pl generation

sunifier [a/y] of 5 = flh{y).a) and t = g(hla)) is obtained as an element of U in the
above sequence. where notation [a/y] expresses the substitution # such that y# = a
and v = ¢ for any variables 1 other than y.o

3 Completeness of the unification procedure

I'irst of all, we prove the soundness of the procedure in the previous section.
Theorem 3.1 Lel

(R, o {s. 0.7} 0) = (Ep, Ro. Go L) B UE By, G UG B (B By G L) e

be an inference sequence. Then, any element of U 15 an =-unifier of s and .0
proof: Lei =, be the congruence relation induced by £, U H; in the old sense of
reduction. Then it is casy to prove the following by induction on 1.

{ 1 ] o=

(2} For any {uy. g #) € (7 80 ~; wy and #] ~; s

(3) Forany # € [/, sl ~ 6@

The proof of completeness of the procedure consists of two parts. First, Ry is

proved to be confluent by proof transformation method(l. 3. Second, narrowing is
proved to be able Lo trace any rewriting by f.,.
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Let ® be a TRS, and s and t ground terms such that ¢ & (. Then, from the
definition, there 15 a finite sequence of terms

&= Hp = Uy o e Uy, = F

Let us define sequences of Lhis form in a more general framework.
A sequence s = wpSh =y S Uy = s called a proof of 5 <+ ¢ under E and R,
if each w, is a ground term and Z; is one of the following symbaols:

(1) «, which indicates that u,_, <+ u;, by F in the old sense of reduction.
{2) <=, which indicates that u; = w;_; by R in the new sense of reduction.
(3) =, which indicates that u,_; => u; by B in the new sense of reduction.

A proof is said to be normal if it has the following form
f=dg s S ms,Susl, e s slg=1(m>0n>0)

Now, we will define the weight of a proof. First, the weight w(uZu') of each step
u=u" of a proof is defined as follows:

wiv & u')={u,u'}, wiveu)={W) wle=d)= {u}

where {u.u'}, {u'}. and {u} are not sets bui multi-sets, and are compared by the
multi-set ordering(l. The weight of a proof is defined as the multi-set of the weights
of all the steps in the prool. Note that, since the weight of a step is a multi-set, the
weight of a prool is a doubly-multi-set (a multi-set of multi-set of terms). The set
of the weights of prools is well-founded since the base order is well-founded. Let us
denote the order also by =.

Theorem 3.2 Let
{Eﬂ = SR.RU = o, Gﬂ-.!fru'] r {Eh Ry, Gy, !rflll F (Hg.jfg,(fg.i.-rg:] F...

be a fair inference sequence. Then, K is a confluent TRS for < w.r.t. ground terms.
lu other words, for any ground terms s and t such that s & ¢, there exist a normal
proof of s S ¢ by F... O

proof: Since s < t, there is a proof of s & ¢ by Fy and Ry, which is also a proof by
E.. and R, of course. Let P be a proof by £.. and K., with minimal weight. We
prove that P is a normal proof by R.. First we prove that P contains no steps of
the form

cluyf] = efu,b) (A)

where (u,u3} € F; for some i, Suppose that such a step exists. From fairness
condition (2). for some j such that i < j, rule (u,.uz) must be delcted from E,: that
is, inference rule E-reduction, E-deletion, or f-generation must be applied to (g, ug).



Complete F-unification based on an exlension of the Knuth-Bendix completion procedure

If it is £-reduction, (wy,u) € F£; (or (u,uz) € E;) for some u such that uy = u (or
uy =+ u by R;). Therefore, by replacing the step of form (A} with two steps

cfur8] & club] <= cluzf] {or  efu, 8] = cful] < cfuzb]),

we can obtain a new proof P'. Comparing the weight of the steps, that is, {c[u; 8],
clugf}} in P and {c[uy 8], c[ub]}. {c[ub]} (or {clu8]}, {c[ub], clubl}) in P, we can
easily see that w(P) = w(P), which contradicts that P has minimal weight. If the
inference step is E-deletion, u, must be equal to uy. Therefore, by simply removing
the step of form {A), we can oblain a new proof, which again contradicts that P has
minimal weight. I the inference step is B-generation, K, contains rule (uq, uz). In
Lthis casc, the step of form (A} can be replaced with

el ] = efuaf] or  efusf] = cluzb]

since = s total for ground terms, and a contradiction follows. Next, we prove that P
contains no steps of the form

hsl=l (B)

Suppose that there are steps of form (B, in which termn ¢ 15 reduced in two ways,
sav, Lo Iy by rule (Ii.rm) & B and 1o i by rule (&,r2) € R;. There are several cases.
First assumwe that the reduced parts do not overlap, that is {4, ¢, and t; have forms
o[yl L8], lr by, 8], and o]l 8, 2], In this case, by replacing the steps of form
(i) with

Iy = e[ By, raly] 1y

we can obtain a new proof, which contradicts that P has minimal weight. Next
assume that the reduced parts overlap. Since the discussion is symmetrical, we can
assume without loss of generality that ¢ = dle[l,8,]] = d|l,8;), 1, = de[r,#,]], and
1y = dlrgfy]. U 1,8, occurs at a variable position in I, we can easily arrive at a
contradiction similarly to the non-overlapping case. Otherwise, {c[ry#,],728;) is an
instance of a critical pair of rules (f;,ry) and (/;,r2). From fairness condition (1), the
eritical pair must be in some £y, Then. by replacing the steps of form (B) with

ty = delry 8]} < dire] = 1,

we arrive at a contradiction again. Thus, we have proved that P contains no steps of
form {A) or (B). Such a proof 15 clearly normalm
If there is a normal proof

T T I R ()

we can always convert it to a one-wav reduction sequence of pairs of terms of the
fn]]-:m*ing form:

(s0.t0) =po = p1 = - = Prgn = (U, u). (C

i
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In each step, either the left or the right element of pairs is reduced. In what follows,
sequences of form {C’) are called normal proofs instead of those of form (C) for
simplicity of discussion.

A substitution « is said to be irreducible if vo is irreducible for any variable v.
Theorem 3.3 (Hulloti*?]) Let s be a term and # be an irreducible substitution.
Then, for anv sequence of reduction

sl=ip =t = - =1,
there is a sequence of narrowing
&= Up =Ry Wy g o g U,
and a sequence of irreducible substitutions wy, vy, ..., v, such Lthat
Li=wwy (i =0,1,....n)
and

t?= t.i’l_'|=ﬂ|:|°'lf.!"'|_ =~--=Eﬂi--an 5 .Iq-l_.-unn

In the original form of the ahove theorem, the concepts of reduction and narrow-
ing are the conventional left-to-right ones, the TRS is assumed Lo be confluent and
terminating, and substitution # is assumed to be normal. However, the above form
of the theorem can also be proved in the same way as the original.

Now, we are ready to prove the completeness of the ~ unification procedure.

Theorem 3.4 Let ® be a TRS. s and ¢ be terms, and
[-‘E .{;'_], [.\i,f.1 £ :l..l:pJ = {Eﬂ. Hn.r;ﬂ,[-'ru:l - {Eh -!i—T.}l_1 (:'III § Ul] = {E'h EJ-GbEfE} oo

be a fair inference sequence. Then, 7, is a complete set of ~ unifiers of s and 1.
That is. for any ~-unifier # of s and (. there is a substitution # ¢ /.. more general
than #.0

proof: By replacing variables in s# and 10 with fresh constanls, we can assume that
& and 16 are ground ters without loss of generality. Moreover, by replacing the
value of # at each variable with its normal form w.r.t. R, we can assume that @ is
irreducible. Since s8 = (6, there is a term « and a normal proof

{(stifl=pp=pm=--=p, — (uu)
by ft... Then, from Theorem 3.3, there is a sequence of narrowing by H.
(#.8) = (Sgufu) =iy (&1, 01) ~ag, oo g | (80, 1)

and a sequence of irredncible substitutions vy, ¥y, . ... ¢, such that peo= (si i) (i =
0,1,...,%) and
O — g =lgotly = - = tge-- - o, o1,
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From fairness condition (3), we can easily prove by induction that, for each ¢, (5,6, fyo- -

B,_y) € (.., in particular, (s, 1., 0oy 1) € G Since s,4, = u = 1,
s, and t, are unifiable. Let ¢ be the most general unifier of s, and f,. Then,
from fairness condition (4), # = flge---afl,_y=tb € Uy, which is more general than
B =g -oll,_ ot m

As shown in Theorem 3.2, the ~-unification is an extension of the Knuth-Bendix
completion procedure. In particular, if B; = R, for some 1, a finite confluent and
terminating TRS is obtained after a finite number of steps of inference. Then. the
subsequent process can be assumed to consist only of G generations and [/-generations
since the other rules cause no essential change in f2;,, G;, and U/;. Therefore, the
procedure can be viewed as an extension of Fay’s procedure. Moreover, if (7, = G/
for some j {in fact, Example 2.1 is this case), we can obtain a finite complete set
[/, of ~-unifiers of s and . Note that, even in this case, [’ is not necessarily the

winimur complete set.

4 Implementation issues and examples

There are a lot of things to be considered for efficiency in actnal implementation
of the prucedure discussed in the previons sechon,

If the proof of Theorem 3.2 is examned, it can be easilv seen that the inference
rules [i-reduction and E-deletion do not contribute to the completeness of the proce
dure. In fact, these mles are introduced for efficiency. To improve cfficiency further,
the following inference rules should be taken into consideration. If these rules are
given priority over the generation rules, they will save a lot of time by not applying
useless inferences.

. (E,RuU {{1y.ug)}, G 1)
R-reduction: : - ty — 1y by a mile in K
(E U {{uyul)} RGO

(E,R,GU {{uy, uz, 8}, 1)
(i-reduction: - : up =+ uh by arule m R

(E, R G (g g, 83,00

(E,R.G U {{uy, ug, 0)}. 1)
(F,R, G017}
8 is reducible by K or an element of L 1s more general than @

i -delelion:

(£, R, G.U U {6))
(E.R.G.U)

# is reducible by K or an clement of [7 is more general than #

I'-deletion:

The reader can clearly see the role of R-reduction and G reduction. Rules G-
deletion and [/-deletion essentially play the rele that the basic narrowing plays in
Hullot’s procedurel18],

q
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Fven if the above inference rules are also employed, the procedure is still complete.
Te prove its completencss, however, the proofl order and the limits need more subtle
treatment, and this would intreduce a simple but long discussion, which we have
avoided i the proof of Theorem 3.2, For example, il F-reduction is employed, K.,
must not be delined as U2, R, bul as U, V2, B,, since R, is no longer increasing.

We will show several examples of =-unilications in combinatory logic. In the
examples, we use the strong simplification order = induced by lexicographic sublerm
ordering. 'lerms of the form (-« (*(2,y),---), 2} are abbreviated to the form ry -« - 2
in the following inference sequence.
Example 4.1 An identity combinator 1is defined as a combinator with property
Yo ir = r. Here, we show the example of aulomatic construction of ifrom sand
kby =-unification. Let Ey be {(sayz,xz(yz)). (kay. o)} (that is, consist of the rules
for sand k), and Gy be {{vc, e, 20}, Function syntbols are ordered as e < k < 8 <+

(Fo={(seyz.r={y=]). (kry. 2]}, Ho=0, Go={lvc.c.2)). ITh=0)
'_H-generatinu (Ey={{sryz.rz(y=)}}. Ri={{kry.r}}. G =Gy U =0)

(Fo=z, Ro= Ry U {(seys, x2(y2))}. Ga=00, U =a)

(Fa={(skzy,y)}. Ru=R,. Gu=04, [h=¢)

" R-generation
a F generation
(La=c. Hy=Hy U {(skey, )}, Gy=0Gs Ui=0)
(Ee=z, Hi=My, Go=Gy U {{eoo sk /o)), T, = o)
(Es=¢, Bo=Rs. Go=Gs, Lg={[skr/v]})

i {-generation

e -generation
e

-generation

Thus, v = ska is obtained as an 2-unifier.g

Remark: Strietly speaking, an ~-unifier of »e and ¢ is not necessarily an identity
combinator, since it may depend on ¢ (that is, the term substituted to ¢ may contain
¢ as its subterm). IF we wanl to restrain such a unifier from being generated, we
should =~-unify both sides ol ve{v] # e{v), which is the Skolem form of the negation
of Wor vr — .

Example 4.2 Nexi let us trv the mockingbird problem2t, A mockingbird is a com
binator mwith property ¥z mr — rz. The problem is to construct a fixed point of
a given cownbinator ¢ [rom m. b, and ¢ itself. where b 12 a composition combina-
tor, which has property Yo Wy ¥z beyz = wiyz). A lixed point of ¢ is defined as a
combinator | with property ef — f.

We set By to be {{ma, zx), (byzw, ylzw))}, Hy to be ¢, &y be {{ev.v,2)}, and
[’y to be @, and execnte the ~-unification procedure. order ¢ <2 m < b < of function
symbols We do not trace the details. but a fixed point of ¢ is obtained through the
following process.

(1) New rule {m{byz),y(2{byz]))) is obtained as a critical pair of rules (mz,zrr)
and (byzw, ylzw)) bv E-generation.
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(2) New goal (m{bez), z(bez), [z(bez)/v]) is obtained from goal {cv, v, &) and rule

(m(byz},y{z(byz]})) by (s-generation.

(3) Finally. we can generate ~-unifier (m{bem)/v] of cv and v from the above goal

(mibez), z(bez), [z(bez)/v]) by [7-generation, and m(bem) is a fixed point of ¢
in fact.o
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