ICOT Technical Report: TR-629

TR-62Y

Program Synthesis by a Model Generation

Theorem Prover

by
M. Fujita & R. Hasegawa

March, 1991

© 19a], ICOT

Mita Kokusai Btdg. 21F i(0313456-3191 -5

ICOT o ™
Institute for New Generation Computer Technology

Program Synthesis by
A Model Generation Theorem Prover

Masayuki Fujita
Ruzo Hasegawa
[nstitute for New Generation Computer Technology
1-1-28, Mita, Minato-ku, Tokyo 108, Japan
Phone 481 3-436-2514
e-mail miujita@icot or.jp, hasegawa@icot.or.jp

Yasuvuk: Shirai
Mitsubishi Rescarch Institute, Inc.
2-3-6, Otemachi, Chivoda-ku, Tokyo 100, Japan
Phone 4+81-3-536-3813
e-mail shirai@itsoa.co.jp

February 8, 19491

Abstract

I'he combination of theorem provers and program syuthesis, that can obviously provide
us ol aulomated programming, has been left out of considerntion becanse of the theoretical
darkness how to relate proofs obtained by the resolution based provers to the executable
PrOLEALIS

We here propose a new approach to this goal with using a clear framework of program
exlraction, which is based on the constructive mathematics. The basic principle of this
lrainework is the Realizabdity Interpretation, which allows us to relate programes with procfs
Healizabality Tnterpretation can be a mathematical basis of building a formal program ox-
Lraction system from proofs oblained by a wide varicty of first-order provers.

Hesides the theoretical research of this approach, we have built an experimental system
with using a model generation theotem prover{ MGTP) and a formal logic system({PAPYRUS)
and have ohtaned several programs such as sorting programs.

1 Introduction

Mare than twenty years have passed after the idea of program synthesis from the formal proof in
mathematics was proposed. The methods proposed until now, however, are rather ad hoe and
have rather weak methods for theoretical investigation. Moreover, in spite of a great advantage
of bug free program svothesis, proof generation has remained as a bottleneck of practical use,
On the ather hand. research on automated reasoning, independent from program synthesis, has
got much progress in the last decade not only in the theory but also in the practice in accordance
with the progress in the area of logic programming([Stis8],[MBSS]).

The combination of Lhese two technologies. thal can obviously provide us of automated pro-
gramming, has heen left out of consideration because of the theoretical darkness of how 1o relate
proofs obtained by the resolution based provers to the execulable programs, Our purpose is to
find & way to combine these two technologies in order to extract not only sequential programs but
also concurrent programs. We used Realizability Interpretation{an extension of Curry- Howand

Isomorphism) in the area of constructive mathematics in order to give the executable meaning
to proofs abtained by efficient theorem provers,

Our approach for combining prover technologies and FHealizability Interpretation has the fol-
lowing advantages:

¢ This approach is prover independent and all provers are possibly usable
¢ Realizability Interpretation has a strong theoretical background

* [lealizability Interpretation is general enough to cover concurrent programs

Two systems MGTP and PAPYRUS. developed in ICOT, are used for the experiments
on sorting algorithms in order to get practical insights of onr approach.

A maodel generation theorem prover {MGTP) implemented in KL1 searches for proofs of
specification expressed as logical formulae and it runs on a parallel machine:Multi-PSI. MGTP
is a hyper-resolution based bottom up(infers from premises to goal) prover. Thanks to K11
programming technology MGTP is simple but works very efliciently if problems satisfy range-
restriciedness. The inference mechanism of MGTI is similar to SATCHMO[MD#8] in principle.
Hyper-resolution has an advantage for program synthesis that inference system is constructive.
This means that no further restriction is needed for avoiding useless search.

PAPYRUS(PArallel Program sYuthesis by Reasoning Upon formal Systems) is a coopera-
tive workbench of formal logic. “I'his system handle proof trees of user defined logic in Edinburgh
Logical Frameworl{ LF) HHPS7]. A typed lambda term in LF represents a proof and a program
can be extracted from this term by lambda computation. This system treats programs({functions)
as the models of a logical formula by user defined Realizability Interpretation. PAPYRUS is a
integrated workbench for logic and provides similar functions of PX[HN&8], Nuprl[Con86] and
Elff Pfeg3].

We faced two major problems in the rescarch process:

o How 1o extract a program from a proof in clausal form

¢ How to incorporate induction and eguality

The first problem relates to the fact that programs cannot be extracted from proofs obtained
by using excluded middle as used in classical logic. The rules for transforming formulas into
clausal form coutains such a prohibited process. This problem can be solved if the program
specification is given in clausal form because a proof can be obtained from the clause set with-
out using excluded middle by MGTP. The second problem is that all induction schemes are
expressed as secomil-order propositions. In order to handle this, second-order unification will be
needed, which is impractical to use so far. However, it is possible to transform a second-order
proposition to a first-order proposition if the program domain is fixed.

Proof sleps of equality have nothing te de with computation, Provers can use efficient algo-
rithms tor equality as an attached procedure,

In this paper, we first describe the theorem prover and the program extraction technigque.
Then technical difficultics and the solutions are outlined. Finally after mentioning the exper-
imentation on sorting algorithms we will discuss conenrrent programs extraction and rescarch
interests in this new approach of automated programming.

2 MGTP

The MGTP prover adopts model generation as a basic proof procedure. We assume that a
theorem to be proven is negated and transformed to a set of clauses, then we try to refute the
clanse sel as in the resolution method. A clause is represented in an implicational form:

.—11,."!2.....f.-"1ﬂ —{ﬂ];f 2:...:(-1"1

Type = [I'roposition ¢ Specification

A-term = Proof & Program

Figure 1: The Curry-Howard Isomorphism

where A1l < i < n}and {1 < j < m) are aloms; the antecedent is a conjunction of
Ay Az. ... Ay the cansequent is a disjunction of €y, €%, ... Oy

T'here are the following two rules in the model generation method.

s Madel extension rule: If there is a clanse, 4 — O, and a substitution ~ such that Aeg is
satisfied in a model M and (e is not satisfhied in M, then extend the model M by adding
e into the model M.

o Model rejection rule: 1f there is a negalive clause whose antecedent Ae is satisfied in a
model M. then reject the model M.

The task of model generation is to try to construct a model for a given set of clauses starting
with a null set as a model capdidate. If the clanse set is satisfiable, a model shonld be found.
The method can also he nsed to prove that the clause set is unsatisfiable, by exploring every
possible model candidate to see that no model exists for the clause sel.

The mode! generation method does not need full unification during ronjunctive matching of
the antecedent literals against model clements if the range-restrictedness' condition is imposed
on problemn clauses. When range-restrictedness is satisfied, it is sufficient 1o consider one-way
unification. or matching. instead of full unification with occurs check because a model candidate
constructed by the model generation rules should contain only ground atoms. This property is
[avorable in implementing a prover in KL1 since matching is easily realized with head unification
and the variables in the given clauses can be represented as KL1 variables. Experimental results
show that the MGTE prover is efficient in solving range-restricted non-Horn problems. For
details of technigues for implementing MGTP, refer to [HFF90|, [FHY0].

3 Realizability Interpretation

Many attempts to realize program synthesis by theorem proving have been made in recent twenty
vears. For instance, Manna and Waldinger[Man80] proposed a method embedded in the Tableau
Method and extracted a program from a proof by hand. Traugott|Tra89] extended this method
and applied to a variety of sort algorithms, But the proposed methods are rather ad hoe and
have insufficient justification of the correctness of the extracted program.

A more strict approach to extract programs from proofs is based on the Curry-Howard
Isomorphismi CHI) or proposition as type[Mar82]. The CHI, first proposed at the end of the
1960, is based on the correspondence between a typed lambda term and its type and between
a proposition and its proof. CHLis shown in Fig. L.

The majar advantage of this approach is the correspondence between the soundness of the
extracted program and the correctness of the proof. Correctness of a program is assured by the
correctness of a proof. Realizability Interpretation is a natural extension of CHI with enriched
recursive funetions and recursive data types. Realizability Interpretation is one of the hot

"To ensure range-restrictedness, a dom,/! predicate is added to the antecedenis of problem clanses and extea
elauses for the predicate are added to the original set of clauses, if necessary. Uhis transformation does not change
the satisliability of the original set of clanses.

P Proof

Tteration|

@' & |V 3-Introduction
Application| < ib'aﬁliminatinn |

Figure 2: The Correspondence between Proofs and Programs

rogram
Tterat]

WrdyCx) > R{x,y) @ -C(X)vR(X, f(X)
Spec: - .
impnt X, X —input
output y such that: f x satis fies condition C{x) JIX) —output
then Rix.v)

Fignre 3: Specification in Clausal Form

research areas of the constructive mathematics. Our program extraction method is based on
[LakRT] and is extended to handle sume kind of recursive domains.
Fig. 2 will be of good help for intvitionistic understanding of the CHIL

4 Difficulties and solutions

4.1 Clausal forms and resolution

The most provers, including MGT'1", treat propositions in the clausal form. On the ather hand.
C"HI means the correspondence between logical connectives and quantifiers and type construc-
tors. But buth resolution based systems and natural deduction have the completeness for the
full first-order logic, so there i= a patural correspondence between proofs of them. We can sec
skolem functions as the existentially quantified objects and free variables as universally quanti-
fied objects. Fig. 3 shows an example of this corresponden e,

Transtormation of formulae into clausal form uses inference rules out of constructive logic.
For example, vou cannot deduce = A v B from AZB. However the resolution principle is not
out of intuitionistic logic. Hence, the problems in using clausal form based provers are combined
to the transformation to the clausal form. If the specification can be initially expressed in a
clausal form, all the prover based on the resolution principle are valid for program synthesis, The
resolution principle itself is safe because it is constructive but structure rules such as contraction
are harmful for program extraction.

But MGTP does not need 1o use the contraction rale and has very good property for progran
synthesis. The intuition is that MGTP uses disjunctive rules only for dividing the world into each
case. Bul the information about cases should be vanizched by contraction. So some structure rules
in provers will affeet the realizability of proofs®. Fig. 4 shows a typical example of contraction.

*Precise argument of strocture rules 1= i [Giedd]

QUu)vR(n) ~Q(XWS(f(X))
REVS(la) SRIXWVS(I(X))
S0 gs}‘}i{{}le

In this proof contraction made the origin
{left or right tree) of S(fa)) in the
bottom be anonymons.

Figure 4: Contraction problem

4.2 The recursion and the induction

Many complicated controls of iteration can be expressed in a simple recursion. The recursion
corresponds to the induetion in proofs. All induction schemas are based on the well-founded
induction on the ordinal number. Each schema corresponds to cach data domain such as list or

natural number.
Induction can be expressed as a second-order proposition. For example. the indnetion schema

for list is as follows, where § represents the type of lists,
WP — o (YL (VLY L < L 2 P(LY) 2 P(L)) OV Lt P{L)

Second-order propositions cannat he utilized hy the first-order provers becanse of their
second-order variables with which provers need the second-order unification. In addition seeond-
order unification is not practical becanse of its inefliciency.

1f the second-order variables are assigned by a proposition, the induction schema becomes a
first-arder proposition, For example, the above schema far the sort algorithm becomes as lollows.

7 24 (¥ Y4 Y <= Z 23 UL m{UL Y} A ((ULY)) 2 2 Ui w(U2, Z) A y(U2)]
o Tl 380 (S,) A w8

Where ¥ = ¥ means a partial-order relation that Y 1s a sublist of 2
{ there is a one to one mapping from Y to £). w(a, b) represents that a is a sorted permutation
of b. This is a first-order proposition, which first-order provers can handle,

Induction rule must be expressed in the clansal form in MGTT. We used the following for-
mnlae to prove a quick sort problem,

(U, ind) — n{o(X), X)
(if the propaosition is satisfied for the introduced constant,
it is satisfied for any list)
Y < and — 7 {a(Y)Y)
{by induction hypothesis all sublists of the constant can be sorted)
These rules for MGTE are sufficient for obtaining various sort algorithms, Realizability Tn-
terpretation of list induction is as follows:

r(m(a), a) = a(a)
m(T,ind) = podindT

Where T is a proper term obtained by the proof and g is a fixpoint operator of lambda
calculus,

on

4.3 Equality

Reasoning upon equality is essential for program synthesis(ex. A = B — P(A) D P(B)) . For
example, by using the fact that cons{car(X), edr(X)) = X if X is not a null list we can divide
a list. The equality axiom is a higher-order proposition and is beyoud the area of first-order
provers. The same approach to this as to induction is nat practical because it is not so general
that we need many rules for each problem.

As there is no program information in the proof of equality nor in the proof with equality
axiom, this part can be checked by any problem solver. Efficient algorithms for prablems with
equality such as pnramodulation and demodulation are suitable,

5 An example

A =mall example of sort algorithm would he helpful to understand how program can be extracted
from the proof tree of MGTP. Insert sort is the target program. Programs will be extracted by
the following three steps,

1. Proof tree generation {rom trace of MGTP
From the trace of an MGTP proof procedure PAPYRUS generates a proof tree in Natural
Deduction form . The difference in notation from the previous section has no meaning.
This proof tree corresponds to the rase splitting. “sort’ is a predicate which means the
second argument is an ordered permutation of the first argument. ‘ins' is a function
introduced hy the insert lemma.

[mal(1.}] [nonnil(L)|

mil(L} v nonnil{T.} sort(Lonil} sost{Lins{ecar] L)z(cdr{1.)11)
sort{ L or{nilins{car(L) .2 (cdr{ L)1)

Y —elim

2. Getting wyped lambda torm in LF
The corresponding LF term can be obtained by simple transformation. o means application
of & term to a function. 'prf’ represents the corresponding LF term of the proof of sach
goal. " is an infix eprerator of typed lambda calculus which means that the lefthandside
of this inhabits the righthand.

Yeelimoprfinil{ L} v nonnil{ L1}
oprfinil{ L] = priisort| L.nil))
opri{nonnil{ 1.} —
prifsort L inslcar(L)z ede{ L) }))}
: sort{Lor(nilins{car{ L} z{cdriL)1)))

3. Program Extraction
A program can be extracted by substitution of corresponding lambda terms for inference

riles and simplification by lambda computation,

'In order to making the program extraction simple and mechanical provess, we designed a logic for MGTP

v-elim{:= X cond. A left. A right.condeleftoright)
ofA left. A right. if L = nil then leftenop else rightenop)
o (A p. nil}
o (A p. ing(ear(L)e(cdr(L}}])
— if L=nil then nil else insert{car(L)2(cdr{L})

6 Discussion

I'he following two topics are of the intercst of this section.
» ‘The ability of our approach in extracting concurrent prograrms

s Relations between proofs and programs with multiple 1/0 such as logic programs.

6.1 Concurrent programs and program extraction

Parallel reduction of redexes is the basic computation mechanism of the lambda calculus. We
can see lambda terms as concurrent programs because of this. And this corresponds to the
independent part of a proof, Although this is not sufficient o express communication processes
such as co-process, a feasible extension of the realizability interpretation can cover concurrent
processes that communicate by streams in conenrrent logic programming languages, That is to
introduce a list data type with infinite Jength and induction on the infinite list as an axiom.
Concurrent programs such as humming sequence or prime number generation are in Lhe scope
of this extension. But the most of important programs in concurrent programming are not able
to be extracted by this extension. In order to handle non-deterministic programs, non-trivial
extension of logic will be needed.

6.2 Logic programs and program extraction

Programs with multiple 1/0) such as append in prolog are in logic programming. However, 1/0
is fixed in Currv-Howard lsomorphism as the interpretation of guantifiers determines 1/0 of
data. Thus there is no proof corresponding to programs with multiple I/0. One of the ways Lo
find a solution of this question is to change skolem lunctions of premises in clausal form in order
to alter the 1/0 of premises, In the clausal form free variables correspond to inputs and skolem
functions so do to outputs. So this change means the change of 1/O of the premises. If the proaf
is valid after the changes and the position of output term moves in accordance with the changes
in premises, we can prove I1/O altered multiple goals without changing the structure of proof
tree but onlv by changing the specifications of premises. Hence the corresponding program has
multiple 170,

7 Conclusion

The realizability interpretation is an elegan! and formal method to relate proofs with programs.
This principle together with prover technology make automated programming possible. Through
the experiments, on sort problem, of the theorem proving and the program extraction, we have
shown that this method is practical. The followings are what problems we have faved and how
we have solved them.

e Clausal forms and structural rules
Not all proofs generated by theorem provers have the corresponding programs because of
structural rules. But MGTP does not use any structural rules and is suitable for program
synthesis. The transformation process destroies the procedural meaning of formulas, but
the correspondence between variahles and skolem functions and quantified variables gives
a simple extension of CHL

=1

¢ Induction
Though induction is a hyvper-order scheme, we can use first order instances for each problem

domairn.

+ Equality
Handling equality is inevitahle for program synthesis. And it is also a higher-order problem.
However inference with egquality or prool of equalily has nothing to do with computation
thus we can use any cquality problem solver.

Acknowledgements

We would like to thank Wazuhiro Fuchi for giving us the opportunity of doing this research.
We also wish to thank Koichi Furukawa for introducing us to other related works, and Mark E.
Stickel for his helpful comments. Thanks are also due to Miyuki Koshimura at JBA Co. Ltd.,
Hiroshi Fujita at Mitsubishi Electric Corp. and Jun limura and Fomihiro Kumeno at MILI Inc.

References

[Bib®6| Bibel. W., Automated Theorem Proving, Vieweg, 1086,

[Conf6] Constable, 1. et al, Implementing Mathematics with the Nuprl Proof Development
Systern. Prenticd-Hall, NJ, 1986,

[FHS0] Fujita. H. and Hascgawa, R., A Model Generation Theorem Prover in KLI Using
Ramified-Stack Algorithm, 1COT TR-606, 19490,

[Fuc90] Fuchi. K., Impression on KL1 programming - from my experience with writing parallel
provers -, in Froc, of KLT Programming Weorkshop “80, pp.131-139, 1990 {in Japanese).

[Girs®] Girard. 1.Y .. ct al Proofs and 1ypes, Cambridge Tracts in Theoretical Computer Sci-
ence, Vol 7, 1984,

[HFFO0] Hasegawa, K., Fujita, H.. Fujita M., A Parallel Theorem Prover in KL1 and Its Ap-
plication to Program Synthesis, in Maly-Japan-Sweden Warkshop '90, ICOT TR-588,
19490,

[IINS8] Tavashi, 5. Nakano, H., P’X: A Computational Logic, MIT Press, Cambridge, 1988,

[HHF&7] Harper, R., Honsell, F., Plotkin, G., A Framework for Defining Logics, in Symposium
on Logic in Computer Seience, TEEF, 1987, ppl194-204.

Lovis] Lovelend, D.W., Avtomated Theoremn Proving: A Logical Basis, North-Holland, 19785,

Man®0] Manna, 7. and Waldinger R., A deductive approach to program synthesis, in ACM
Trans. Programming Languages and Systems2(1), pp.91-121.

:Marﬁ?_] WMartin-Laf P, Constructive mathematics and computer programming in Proc. Infer-
reatronal Congress for Logic, Methodology and Phdosophy of Science, pp. 153-175, 1952,

(MDER] Manthey R. and Ty, P SATCHMO: a theorem prover implemented in Prolog, in Proc.
of CADE 858, Argonne, illinois, 1984,

[Ovedn] Overbeek, R., private communication. 1990.

[PfefR] Pfenning, F., EIf: A Language for Logic Definition and Verified Meta-Programming, in
Faurth Annual Symipesinm on Logic in Compute rSeicnee, TRET, 1989 ppad13-322.

[Sch¥9] Schumann, J., SETHRO: User's Manual, Techuical report, ATP-Report, Technische
Universitat Monchen, 1989,

[Sting] Stickel, M.E., A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler, in Journal of Automated Reasoning 4 pp.35d-380, 1958

[Tak#7] Takayama, Y., Writing Programs as QJ Proofl and Compiling into Prolog Programs, in
Proe. of IEEE The Symposiurn on Logic Programming '87, pp.278-287, 1987,

[Tra89] Traugott, J.. Deductive System of Sorting Programs, in

[Wos88] Wos, L., Autemated Heasoning 33 Busie Research Problems -, Prentice-Hall, 1988.

