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1 Introduction

Integrity constraint in logic programming originally relates to checking violation of update

[Sadn88). Consider the following example.

g +— ™™, "
rea.r

P

]

-

If we add m, then it viclates the integrity constraint « s, because hoth s and r are
derived. So, adding of m is prohibited.
Furthermore, recent researches of semantics of logic programming and abduction have

revealed that there are another usages of integrity constraint.

1. Control of Nondeterminism:
Nondeterminism of logic programs has been proposed based on multiple stable models

by [Sacca%0]. Consider the following example.
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pactfist i quaker, —ab, . iz
hawk «— republican, —abygye
quaker

republican

abpaywe +— pact fist

ahp:cljui — th-l‘.i-'i_Uk

The above program has the following two stable models:
{quaker, republican, paci fist, abjaus |

and

{quaker republican, hawk, aby,ifiy ).

This result expresses nondeterminism of logic programs because we can not say which
mode] is better. However, sometimes, we would like to provide preference aver those
multiple models. In this case, we use integrity constraint which excludes directly

unwanted cenclusion. By adding

+— hawk

we can exclude the latter model and this integrity constraint represents priority of

Lhe former model Lo the latter model,

3

Computing Abduction

In [Sateh90b], we show that a general logic program with integrity constraint can be
used to compute abduction. We Lranslate an abductive framework [Kakas90b] to the
general logic program with integrity constraint and show one to one correspondence
between generalized stable models [Kakas90b] in abductive framework and stable
models for the translated program. In abduction, the role of integrity constraint is to
exclude some of the subsets of abducibles as non-allowed basic beliefs as [Eshghi®9,
Kakas90a] pointed out. [n the translated program, its role is to exclude some of the

multiple stable models of translated program which is not permissible.

So, we believe that a logic program with integrily constraint deserves to be studied.
In [Satoh90b], we provide a bottom-up procedure which calculates stable model for

general logic program with integrity constraint. This procedure 15 based on a procedure



caleulating grounded extension of TMS [Satoh90a] and can be regarded as an extension of
nondeterministic well-founded bottom-up procedure for calculating stable models for logic
programs without integrity constraint [Sacca90, Fages90]. In our procedure, we can use
integrity constraint of the form « ¢ to derive information that —q is true and derive p for
the rule of the form p « —g. This usage of integrity constraint is active, but we use only
this type of integrity constraint to derive some facts dynamnically but do not use integrity
constraint of the form — —p actively.

The reason why active usage of the latter kind of integrity constraint is important is
again relaied to abduction. We show in [Satoh90b] that if we add «— -p as integrity
constraint for the formula p which should be explained then we can show one to one corre-
spondence with explanation in abductive framework and abducibles in stable models for the
translated program with the above constraint. In the procedure propused in [Satoh30b], we
have to produce stable models for the program and then check this constraint. So, we might
produce unrelated stable models to the formula which should be explained. For example,
consider the program which contains +— —p but does not contain a definition of p. Then,
the constraint « =pis never satisfied and therefore, we know that there is no stable model
for the program immediately. However,the procedure in [Satoh90b] might produce stable
model which do not include p.

In this paper, we provide a new procedure which performs top-down expectation for an
integrity constraint of the form — —p in order o solve the above problem. The idea of this
extension is to search a rule which has the possibility of deriving p and if such a rule does
not exist, the new procedure immediately fails and if such a rule exists, we select the rule
in nondeterministic part of the procedure until we can not select any rules.

The structure of the paper is as follows. In section 2, we give definitions on logic program
with integrity constraint. In section 3, we show a new procedure to compute stable models
for & logic program with integrity constraint and give some examples. In section 4, we

compare this procedure with Eshghi’s procedure [Eshghi89).

2 General Logic Program with Integrity Constraint

We follow the definition in [Sadri88] but restrict ourselves to considering propositional case.

If we consider predicate case, we change it into ground logic programs by instantiating
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every variable to an clement of Herbrand universe of considered logic program to obtain
propositional program.

Firstly, we define general logic program and integrity constraint.

Definition 1 Let A be a proposition symbol, and Ly ooy Lig(m 2 0} be propositional literals,

A general logic program consists of (possibly countably infinite) rules of the form:
A. = L] 3 L21 saay Lm.

We call A the head of the rule and L,,..., I, the body of the rule. Let R be a rule. We
denote the head of H as hiead(R), the set of positive literals in the body of R as pos(R) and
the set of atoms which are obtained by removing negation symbol from negative literals in

the body of f as neg(R).

Definition 2 let L;,..., L.(m = 0} be propositional literals. A set of integrity constraints

consists of (possibly countably infinite) integrity constraints of the form:
— .L| . L'g._ - L'm-

Let C" be an integrity constraint. We denote a set of positive literals in € as pos{C') and a

set of atoms which are obtained by removing negation symbol from negated atoms in C as

neg{(').
We cxiend the definition of stable models in [Gelfond88] for a general logic program

with integrily constraint as follows.

Definition 3 A general logic program with integrity constraint be a pair (T, ) where T is
a general logic program and I is a set of infegrity constraints. A stable model for a general

logic program wilh inteqrity constraint is a set of propositions M.

I. M is equal to the minimal model of TM where I is obluined by the following oper-
ation from T. We say that M is a stable model of 1.

(a) Deleting every rule R from T that some N € neg(R) ts in M

(b) Deleting every negated atom in the remained rules.

2. For every C € I, there is some P € pos(C') which is not in M or some N € neg(C')
which 15 in M. We say that M satisfies or does not violate C' and write as M EC.

This definition gives a stable model of T" which satisfies all integrity constraints in /.
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3 Computing Stable Models for Logic Program with
Integrity Constraint

In this section we give a procedure to compute stable models for general logic program with

integrity constraint. At first we give a skeleton of the procedure to show how the procedure

works. We will show the detail of the procedure later.
Let (1,1} be a general logic program with integrity constramt.

A Procedure to Compute a Stable Model (skeleton)
t=10,
Mg, My := propagate(D, D).
Tf Mg 1 Mg # {f then fail
R = select_rule( My, .-{;f-u]
while A is not nil_rule
(is=i+1,
M;, M, .= propagate{ M:_, U head( R), M,y U neg( R))
If M; M, # § then fail
R= 5eiect_1‘.-.:ie.mf,-,ﬁ,-} H

If there is an integrity constraint. O in T st. M, E C

then fail else return M;.

M; expresses a set of propositions which is decided to be in the beliel set after selecting i
rules by select rule and fﬁi expresses a set of propositions which is decided to be out of the
belief set. And if there is a conflict between M; and M; then M, is not possible candidate
for a stable model. The procedure has non-deterministic choice points in the subprocedure
select rule, therefore fail in the procedure expresses going hack to the recent choice point.

This procedure has two computational directions, one is hottom-up in the subproce-
dure propagate which is already proposed in [Satoh90b], and the other is top-down in the
subprocedures select rule and fopdown_check which are proposed newly in this paper to

perform top-down expectation of an integrily constraint.



3.1 Bottom-up Part of the Procedure

Now we review the subprocedure propagatc [rom [Satoh90b).

procedure propagate( M;, M,)

hegin
k=0, M2 := M, M?:= M,.
do

kio=k+1, M} = M} MK = M1
Forevervenle R = A — Ly, Ly, ..., Ly in T

L If Ag M and for every P € pos(R), P € M} and for every N € neg(R),N €
MF' then add A4 to ME.

2. 10 A € M} and there exists P € pos(R) s.t. for cvery P € pos(R) except P,
P'e M{™!, for every N € neg(R),N € M}, then add P to M.

3. 1f A ¢ M and for every P € pos(£), P € M*" and for every N € neg(R),N ¢

MF=', then fail.
For every integrity constraint ' =« Ly, Ly, ... L, in I,

4. If there exists I € pos(C) s.t. for every P’ € pos(C) except P, P' € M¥™', and for
every N € neg(C), N € MF7', then add P to M.

5. If for every P’ € pos(C), P ¢ MF ™' and for every N € neg(C'), N € M¥', then fail.

until Mf = M and M* = M,
return M}, MF

end

propagate performs following jobs.
1. bottom-up construction of the model (by case 1)
2. dynamic checking of the integrity constraint (hy cases 3 and 5)

3. active use of the integrity constrainl which derive that =g is true from the integrity

constraint — g. {by cases 2 and 4)



3.2 Top-down Part of the Procedure

Now we consider how to select a rule in order to start bottom-up construction of the
model. In some cases there arc reasons why we had better select a specific rule if we want
to exclude unrelated models to the formula which should be satisfied. For the integrity
constraint, « —p, for example, we know p must be in models immediately. (suppose p is
Inui- in any stable model, this means that there is no stable model satisfying the integrity
constraint.] So first of all, we had better select a rule which derives p. If such a rule does
not exist, we had better select a rule which has a possibility of deriving p.

To explain the possibility of deriving p, we consider the following example.

P g, 7,8 (1)
g = =i (2)
re-u (3)

Given the integrity constraint, «- —p, p must be in models of the above example. Decause
it is only rule (1} which has p as its head, rule (1) must be used to derive p. In order for p
to be in models, ¢ and r must be in hy rule (1). We can derive g from rule {2) il we can
assurne that f is not in models, so rule (2) has a possibility of deriving p. In a similar way,
we find rule (3) also has a possibility of deriving p. In this way, we can find a rule with a
possibility of deriving p in top-down manner from integrity constraint of the form «— -p.
To check whether there is a selectable rule and to decide which rule should be se-
lected, the procedure calls the subprocedure selectrule. selecirule calls the subprocedure

topdown_check, which performs top-down expectation. We show these subprocedures as

follows,

procedure select rule

If there is a set of proposition Neg satislying one of the following conditions
L. there exists a rule R in T satislying the following conditions
{a) For every n € Neg, n € neg({ ) and n & H.-,
(b) head(R) ¢ M,
(¢} For every p € pos(ii),p € M;,

(d) For every n € neg(R),n & M,.



2. there exists an integrity constraint C in [ satisfying the following conditions

{a) For every n € Neg, n € neg(C) and n ¢ Ei-,
(b} For every p € pos(C),p € M,,

{c) For every n € neg(C),n & M,.
then

Neg := a set satisfying onc of the above conditions

return topdown_check{ M;, M, Neg)

else

select a rule A in T satisfying the following conditions and return R.

L. head( R) & M;,
2. For every p € pos(R),p ¢ M,,

3. For every n € neg(R),n & M,

If such a rule is not found then return nil_rule.

procedure topdown _check(M, M, Neg)
My, M, M, := 8,
Pos = Neg
do
select a rule K in T satislying the following conditions

and if such a rule is not found then fail
1. head(R) & M,
2. head(R) € pos(R), head(R) ¢ ncg( R),
3. head(R) € Pas,

. For every p € pos(R),p & M, p & M, and p e M,

e

3. For every n € neg(R),n & M and n g M,.

L]



add pos(H) to M,

add neg( R) to Jﬁ.

add head{ R) to M,
Pos = pos(R)

until Pos C M return R.
At first select _rule checks whether there is an integrity constraint for which top-down ex-
pectation is perforined. (precisely, top-down expectation is also performed for some rules.)

In tepdown_check, by M, and M,, a tule is selected which is consistent in the rules pre-
viously sclected during the top-down expectation. Moreover M, is used to exclude cyclic
derivations.

We show that the procedure returns every stable model by an appropriate selection of

rules, and it is complete for finite propositional case.
Theorem 1 [et (T, 1) be a logic program with integrity constraint.
1. If the procedure outputs M, then M is a stable models for (I'1).
2, If T and I are finite, then the procedure outputs all stable models by exhaustive search.

Proof: See Appendix.

3.3 Examples

We compare our procedure with the procedures of [Sacca90, Satoh90b]. The following

example shows the difference.
Example 1 Difference of Three Procedures

Consider the example in Introduction again:

pacifist « quaker, ~abyq. fire (1)
hawk — republican, ~aby,ux (2)
guaker (3)
republican (4)
abauk — paci fist (5)



ﬂ'bpﬂcl'ffﬂ — hd":k [E‘J
and the integrity constraint:

— hawk {7)

The procedure of [Sacca90] produces next two stable models stated in Introduction for a

logic program (1)~(6).

{quaker, republican, paci fist, abga i |,
{quaker, republican, hawk, abgaei fis: }-

So, this process has nondeterminism of producing two stable models. Then, we discard the

latter because that model does not satisfly the integrity constraint (7).

Next we show the execution of the procedure of [Satoh30b] with contents of M; and J;r},

0. My = {quaker, republican}, My = {hawk},
because from (3) and (4), quaker and republican must be in My by case | in propagate

respectively, and from (7}, hamk must be in Ma by case 4 in propagate.

1. Select rule (1). Then, M, = {quakcr}rcpubﬁcan,pucifisi,abhwk},ﬁ?i = {hawk, aboacifist}-

[

Since there is no selected rule, My is returned.

Though our procedure results in the selection of rule (1) as the procedure of [SatohY0b],
our procedure decides Lo selecl rule (1) by top-down expectation. The execution of our

procedure 15 as follows.

0. My = {guaker, republican }, Hﬂ = {hawk},
by propagate.

1. Neg - {abpaue} in select rule. Select rule (3) and (1) in topdown_check. Then,
rule (1} 15 returned hy topdown_check because quaker € My, 5o, by prepagate,
My = {quaker, republican, paci fist, aby,. }, M, = {hawk, aby,.; i}

2. Since there is no selected rule, My is returned.

In {Satoh90b], we have shown that a general logic program with integrily constraint can

be used to compute abduction. We translate an abductive framework [Kakas90b] to Lhe
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general logic program with integrity constraint. By next example we show the process to

compute abduction with our procedure.
Example 2 Abduction [Satoh90b]

Consider the [ollowing logic program T [Kakas90b, p.387]:
pe—b (1)
g+ a (2)
with abducibles A = {a, b},
and the following set of integrity constraints J:

—q,b (3)
= —q, b (4)

and suppose an vbservation ¢ 1s given.
Translation from this abductive framework by [Satoh90b] is follows. We add the following

rules, I'( A}, to the above logic program.

@~ i (s)

i~ —a (6)

b= —b (7)

b b (8)
And we add the following integrity constraint to the ahove integrity constraint.

- (%)

To compute abductive explanation for the abductive framework {T', A, I}, we compule stable
models [or the translated logic program (T UT{A), T U {+— —q}).
The execution of our procedure for (T'UT({A), [ U {& —q}) is as follows.

0. My=0, My =0,

1. Neg = {q} in select_rule because of rule (9). Select rule (2) and (3) in topdown _check.
Then, rule (5) is returned by topdoun_check because rule {3) has no positive propo
sition. So, by propagate, My = {a,q, b}, M, = {&,b).

2. Since there is no selected rule, A, is returned.
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So we get a abductive explanation My N A= {a}.
In the above execution of our procedure we can calculate a stable model without back-
tracking thanks to top-down expectation of integrity constraint. If we use the procedure

of [Satch90b] to compute stable models for the translated logic program, then we have six

alternatives 1o select a rule.

4 Related Work

[Eshghi®9] shows the abduction procedure to calculate explanation for a give observa-
tion, which is a generalization of SLDNF. [Kakas90a] extends the top-down procedure in
[Eshghi®9)] in order to manipulate arbitrary hypothesis. Though these procedures orginally
compute abduction, these procedures can compule models for general logic program if that
peneral logic program contains no abducible. Now we compare our procedure with their
procedure.

In their framework, negative fiterals in the program are translated into abducibles, which
are positive literals, Their procedures perform SLI} when an ordinary (positive) literal is
sclected, when an abducible (expressing the negative literal) is selected they do a generalized
Negation by Failure. So they always compute in a top-down manner whichever the selected
literal is positive or negative. On the other hand, our procedure computes mainly in a
bottom-up manner except that it computes in a top-down manner for integrity constraint
of the form «— —p. We incorparate the top-down nature of SLI) in [Eshghids)’s procedure
into our procedure for the efficiency. While the procedure in |Eshghi89] is not sound for
any general logic programs, our procedure is sound for any programs, After a refutation
is produced in [Eshghi89]'s procedure if the procedure confirms in bottom-up manner that
rules which are not used in the refutation are consistent in the derived explanation, then

|Eshghi89]'s procedure may become sound for any programs.

Appendix

Proof of Theorem 1:
We can show theorem 1 by the adaptation of the proof that the procedure of [Satoh90b] is

correct.



Consider the following simple procedure to compute a stable model.

Let {T,1) be a general logic program with integrity constraint.
A Simple Procedure to Compute a Stable Model

=0

Step 1:

Select a rule 2, = A; — Ly, L4, ..., L in T satisfying the following conditions and
go to Step 2,

1. A € M,

2. For every P € pos(R;), P € M;,

3. For every N € neg( ) N ¢ M;.

If such a rule is not found and there is an integrity constraint C'in [ s.t. M; = C

then fail else return M.

Step 2:
ti=t+1,
M;=M_,U{A_,}
If there exists Ru(0 < k <1 — 1) such that for some N € neg(Ri), N € M;
then fail else go to Step 1.

We denote our procedure in section 3 as proc{(J) and denote the above simple procedure

as proc{S). We need the following two lemmas.

Lemmea 1

1. If there is a selection of rules such that proc(Q) outputs M, then there is a selection

of rules such that proc(S) also outputs M.

2. If T and I are finite and there is a aelection of rules such that proc(S) outputs M,

then there 15 a selection of rules such that proc(Q) also outputs M.

Lemma 2

1. If proc(S) outputs M, then M is a stable models for (T, T}.
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2. IfT and I are finite, then proc(S) outpuis all stable models by an exhaustive search,

We can show Lemma 2 by extending the correspondence between stable model and grounded

model from |Elkan90, Theorem3.8].

Proof of Lemma 1:

1. Suppose proc(0) outputs M with a selection of rules Ry, ..., R, where R,(0 < i < n) is
used at the while sentence in the main procedure or case | in the subprocedure propagate.
We can show this sequence of rule can be used in proe(S) to output M.

2. Let {I', I} be a finite general logic program with finite integrity constraint. Suppose
proc(S) outputs M with a selection of rules fty, ..., f1,. We show that we can modify this

selection of rules such that:
1. proc(5) still outputs M with a madified selection of rules,
2. proc(0) also outputs M with the modified selection of rules.

To show the above, we show the following condition is true for every i in the main

procedure of proc((?) and every & in the subprocedure propagate of proc(().
1. We can modify the above selection of rules up to given ¢ and &, such that:

(a) proe(S5) still outputs M with a modified selection of rules,
{(b) prec((}} can use the modified selection of rules up to 7 and k,
{c) M‘-" is a subset of M.

2. M and H’f are mutually exclusive.

We can prove this by induction of 7 and & in proc{ Q). Then since every stable model must

be finite, proc() eventually terminates with output M. ©

Theorem 1 is proved by Lemma 1 and Lemma 2. O
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