ICOT Technical Report: TR-624

TR-G24

Coinductive Constructive Programming

for Concurrent Systems

by
Y. Takayama (Oki)

February, 1991

@ 1991, ICOT

Wit Kokusal Bldg. 21F (03)3450-3191 5

|{ :D | 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Coinductive Constructive Programming
for Concurrent Systems ~

Yukihide Takayama
Electric System Laboratory, OKI Electric Industry Co., Ltd.
11-22 Sibaura 4 chome, Minato ku, Tokyo 108, Japan

takayarna@okilab.okicojp, takayama@Qicot.or.jp

November 30, 1990

Abstract

This paper investipates problems tial emerge when tle paradigm of constructive
programming | proofs-as-programns) is applied to conenrrent programming, in par-
ticular Kahy-MacQueen-Keller style of stream based concurrent programuming with
nondeterminacy. ‘The main interest in this paper is how streams are treated formally
and hew recursive programs on streams should be described as proofl procedures.
We regard streams as Brouwer's choice sequence, and introduce a natural deduc-
tion style of coinduction rule based on the categorical treatment of streams by T.
HMagine to define recursive programs on streams. Also, several examples including
Eratasthenes” sieve algorithm and a nondeferministic stream merger are presentod.

1 Introduction

Constructive logic gives a formal method of developing programs. Suppose, for example,
the following formula:

Yz Dy 3y Dy Alx,y)

t'his is regarded as a specification of a funciion, [, whose domain is 1)) and the codomain
is)y satisfving the input-output relation, A(x,y), that is, Yo : Dy, A(z, fz}) holds.
If a constructive proof of the formula is given, the lunction, f, is extracted from the
proof with q realizability interpretation in constructive logic [4, 29] or with Curry-Howard
correspondence of types and formulas [12]. This realizes Bishop’s idea of mathematical

*'I'his work was supported by Institute for New Generation Computer Technology as a joint rescarch
project on paralell programmisg environment.

langquage as high level programiming lenguage |4, 5], and will be referred to as constructive
programming in the following. Constructive programming has been studied by a lot of
researchers as in [3, 8, 11, 17. 18, 20, 24. 26, 23], One of the advanlages of conslructive
programming is that control mechanism in programs can be described as logical reasoning.
In particular, recursive call programs can he written as proofs in induction. For the
recursive programming on a list type. L. the structural indoction rle is used:

[.z: # nal, Af“':-""].]}
Al ili‘i'.l!”_:l "4{'?:]
1~I:-“I.'I: : I-'.lr‘ '4'{'2.:'

(:-:.f.-mrf}

The proof of A(nil) defines the termination condition of the recursive program, and the
oecurrences of the induction hypothesis, A{#{{z)), correspond to the rerursive calls of the
program on #H{x). Then, a proof in structural induction on lists

[z # nil, A{ti(z))]

Alnal) Alx) o
: : st ind)
Vo L, Alz) (st ind)

defines the following recursive call program:
Fia)=if » = nil then Codey else Codeq

where Codey ts the program defined by the subproof, (5 /A, and Codes, in which
F mayv occur, 15 the program defined by the subproof, (E;/A(x)).

On the other hand, the notion of streams iz one of the key ideas in extending constructive
programming to concurrent programming. Then, the problem is whether the structural
induction can be extended to stream tvpes or a comparative rule on streams can he
formulated. The naive extension of (sf-ind) to regarding streams as infinite hsts

At (a))
Alx) .
e (5
W I, A[T:l{)
where I 15 a type of sireams over 7, does not work well because, for example, the following
wrong theorem can he proved:

Let nat be the natural number type and elem(n, 2} denote the nth element of
w. Thew,

Yr : dpnae. H(z) where Biz) ® In : nat. elem(n,) = 100.

Prvof: By (51) oo z : L.y Assume D{tl{z)). Then, there exists a natural
pumber kosuch that clemik, ti{z)) = elem{k + 1,z) = 100, Then B(x)a

This proof would correspond to the following meaningiess prograu:
foo = hr. fool{tl x])

Therefore, for the treatment of streams, drastically different idea is needed.

There have heen several works for the formal treatment of streams. T. Hagino [10] gave
a uniform categorical framework of buth least and greatest fixed point tvpes, and showed
that a stream (infinite list) type can be defined as a greatest fixed point type while a {[imite)
list type is defined as a least fixed point type. P. Aczel and N. Mendler [1, 2] also gave a
characterization of stream types in a categorical setting. Both works are along the similar
line to the work by M. B. Smyth and G. Plotkin [22] and relevance to logic is not pursued,
N. Mendler et al [15] introduced lazy types to Lhe Nuprl prool development system [8],
but Curry-lloward correspondence does not work well for the lazy types. That is, lazy
types is not regarded as formulas, and recursive programmiog on streams with lazy types
cannot be described as logical reasoning as in the sense of the struclural induction for the
recursive programming on finite lists. P. Dybjer and H. P. Sander [9] gave a verification
system for concurrent systems based on the idea of constructive programming. Their
svstem uses a domain theoretic axiom, a greatest fixedpoint induction rule (coinduction}
introduced by D. Park [19], for the verification of recursive call programs on streams.
Although streams are handled in a framework of logic, formalizing the coinduction 1 the
siyle of natural deduction remains to be an open problem.

This paper extends constructive programming to Kahn-MacQueen-Keller style model of
stream based concurvent programming with nondeterninacy [13, 14]. An compulalion
agenl of the model is regarded as a stream transformer as in [9], so that we assume a
recursive program on streams to be a stream transformer that takes several slreams as
input and calculales a stream as output. The basic idea of defining a stream transformer is
Burge's stream generator function [7] which was reformulated by T. Hagino as a categorical
combinator, P, in the following commutative diagram of coinduction:

1!
g +— [, — I,

|| TP"I.'FN T.F’."Ir:l'.l"\"

M N
g +— T —% T

where I, i1s a stream type on a type o, 7 iz an arbitrary type, and M : 7 — o and
N :7 — 7 are arbitrary morphisms. P is interpreted as the following lainbda term:

P M7 ANTT Azt (M oz) o (((P M) N)(N z)})

where { :: } is the infinite list constructor. If 1 is a cartesian product of stream types,
I, % %I, , and the morphisms, M and N, are defined as constructive proofs, then the
streamn transformer, FM N, can be defined with a suitable rule of inference representing
the combinator P. The rule is to prove the specification of the stream transformer in
the form of ¥z, : I,,.---Va, : L3y ¢ I,. Alzy,---,2.,y). If the class of the formula,
A{zy,- -+, Ta,¥), is suilably restricted, this idea works well and we obtain a natural de-
duction style of coinduction.

Inn our coinduction rule, streams are regarded as Brouwer's choice sequences: A siream
tvpe, I, consists both with lawless and lawlike sequences. This means that our system
takes the sequences such as keyboard input into account. This maintaing the idea of
concurrent system as open system [16]. From aesthetic point of view. the formulation of
streams as choce sequences 15 suthcient, bul we also define computational streams, which
are represented by non-terminating recursive call fanctions, and computational stream
types for practical reason. A computational stream lype is an extension of lazy types
with nondeterminacy. and the class of computational streams can he effectively emhbed

ded into the class of choice sequences.

A crucial design branch of the formal system resides in the treatment of the program such
as the strearmn filter program whose output stream may he empty. One approach is to
regard finite sequences, including emply sequences, as streams, but we introduce a notion
of cowuplete stream type in which finite sequences are also regarded as virtually infinite.
That is to keep the uniformity of the formulation.

Nondeterminacy is simulated by a special term called the coin flipper at the programming
language level. but can he represented rather implicitly at the proof level because of the
inherent nondeterminacy in the proof normalization with regard to disjunction symhol.

The construction of the paper is as follows. Section 2 pives (Le basic idea for treating
streatns and stream transformers. A coinduction rule, (Coind), in natural deduction siyle
formalism is defined here. ‘L'he rest of the furmalization of the whole svstem is presenied
i section 3. A calenlns called non-deterministic A caleulus is defined as the program
language. The rules for stream types, computational stream types, and effective embed-
ding of compuiational streams into the class of chivice sequences is established. Finally,
a realizability interpretation of the formal system, which gives the program extraction
algarithm from proofs, is defined. Several examples of concurrent programs are given
to demanstrate the expressive power ol the formal system, in particular (Coind) rule in
section 4. Comparison with other works and disenssion are presented in the final section.

Notational preliminary: We assuie lirs! order intuitionistic logic. Equalities of terms,
typing relation (A @), L {absurdity), and T (irue) are atomic formulas. Logical con
neciives and quantifiers are &, v, =, =, Yand 3. &, 9, ---, X, YV, -+ denote individual
variahles, and sequences of variables are denoled as 7 and X. M. [N] denotes substilution
of N to the variable, z, occurring freely in M. Mz[N] denotes simultaneous substitution.
FV{M) is the sct of [rec variables in M. = and ™ are definitional equalities, and A & B
is an abbreviation of (A = B & (B = A).

2 Defining Stream Transformers

The model of concurrent systems, in this paper, is as follows: A concurrent system con-
sists of computation agents linked with streams. A computation agent interacts with
other computation agents or the outside world through the streams. The configuration of
computation agents in a concurrenl system is basically static, but in a exceptional case,
which will be explained laler, new agents may be created by an already existing agents.

A compntation agent is regarded as a transformer (stream translormer) of input streams
to an outpnt stream, and it 15 specified by the following type of formula:

YE gy on- a1 A(Z)

where [, . 1s an abhreviation of [, x - x I, , T and y are input and output streams.
and A(F, y) is the relation definition of input and ouiput streams. Here, Lhe number of
output stream is restricted to one, but that is only for the convenience of the discussion.
The combination of two computation agents. Y. 3y, A{z,y) and Vp.3q. Bip, ¢), 1s repre-
sented by the following proof procedure:

(X7 Ve 3y Alz,y)
Ju. AX,)
AV S AN, o) & Bla.Y)
VX IV da. A(X,e) & Bla,Y)

(W1
LV) 1

(1],{1]'

fEIE"Jm

deaf
where TT=

AX) (Bl g™

T (e T
W@ AX,9) & Bly.g) ---—J[af'-.
|4 Wp.dy. Bip,q) (VE) [y Jo. AN, 0) & Hla,q) - -:If:'f}
3q- Bly.g) | ¥ 3o A(X o) & Bla.Y) -

V. F3a. AN, a) & Bla,Y)

Thus, a concurrent system is also specified by Yo, Jy. Alx,) type formula. X and ¥ are
input and output streams of the whale concurrent svstem, and o is an internal stream.
The internal streams of a concurrent system can be hidden by using the checked existential
quantifier, 9, introduced by the author and S. Hayashi [27] or Hayashi's < operator [11].
In the following, we focus on the problem of how to define a computation agent (stream
transformer) as a constructive proof.

2.1 Categorical Characterization of Stream Transformers

The behavior of a stream transformer with input stream, X, and an output stream, Y, can
he modeled as follows: it 35 ap infinite sequence of two operations, M and N, occurring
alternatively in it.
\ { Fetch initial segment, Xy, of the input stream, X, to }
{! — g
) generate the first clement of the output stream. (Fig.1)

Prepare [or felching next elements from the input
streamn interleaving, if necessary, other stream
transformer between Lhe original input stream and
the input port. (Fig. 2)

This infurmal process model is well formalized by using Hagino's categorical formulation
of fixed point types [10] which we will refer to as the categorical version of coinduction
on streams in the following. A stream transformer. tran : [, — I, is defined as the
morphism, PMN, i the [ollowing commutative diagram:

A

! T PMN Tpaw
1

L
A N
ar s I. — II

A stream tvpe is accompanied with two destructers, Ad (head) and 0 {tail). 1[the mor-
phisms M : [, = & and N : . — . are given, the morphism PMN [, — I, is
determined. # is a categorical combinator which can he interpreted in tyvped lambda
calculus as follows:

Fo= A2 ANS=0 Al (M) 2 (((P M) NY(N o))

This suggests that. in order to define a stream transformer as a constructive proof. one
must at least give a woyr to detined M, N, and 7 as proof procedures,

2.2 Choice Sequences

Following [16]. a concurrent system is an open system that interacts with the outside
world, 5o that an input stream of a compulation agent should nol be restnieted to
lawlike sequence but should allow lawless sequences whose elements are defined, for ex-
ample, by the keyboard inputs or casts of an (abstract) die. This feature is capturcd by
Brouwer's theory of choice sequences [30]. Also, the theory provides us with the meaning
of quantification over streams. Following the suggestion obtained 1 the previous sub-
section, M and N wonld be defined by constructive proofs of VX : I, 3y - 7. M{z,y)
and YA o I, .3Y 0,0 Nz, y). In the following, stream variables will be denoted in up-
percase letters: XV, - .. The principle of open data, which informallyv states that for
independent lawless sequences any property which can be asserted must depend on imitial
segments of these sequences only, gives the meaning of the first type of quantification,
WX . Jdy. That is, for arbitrary stream, X, there is a suitable initial finite segment, X,, of
X such that 3y : v. M{ Xy, y) holds. This meets the process model of the operation M in
the previous subsection. A generalized version of the principle, which is called function
continuity, gives the meaning of the second type of guantification, ¥X.3¥. Assume the
case of natural number streams (total funclions belween natural number types). The
function continuity is as follows:

VXY, AX,Y) = 3f : K. VX, AX, f]1X)

where fIX =V Y flz = X)) = V(z) and K is the class of neighborhood functions
which take initial finite segment of Lhe input sequences and return the values. I'his means
that every clement of ¥ is determined wilh a suitable initial finite segment of X, and this

also rwets the process model of a stream transfonner which successively takes elements
of input sireams generating gradually the elements of the output streams. We, then,
regard streams as choice sequences and borrow the open data principle for the semantical
explanation of quantification over streams.

2.3 A Problem of Infinity

Before giving the rule of inference for defining stream transtormers, a little more obser-
vation of stream programming is needed. Assume a liler program on natural number

slroarns:
fit, = AN e i f (alhd(X)) then [l (U(X}) else (hd(X} = flt,(H{X)))

where {e|hd{ X)) is true when Ad{X) can be divided by a (a natural number). fit. can
also be defined with the Hagino’s combinator, P, as follows:

PMN
where M = AX P i f (alhd{ X)) then M{H{X)) else hd{X)
and N = AX nae g f (a|hd{ X)) then N{U{X)) else t{X)

For example, flt;({5 5253w ---)) is empty sequence. Ilowever, it should he regarded
as undefined for the following reason. 1f flis is F M N defined above, the execution of
M(5:a e hadn) does not terminate, and cannot even decide the value is to be empty
from a suitable initial segment of (5203 5 25 -~} unless the M know the justification
ihat the elements of the inpul streamn 15 always 5. One may define the subdomain of the
input streams on which M always finds the values of outpul stream as has heen done for
recursive programs on finite lists with CIG mechanism of PX [11]. That may be possible
when the streams are restricled Lo lawlike sequences. However, becanse we allow lawless
sequences, the domains which ensure infinite output streams are generally nndecidable.
This contradicts the open data prineiple explained in the previous subsection. Therefore,
we introduce the notion of complele stream for a uniform treatment of ontputs of stream
transformers.

Def. 1: Complete types
'or any type, 7, . denotes a type o Logether with the bottom element L, {(often denoted
just 1) and it is called a complelc lype. A type which is not complete is called an ordinary

type.

Def. 2: Complete stream types
A stream type, I, is called complete when o is a complete type.

A complete type contains a bottom element, 1, so that (L L ---and (122 L

L 231 ---) are elements of the generalized stream type, foar, . It is aleo possible to speak
of complete stream types which is necessary in handling a stream of streams.

7

Then, a specification of fif, can be written as follows:

VA ¢ 1, 3Y L., ¥n o nat.
({{alX{n)) & Y{n) = L)V {~(e|X(n)) & V(n) = X(n}))

2.4 The Coinduction Rule

Biased on the observations in the previous sections, we introduce a coinduction rule for
defining stream transformers. The rule is formulated in natural deduction style, but the
formula, A, in the specification of a stream transformer, X3V, A{X, V). is restricted.
ln spite of the restriction, the rule can handle large class of specifications of stream
transiormers as will be demonstrated in section 4.

The rule is as follows:

(a) WX 1. . ..da:v. M(X a)

(B) WXt Ly g Wa s WS L (M(X @) = A0, X (a: §)))
() 2f i Loy on = dayon VX i Ly WY 2 L0 nal.
(Afr, X (YY) = Aln + I,_"Ii_'._}’}]

v I:-.-u.. =) S ."r.."'r.'. cnal. A{n, X,Y) = (Comd)

where M 15 a suitable predicate and A(n, X, Y is a rank 0 formula defined below:

Dief. 3: Rank 0 formulas [11]
1. If M isaterm and o is a type, then M : o is rank 1;
B M and N is rank 0 then, M — N 1z rank 0;
T and L is rank ()
If 4is a formula and &, &) and &, are rank 0, then &, & Gy, A = G, =4, 04,
and ¥r : o. (7 are rank 0.

=]

The rules for rank 0 forimlas are as [ollows:

(o1 =gl e (A
(o2) Ve:io. GA = Ve 0. A
{$3) Ae ¢A (if Aisarank 0 formula)

Theorem 1: (5. Hayashi)
Let A be a formula, IFT(DNE) = A s proved, then I' b GA can be proved, where
(DNE) is the double negation elimination rule.

This theorem means that ¢ A can be proved by proving A classically.

This restriction comes from a technical reason related to realizability interpretation, and
does mean that no computational meaning 15 extracted from .4.{11,1",}’} part. This is
actually rather convenient because, m most cases, we are only interested in the value of

8

¥. We can alse use the logic of checked existential quantifier, 3, [or rank 0 formulas
developed in [27]. but that is besides the point of the paper and rank 0 formulas arc much
easier to handle in discussing {Comd).

The intuitive meaning of (Coind} is as follows. This rule represents the following cale-
sorical version of coinduction:

hat H
o —_ Ir,'.. —t I.
i T T
I P |#
1
Tar fn
4 * : 'fl.:"ju"'ﬂ."ﬂ If'."'."’"n

far and fn are the programs corresponding to the proois of {a) and (¢). £ is the stream
transformer corresponding to the whole prool in (Ceind). (¢} together with (b) intu-
itively means the following: For X loyion and Y= P{X)) o [, let us call a pair,
{7 i'I},h"’*l[lr':IL the nth f-descendant of [T. Y. Then, for arbitrary n: nal, A{n, X, V)
speaks about nth f-descendant of (X, ¥), and Ain, FIX 1LY) actually speaks about
n -+ 1th f-descendant of {X,Y).

If fx (the value of 3f in [r)) 15 a etream transformer program, this means that the process
{streant transformer) defined by {(Vemnd) generates another processes dynamically.

3 The Formal System

This section presenis the rest of the formal account of our svstem. First of zll, as a
programming language non-deterministic A-caleulus is defined. The calculus has a special
canstanl called the eoin Tipper, to simulate non-determinism, and computational stream
tvpes (lazy types). The calenlus is almost similar to that developed for the Nuprl [8]
except the coin flipper. Secondly, the rules of inference including rules for streamns other
than those for computational streams are given. The canonical embedding of compu-
tational streams to the class of choice sequences is also given. Finally, the realizability
mterpretation of the system is defined, and this gives the program extraction algorithm
from proofs.

3.1 Non-deterministic A-calculus

Non-deterministic A-caleulus is a typed concurrent calcuius based on parallel reduction.
The core part is almost similar to that given in [24, 25, 26]. It has natural num-
hers, booleans (T and F), and L and R as constants. Individual variables, lambda-
abstractions, application (M(N) or ap(M, N} where M and N are terms), sequences of
terms ({M,,..., M} where M;s are terms), if-then-clse, and a fixed point operator (u)
are used as terms and program constructs. Parallel Reduction rules for terms are defined
as expected, and if a term, M, is reducible to a term, NV, then M and N are regarded
as equal. Also, several primitive functions are provided for arithmetic operations and

for the handling of sequences of terms such as projection of elements I:]f'.ll'{{-:r.:l} = x;) or
subsequences from a sequence of terms. The tvpe structore of the calenlus is almost that
of simply typed A-calculi. nat {(natural number type), bool (boolean types), and 2 (type
af L and /i) are primitive tvpes and » (cartesian product)] and — (arrow) arc used as
type constructors. The type inference rules for this fragment of the calculus are defined
as expected. In addition to them. stream vypes and a special term called coin flipper is
mtroduced to describe concurrent computation of streams, These additional notions will
be explained in the sequel.

3.1.1 Coin Flipper

The com fipper 15 a device for describing non-determinacy. It is a term, o, whose coms
putational meaning is given by the following reduction rule:

el or i

That is, e returns L o B in non-deterministic way when it is executed. This is like
Hippmg a coin, and need not always be excented by reduction mechanism. Therefore, »
is like ereeles in recursive function theoty,

Lixample 1: (A son-deterministic program)

Let M. & if =1 then 2 else 3 and N, 2 if =1 then Jelse 4. Then, oo f » =
[then M. else N, 15 a function that returns 2 or 3 when | is piven as a inpul and relurns
3 or 4 otherwise,

e is regarded as an element of 2%, a super type of 2. The element of 2 have been used to
describe ihe decision procedure of 1 f-then-else programs in the program extraction from
coustruciive proofs in [24], [25] and [26] as if ' = L fhen M else N, Non-delerminisin
arises when T s replaced hy o. The intentional semantics of e is undefined. The type 27
will be nsed instead of 2 in this paper with the following typing rules:

Lot "2 . 21

3.1.2 Computational Streams

As 1s well known in functional programming, a stream can be represented by a non-
terminating recursive call function. We will call thus represented streams computational
streams. Instead of g, the symbol v will be used as fixed pont operator to denote non-
terminating recursive call functions representing streams. This syntactic convention iz tao
distinguish terms which should be handled by lazy evaluation and terms which need not.
The computation rule for v-terms 1s the same as that of g-terms:

ve. M+ M, vz, M]

10

Example 2: A stream, (0::0::0 . ..), can be defined as vz, (02 z). Precisely, for any
natural number, n, this stream is represented as (0 0. =0z (00 2))

Fi

Fxample 3: (Stream of natural numbers)
A siream of natural numbers, (0 = 1 =2 = 3 & ...), can he defined as nst(0) where

nst = pe dn (now z{n 4+ 1)), Note that nst(1), nst(2), -+, are also streamns of natural
numbers starting from 1,2, ... respectively.

3.1.3 Computational Stream Types

The type of computational sircams over a type ¢ will be denoted . Firsl of all, as
pointed out in [1] the domain, X, of streams over a domain A can be regarded as the
{largest) fixed point of the domain map @ : X — A x X, so that ; can be characterized
by the following type equality:

Co=cxC, (STTE)

A computational stream is regarded as an elemsent of infinite cartesian product of 7, so
that one of the typmg rules s

I M:a TEHEC,

: —(51'1)

't (M 5): O '

We confuse the meaning of the infinite list constructor, (:2), and will use this as a cartesian
product constructor. Note that 511 is obtained by a straighiforward extension of the
cartesian product rule

'-M:e TTEN:T
FE(MaNy:exrT

and STTE.
§T1 is not enough because type checking by the rule will not termisates as a stream 15
an infinite object. The following rule is also needed.

ezt M:o
1 - rlSE_
]._',_::.'.:r—;vz.ﬂrf‘.rrlT]

Example 4: Type checking of the natural number stream, (vz.An. {n = 2(n 4+ 1)])(0),
goes as follows:

L

TFO:nat TFeadn (o z(n+ 1)) nat — Gy
I'F{rzhn (n:z{n+ 1))(0) : Cru

where £ 15 as follows:

11

4
—1

Abtzinat = Ch Al n+1l:nat
—-{8T1)

A ncnat Al zln41): Cu
Abinczn+1)): O
Vizinal = Chae b A (s z(n+ 1)) tmat —
Vl-wedn (nez(n 4 1)) tnat o Oy

e ST2)

def .
where A= T,z nat — (.. 7t nat

Equality of stream can be characterized m two ways. One is by viewing streams as
elements of an infinite cartesian product type, and this entails extensional equality because
there 1s no normal forms of the streams. Another one is by viewing streamns as recursive
call functions, and this can be handled by intentional equality.

TFS=1inC, (FXTE)

where H™(T') means Lhat (fis applied Lo ' for n times.

_LPM - Nlsimo g
Thwe M, —rvw. N, & @ :

Example 5: w2 (ap(Az. 5,1) = 2) and rw. (52 w) are intentionally equal.

Example 6: [vz. A (50 2in 4 1)})(0) and vz, (522 2) boih represent the same stream,
(5525 ...}, aud they are cxlensionally equal programs, but not equal intentionally.
Let F* pzdn. (5= z(n+1)) and T % F{0). Also let § % vz, (5 = z). Then,
T = Sdn (O, can be proved by proving vk @ nat. (#51) = t15(8) in Chpy = § =
T in o = Cnae) by mathematical induction on k © nat, Base case (k = 0) s obvious.
Then, assume t* YT} = rf’“‘l[:’:“} in Cpa =2 8 = 1" in ! % Chy as the induction
hypothesis. W[@ mat. tI'(T) = F(I} in Caa is proved by mathematical induction on
{:nat. Also, ¥ : nat. ﬂr{.‘?j = 5in Cppg 15 proved by mathematical induction ou [nal.
Assume that t/*(T) = § in C,. holds. F{k—1) = (5 = F(k)) in O, can be proved,
so that by the assumnption and STTE, F{k—1) = (5 = &) in (. Also, by (STTE)
and Vi (S} = § in Cue, (5 = 5} = #H(S) — t15Y8) in Cpyy. Therefore, by the
indnction hypothesis and Y. ¢(T) = F'(I}, § = 4" in % ' x Uy So that by STTE,
S=Tina" % (. Then, § = 1" in Cpyy by EXTE.

3.2 Rules for Streams

M nat — o=
ML,

This means that any (total) function on nat typable in the non deterministic A-calculus
is regarded as a stream. As the calculus has the coin flipper term, some of the lawless

12

sequences can be represented. A stream type, I, is regarded as containing other lawless
sequences which cannot he represented in the calculus. Therefore, we do not assume the

rule such as follows:

M,
e {(Wrong Rule
M inat — E"{ ¢)
This iz the openness of our svsten. For example, if we are to handle the keyboard mput,
and it can be coded as a sequence, the following rule can be added:

A 15 o keyhoard wnput M nat ~» 7
M -nat~s o M1

where nal ~ o denotes a tyvpe of total funclions on nat which cannol be typed in the
nou-deterministic A-calewlus,

Y o:nat.dz oo Alny)

3V ¢ 1,.Vn nat. A(n, V[n:,}f-gf}

The equality between streams is extensional. That is
XNl Yol Yaonat X(n)=Y(n)
X=Vml,
The following rule is used for justifving (Cmind).

Foldyny = Lone YX 0L Venat, A0, FIX)) = Aln + 1, X)

oLl - H
VX : Ly .0, ¥ nat. A(0, Fr (X)) = A(n, X) ()

where A{n, X} iz a rank 0 formula.

There are other rules for handling elements of streams:

Ao, A:I, n:nat X1, n:nat
hd(X o (X)) - 0, elemin, X) = hd{ti"(X))}

X [n:nat X:I, n:inat
Xi(n] = hd(ti*(X)) (X} = (ha(tI®(X)) ot (X))

3.3 Other rules of inference
3.3.1 Lngicﬂ! RBules

The rules for logical connectives and quantificrs are those of first order intuitionistic
natural deduction with mathematical induction. Sec [23, 24, 26| for the complete account
of the logical rules.

13

3.2.2 Rules for Nondeterminacy

[J— I U P = H
A AL
——— ([NonDet)
A
Thig is actually a derived rule:
U yp [T
T\.-r T q ..“1. .""1 [_I"-"IE']

(NeomDet} means that il two distinet proof of A are given, one of them will be chosen
m a nondeternministic way. Thie is the well-known nondeterminacy both in classical and
infuitionistic natural deduction.

3.3.3 Auxiliary Rules

M:odg—a oo n- na

ap(M™ a) -7

(exp)

fioi—=m gion—mn

frgroy oy = 7272

3.4 Embedding of Computational Streams into Stream Types

There are two lavers of streams: the layer of choice sequences and that of computational
streams. The latter is embedded into the former.

Let M @ nat — o, then M : I,. Then, let ¢ : (nat = o) — €, be (M) =
ap(vz.An. (M(n) : 2(n+1)},0) for arbitvary M : nat — 7. Also, let 4 : 'y — (nat — o)
be (N = An. hd{tI"(N]) for arbitrary N : ;. Then, the following halds:

Proposition 1: (Caponical Embedding) nat — o(C I,) and €, are isomorphic:

(1} For arbitrary M : nat - o, Y(pe(M}) =M in I,;
{2} For arbitrary N : Cy, @{{N)) = N in !, where = is the extensional equality.

Proof: (1) First prove Wn : nat. il"(ap(L,0)) = ap(L,n) where L % vz n. (M(n) =
z{n +1)). Then the rest of the proof is easy. (2} Straightforwardy

This embedding can be naturally extended to C,, ..

I4

3.5 Realizability Interpretation

The realizability defined in this section is a variant of g-realizahility, and is obtained by
madifyving the realizability given in [21] and [25].

A new class of formulas called realizability relations 1s introduced to define q-realizability.

Def. 4: Healizability relation

A vealizability relation 15 an expression in the form of @ q A, where A is a formula defined
and @ is a finite sequence of variables which does not occur in A, @ is called a realizing
variables of A. Tor a term, M, M q A, which reads "a term, M. realizes a formula, A",
denotes (@ q Az M|, and M 15 called a realizer of A

[n the following, a formula means one othier than realizability relation. A type is assigned
for each formula.

Def. 5: typel A)

Let 4 be aformula. Then, a type of A, lypel A), 15 defined as follows:
type(Al is u:=1u}=r,;..rT if A 1s rank 0;

type(A4 & B} ' t_,rpe[ﬂ.] x type(H);

type(A v B) = 2"‘ * type(A} = type B);

tupe(A = B) T type(A) — type(B);

type(Vao 1o A) o typel Al

G type(dr o, A) o x type{ A}

O e Ll D e

Proposition 2: Let A be a formula with a free variable x. Then, type(A) = type{ A.[M])
for any term M of the same fype as x.

Def. 6: g-realizability

If 41 a ranL 0 formula, then () q A% A;

aq A= B vbh:type(A). (A & baq A= alb) q Bj;
(e,b)q3r: 0. A a0k Ala] & b q A-]al;

aqvr:o. AY Va e (3(z) q A);

(2@ b qAVBE (:=L& AkaqA)V(:=FR& B4 bqB)
if 4 and H are distinet or A = B and A is not rank 0

G !qAVAderdI{Aﬁrankl]

7. (@b qAL BE¥aqAkiqb.

e =

oo

Proposition 3: Let A be any formmla. If @ q A, then @ : type(A).

From the definition of realizability, realizing variables can be determined from the con-
struction of the formulas as [ollows:

Def. 7: Realizing variables: Ru(A)
15

Re(A) ¥ () if Ais rank 0

Ru(A & BY S (Ru{ A}, Ru(B));

Re(AvV B) oo (z, o[A), Rv(HB)) (2 is a fresh variable);
Re(A = B) Y fu(B):

5. Ru(¥r:a. A) = ol Ay

6. Ru{3r:o. A} (2, Ro{A)) (= is a [resh variable).

[

D

Def. 8: Length of a formula
The length of a formula A, {{A), is the length of Fvl A) as a sequence of variables.

Froposition 4: A formula A is rank 0 1f and only if I{A) =0

Theorem 2: Soundness of g-realizability

Assume that A is a formula. If A is proved without {Cond), then there is a term, 1,
such that T q A can be proved, FV(T) C FV(A) and T iz equal to a sequence of ierms
of length [[A).

Prool: By induction on the construction of the proof of A. We prove here for the cases
that the last vule in the proof is (S7') or (NonDetl). ‘I'he remainder par of the proof will
be found 1 [25] ov |27

Case (57): Assume that the following proof is given:

r
n.Jdx. 4[11_7"}
J¥.¥n. A(n, Y(n))

(5T)

Then, by the induction hypothesis, there is a Lerm, ¢, such that the following proof can
be constructed from ¥

'

el

e q ¥r.dz. A(n.x)
Ry the definition of g-realizability,

eq¥ndr. Aln,z) = WVn.e(n)q3dz. Aln,z)

wn. tl{e(n)) q Aln, pale(n)))

W ap(An. tl{e(n)),n) q A(n, ap(in. pele(n)),n))
An. tllein)) q ¥n. A{n,ap(An. pole(n}),n))

{(An. pale(n)), dn. t{e(n))) q IV %0, A(n, ¥Y{n))
= An. cin) q I¥.¥n. Aln, ¥in))

i

By g-rule, An. e(n) — e. Therefore,

b
=

eq Y ¥n Aln, Y(z})

16

Case {NonDel): Assume that A is proved as follows:

Yo 5
A A (NonDet)

A

As (NonDet) is a derived rule, this can be translated to the following proof:

7]

| - =(v1) S1 e
W 4 A -
VE
1 (VE)

By the induction hypoliesis, the following proofs can be constructed:
T,f .r\f
Ll'l i 13

e, q A £2 q A

Then, let ¢ 2 if L = o then ey else €5, and the following proof can he constructed:

o = L] [';"'I]
¥, Iy S
e=& (1E|A_E £ =tz t2 g A o
e=IVe=R eqd -0 TR IJ(&:‘I*J"I
eq A '

3.6 Realizability Interpretation of (Coind)

Theorem 3: (Coind) has q-realizability interpretation. More precisely, theorem 2 also
holds when (Coind) is used for proving a formula.

Proof: The proof is performed as continuation of that of theorem 2. Assume that there
is a proof by (Coind). Let B, Zy and I denote the subprools of the premises
{e), (b} and {c). Then by the induction hypothesis, there are prools, EEE]., Yipy, and
E:M, of [q YX. 30, M(X,a) and fx q IFYX NV (A(n, f(X),H(Y)) = An +
1, X.¥)). Note that A[n,f, Y} is a rank 0 formula so that Eib] = Epy. Also, far :
Togmn — 7 = type(M(X,a))) by proposition 2. By the definition of q-realizability,
fv q 3IFNX WY 0. (Aln, f(X),t(Y)) = Aln +1,X,Y))

= I doyon = Doy & WX Y ¥R (Aln, fa(X)UY)) = Aln + 1,X,¥)). Then,
the following proof the conclusion of ((feind) can can be constructed:

(=
[z]
-

Il

17

[XTI ym w5, A0, f(X), (Y(m) = §))

o £1
A Ym WS A0, f(X 0 (Yi(m) 5}} Y Wn, Aln X, Y) (2)
! . - _\. - e (ZEND
CAS EI'_Ir"v"n 4[?: ‘L’
Uy
W i3 . —
(X (exp) D (] [XTI M 3(X), a)|@
X)) X Ja. M(X. aaﬁﬂj Con
Ja. M{fR(X),a) _ Ja. V5. A0, fR(X}, (a:: §)) (3L
Ja.¥5 A0, X), (e = S)) (v
Y. Ja. V5. A0, 3 (X} (a 513 (§T)
W mNS, A0, (N (Vim) e 8))
[?]:'.-‘.n[m]f:’-][u]{d}|5][5r
- - T ~r Eum
5, 4o MURX), I M{fRIX),e) = A0, fHX), (a = D5 Ey
A0 RN e S ;I] |:'i‘rf;|[5)
Jul4l WS, &{[} f"‘{)&";,(n §)) .
3aVS. A0 R(X)@ns)
XV m]® - a]® Sy

(€2p) o) V¥ Vavs. (M(X,a) = A(0,X ,(a = 5)))

Yo & SELX) 1
Mf3(X),a) = A0, f3(X), (a = 8))

(VE)

[XJ0[y n](0

[V YSA0, fE(X), (Vim) o §)))® (XY]]
L1 Ly
e 0,) (Y A0, fH(X) 0 (Y)) = Ain, X
5,k AR (V) . ?;_fu,fhfx;.ﬁ (V) = A XY) (| gy
— ([

(V] v A(n,X,¥)

¥ ¥n. A{n, X.Y) (31)
Sw®
Y [y)@]y
@ e ROy Wm VS, A0, [R(X). (¥ (m) = SN
DT Y A0, fRX). (Y(n) =t rH(Y))) (= B)
A(D, f,m(’il t(Y)) o
where
1 def ;n_]liﬂll[}’]{i] 11 del [n]{a}[},]“} .
"7 ¥in) — hd(tiM(Y) LT YY) = (Rd(HM(Y)) LY)

15

fw il
v o=t VXY (Aln, fn(X)), H(Y)) = Aln+ 1, X, V)
(XY)0)] YWY n (A0, fFRIX)EY)) = Aln, X, V)
A0, fr (XY = A(n, X V)

(R)

(VE)

By the induction hypothesis, there is a term, T such that a proofof T q VX .3V ¥n. A(n, X, Y")
can be constructed from the proof, [I. The term, T, 15 AX Ao apl far, f77 (X))

The proof of the theorem means that the program extracted from a proof by (Coind) is
in the form of AX Am apl fur. f1 [T]} By the embedding, ¢, of C, ., into [, . . .
the program is AN apl{vz Ak, (ap(Am. apl fag. f ;’s.:l:I_H coaplz, k4 1)),0), and this
is extensionally equal to vz AX . (ap{far, XV o ap{s,ap(fr, X)) ‘Lhis is essentially the
same as the P MW N combinator in [laging's categorical typed lambda calculus.

4 Examples

4.1 Double*

Specification: WYX o [, Y 1. Yn nef. Aln, X, V)
where A(n, X, V) &ef elem(n,Y) = 2. clemin, X).

Proof: Let M{X,a) Ea=12. Rd(X), and WX © [...da : nat. M{X, a) can be proved.

YA L Ya s nat NS o L (M{X) = A0 X (a2 = 5)]:I holds because A(0, X, (a =

S'I} = M(X, a}. Finally, by]ﬂttlng_i - AN H{l s T v Lo WX 2 1 3Y
Lo ¥moonat. (Aln, f{X),8(Y) = Aln+1,X,Y)) can hc pmvcd Then, by {Coind), the

specification is proved. g

T'he program extracted from the proof 1s AX. Am. 2. hd{£I™(X]).

4.2 Step Filter

The process which has one input stream and filters out the 2-n+1th (n = 0,1,2,--+)
elements in the input stream can be specified as {ollows:

Specification: VX : f AY L Vnoonat. A(n, X,Y)
where Afr, X,V]I = clem(n,Y) =¢elem(2-n,X)

Proofl: Let M{X,a) def g — hd(X), and VX : I, Jda : 0. M(X,a) can be proved. WX :
I,3n : o¥8 : T,. (M(X,a) = A(0.X,{a = 5))) holds because A(0, X,{a == J)} =

19

M{X.a). Finally, by letting 7 % XX, t3(X), A(n. f(X),#0(Y}) = A(n + 1, X.Y) can
be proved. so that 4f - [, — L.VX LYY : [,¥n @ nat. (A{n, fIX),8{Y)) = Aln +
1, X Y)) holds. Then, by (Vwind), the specification is proved.

The program extracted from the proof is AN Am. hd(1I*™{ X))

4.3 Stream Filier

Let p : nal be arbitrary parameter. A parameterized process with a natural number
stream, .\, as input stream which filters out all the element ol X which can be divided
by p can be defined as follows:

Specification: Vp i nat WX @ Ly WY Ly, V¥noonat. $A(pn, XY
where Aip.n. X Y) o

{{plelern(n, X)) & clem(n. Y] — L)V (=(plelem{n, X)) & elem(n, Y} = elemin. X))

Proof: Let ponat be arbitrary, and VXYY 9. O A(p, e, 3,)) will be proved by |Cornd]).
Lev M{X, a) o {(plelemin. X} & elem(n, ¥) = L)V (~(plelem({n. X)) & elem(n, V) =
clem{n, XN VX @ N Fe o Lo M(X, a) is proved as follows. Let X - e, be
arbitrary. As (plhd{ X))V (plhd(X }}is decidable - note that —{plhd(X)) holds o hd{ A} =
L e dog, . M{N . a} can be proved by divide and conguer: if (p|hd{ X)), let @ = L and
otherwise let @ = hd{ X'). For arbitrary X : Fiatgr 0 imaty, and 5 ¢ L, , A(p,0, X, (a =
1) = Mi{X.a) becanse elem(0, X} = hd(X] and clem(0,(a :: §)) = a. Hence, ¥.X :
Tnge, Na i nat, N8 Lo (M{X a) = Alp,0, X,(a: 8))) is proved. Finally, by letting
F=AX thX), 3f : Tnze, = Joae, ¥X 0 Lae, VY 1 Loy, Winotnat. (Alp,n, FIX), HY)) =
Aln + L XY} s praved. Then, by (Coind) and (VI) the specification is proved. g

The program extracted from the proof is Ap. AX . Am. ap{ far, F (X)) where
far =B if (plhd{ X)) then L clsc hd(X) and fu =X tX).

4.4 Eratosthenes’ Sieve Algorithm

Specification: WX : [.3V : [, Vn:nat. $A(n X, V)

where A(n, X, Y)

= (Pi(elem(n, X)) & elem(n, V) = elem(n, X)) V (= PR{elem(n, X)) & elem(n, V) =
L)

and PR(m) = ¥ inat. (2<n<m=~(d:nat. m=d-n)) & m# L.

Proof: The proof by (Coind). Let M(X,a) ™ (PR(hd(X)) & a = hd(X))V(~PR(hd(X)) & a —
L) As PR{Ad(X)]V ~PR{Ad(X)] is decidable, VX : I, .Ja : nat,. M{X,a} can be
proved by (V1) and (VE). As A(0, X, (a = 5)) = M(X, a) for arbitrary X : L, ,a: Tuas,
and § ¢ Tnaey, YX ¢ Fune, Vo naty 98 ¢ Tnae,. [M(X,a) = A{0,X.(a = S))) holds. For

20

the proof of (d), let f — AN, if PE{hd{X)) then flt{Rd(X), (X)) else tI{X} where
prois an abbreviation of some suitable decision procedure to check whether X is prime
or not, and flip, A7) def Armap(AX. if (plhd{ X)) then L else hd{X),tI™(X)). Then,
(Dipr{elem(n, i) = prielem{n, (X)) (2)=prielem{n, f{X)}} = —(elem(n tI{ X))}
and (Jprleleni(n, fIX))) = elemin, (X)) — elem{n, (X)) hold for arbitrary X © Ty,
and n @ nat. This can be proved as follows. T —pr(hd(X}), F(X) = H{X) so that
(1), (2) and {3) is trivial. Otherwise, note that for arbitrary X : I, and n : nef,
Eiem.{n.?f{t(hd{.-‘ir}:f.!l[,“b.r}]:l = ﬂp[_fft{hd(.\f},H{,"L"]},n]

= 1f (ha{ X)Rd(t" X0 then L else Ad{t™' (X))

= af (hd{X)|elemi{n, tI{ X))} then L else elem(n,tl{{X)) holds, so that elem(n, f{ X))
is elem{n, t{{ X)) il elem{n,t{{ X)) is not prime and cannot be divided by Ad{X) or if
elern{n ti{ X1} 1s prime, and L otherwise. Hence, (1), (2} and (3) helds. Then, as
Aln, (XL, HIY))

= (prielem(n, f(X))) & elem(n+1,¥) = elemin, f{(X)}))V(~prielem(n, f(X))) & clem(n+
LY)=1), A(n | LAY holds. This proves (d). y

The program extracted from this proof is AX . Am. ap(fur, (X)) where
Fas X, if prifd{ X)) then hd(X} else |
and fn S AN i f pr(hd(X)) then fU(Rd[X)), H(X)) else t{X).

4.5 Nondeterministic Stream Merger

The stream merge operation is one of the typical example of nondeterminacy. A merge
program can be defined by (Ceind) as follows, but, because of the condition (d) on
Aln, (X,Y), Z], the specification is much weaker than that of the merge operation. [t
depends on how M is defined and how the value of [is defined for (a) and (d) in the
premises of (Ceoind).

Specification: W(X,Y) : I, ,.32 : I, ¥n : nat. OA(n,(X,Y),Z)
where Aln, (X, V), Z) “(3m:onal. elem(n, Z) = clem(m, X)) v (2 : nat. elem(n, 2} —
clern{l, V]

The proof will continme as follows: Let M{(X,Y),a) = hd(X'), and Y[X,Y¥) -
loe.da : a0 M({X.Y},a) can he proved. For arbitrary (X,Y) : L., a: 7 and S : I,,
assnme M ({X,V),a). Becavse elem(0,X) — hd(X) = a and elem(0,{a = &) = a,
elem(0,(a = §)) = elem{0. X'). So that by (37} and (VI} A(0,(X,Y), (a2 5)) is proved.
Hence, by (= INand (VI WX, V) T, .. 3a:a¥S: L. (M{((X,Y),a) = A0, (X, ¥Y),(a =
S0 is proved. Thnally, (d), which 1s 3f : I, — L, ¥X,Y) : L,5¥2 . I,%n :
nat. (A(n, f{X,¥),t{{Z)) = Aln+ 1, (X, Y), Z)), i= proved as follows: Let (X, Y} : [,
7+ I, and n : nat be arbitrary. Then, A(n, (#21(X)}, Y),tH(Z)) = (Im. elem(n H{Z)) =
elem(m, t{{ X))V (3L elem(n, (7)) = elem(1,Y)) = (Am. elem(n + 1, 7Z) = elem{m +
LXN V(3 elem{n +1,7) = elem(LY)) = (3", elem(n + 1,2} = elem(m', X)) V
(Al elem(n+1,2) = elem{L.Y)) = A(n+1,(X,Y), Z). llence, a proof of (d) is abtained.
Similarly, A(n, (Y, t{X)})}L,t{Z)) = A(n + 1,(X,Y), £) holds. Hence, another proof of

21

(d) is obtained. Then, by (Nonllet), (d] is proved. and, Ly (Comnd). the specification s
proved. g

The program extracted from this prool is MAXY) Lo e apl far, fi (X, Y)) where
= AX hd{X) and [y AN YY) i f o= deft then (X 1Y) else (YHX)).

5 Discussion and Concluding Remarks

The svstern and method presented in this paper is an extension of the pioneering works
on formal treatment ol streams such as [10] and {15] in the sense that recursive call
programs on streatns, specilication and verification of them can be uniformly treated in the
framewaork of logic. and nondeterminacy is also takea into account. Similar work to ours
was carried out by P. Dybjer and H. P. Sander [9] as a verification method of concurrent
svsiems. We pive here some comparison with their work. Some of the differences come
from the differences of the purpose of the svslenn verilication or program consiruction.

(1} p-coinduction
They used a greatest fixedpoint induction in p-calenlus {14

(RCOR/X > {(RCeX.2) [pr-coireel }

for the verification of stream transformers defined as mutually recursive call functions on
ELTEATTIS.

The reasoning thev used in the verification of the alternating bit prolocol — transferving a
hit sirearn safely through unreliable channels —, can be presented in Lthe natural deduction
style as follows:

Blx,TR{x)) Vz:INy:L.(Blz.y)= hd(z)= hdly) & Bitliz), ty))) . P
Wr:l,. x = TR(x) {coin

where [s suitably defined relation and TR is the mutually recursive function defining
the concurrent systern for the protocol. However, if one wish to specify various concurrent
programs with formulas in the form of Vo : [,.dy @ [;.A{x,y) as in the traditional con-
structive programming, one need Lo use the logical connectives and the quantifiers. They
do not give how to handle specifications with the logical conncctives and the quantilier,
but it mayv be possible if we introduce recursively defined predicates as used for finite lists
in [28]. For example, a specification of deuble” will be

Vi Inni'ay . ji-m:!" A[‘Tﬂy}
where A{z,y) = (hd(y) = 2- hd(x)} & A{tlz). H{y))

The advantage of this idea is that it is unnecessary to regard a stream as a sequence {an
clement of type nat — o) so that specifications can be wrillen in a more elegant way than

22

in our method. However, if we take not only lawlike sequences but also lawless sequences
into account, our appruadl seems to be more natural,

On the other hand, (g-cotnd) has direct connection to the notion of bisimmulation [1, 16],
but the relation hetween our coinduction and bisimulation is not always clear.

(2} Infinity Condition of Streams

They nse {g-coind) also for verifving infinity of streams. That is to keep the uniformity
of the verification method. However, infinity condition is toa strong to handle some class
of programs such as the stream filer whose output can be empty stream. We introduced
the notion of general streams in which empty or finite streams are virtually infinite to
overcome this problem.

{3} Treatment of Nondeterminacy

They treat nondeterministic communication agency as incompletely specified determin-
istic one, and used Fair type for the verification of nondeterministic choice. We follow
essentially the same idea, but introduced a coin fipper term in the programming language
and hide it at the proof level by using the inhereat nondeterminacy in the cut elimination
of proofs in (v E).

There are other problems remaining as the future work. We haorrowed the theory of choice
sequences [or the treatment of sireams, and gave a coinduction rule, (Cotnd). There are
other formulation of induction on choice sequences, bar induction. One variant of har
induction {(monotone bar induction) is as [ollows:

Yo dr. Pla(z)) ¥YmVniPln) = Pln+m)) (Y. Pln+(y)) = Pln))
P

(BI)

where o, z (also y), and n {also m]) range over choice sequences, natural numbers, and
finite sequences, @i z) denotes the mitial segment of o up to the position x, n *m denotes
concatenation, and () denotes the empty sequence.

The author does not know well the relation hetween (Coind) and (BT or whether (BT)
could be used for defining strean: transformers. Dar induction is formulated for continuity
of functionals of type NV — N (N is the type of natural numbers), and if NV — NN
version of bar induction (bar induction for function continuity} is formulated, this could
be used for defining stream transformers. Another problem is that whether our system is
powerful enough to define wide variety of concurrent systems. For example, whether the
nondeterminacy problem presented in [6] can be handled in our system, or not.

Acknowledgments

I waould like to thank Yasusi Fujiwara, Susumu Havashi, Kuniaki Mukai, Peter Dybjer and
the members of concurrent programming research group in ICOT for helpful discussions.

23

References

[1]
2]

[3]
(4]

5]
[6]

0]

[11]

[12]

13]

[14]

15]

[16]

(17]

Aczel. P. Non-well-founded sets. CSLI Lecture Notes 14, Stanford University, 1988,

Aczel. P and Mendler, N. A Final Coalgebra Theorem. In Cafegory Theory and
Computer Seience. LNCS 389, 1959,

Bates, J. 1. A Ingic for correct program development. PhD thesis, Cornell University,
1974,

Beeson, M. I. Founduation of Constructive Mathematics. Springer—Verlag, 1985,
Bishop, E. Foundation of Constructive Analysis. McGraw-Hill, New York, 1967

Brock, J. I and Ackermnan, W. B. Scenarios: A Model of Non-determinate Compu-
tation. In Lecture Notes in Computer Science, Vol. 107, 1981,

Burge, W. H. Recursive Programming Techniques. Addison-Wesley, 1975,

Constable, R. et al. fmplementing Mathmatics with the Nul'rl Proof Development
System. Prentice-all, 1986,

Dvbjer, P. and Sander. H. P. A Functional Programming Approach to the Specifi-
cation and Verification of Concurront Svstems, Formal dspects of Computing, 1:303
~ 319, 1989,

Hagino, T. A Tvped Lambda Caleulus with Categorical Type Construciors. T
Category Theory and Computer Seience, LNCY 285, 1057,

Havashi, 5. and Nakano, H. PX : 4 Computetional Logic. LThe MIL I'ress, 19585

Howard, W. A. The formulas-as-types notion of construction. In Fasays on Combi-
nalory Logic, Lambda Caleulus and Pormalism, eds. J. P. Seldi and J. R, Hindlcy.
Acadenie Press, 1980

Kahn, G. and MacQueen, 1. B. Coroutine and Networks of Parallel Processes. In
Froceedings of Information Processing 77, pages 993 008, Noth-Helland, 1977,

Keller, R. M. Denotational Models for Parallel Programs with Tndeterminale Op-
erators. In Formal Description of Programming Concepts, pages 337 — 366, North-
Holland, 1975,

Mendler, N.. Panangaden, P. and Constable, R. L. Tnfinite Objects in T'ype Theory,
In Proceedings of Symposium on Logic in Compuler Science 86, 1986.

Milnor, R. A Caleulus of Communicating Systems. Lecture Note in Conputer Science,
92. Springer—Verlag, 1930.

Mohning, €. Algorithm Develapment in the Calculus of Constructions. In Proceedings
of Symposium on Logic in Conpuler Science, pages 51-91, 1986.

24

[18]

9]

23]

24

25

[26]

Nordstrém, B., Petersson, K. and Smith, J. Programming in Martin-Laf's Type
FTheory, An Inivoductron. International Series of Monographs on Computer Science
7. Ouford Science Publications, 1990,

Park, D. Finiteness is Mu-Incffable. Theoretical Computer Science, 3:173 — 181, 1976,

Paulin-Mohsing, C. Extracting Fl,'s Programs from Proafs in the Caleulus of Con-
siructions. In f6th Annual ACM Sympoesim on Principles of Programming Languages.
ACNM, 1939

| Sato, M. Tvped Logical Calenlus. Department of Information Science 8513, Univer

sity of Tokvo, 1U85.

Smvth, M. B. and Plotkin, G. D. The Category Theoretic Solution of Recnrsive
INornain Equations. SIAM Journal of Computing, 11, 1982,

Tukayama, Y. Writing Programs as QJ-Proofs and Compiling inte PROLOG Pro-
grams. In Proceedings of [th Sympostum on Logic Programming. [EEE, 1987,

Takayama, Y. QPC : QJ-Based Prool Compiler Symple Examples and Analysys. In
Furepean Sympostum on Programming 98, Lecture Noles in Compuler Science 300,
Springer ‘Verlag, 1958,

Takayama, Y. QPC* A Second Order Logic for Higher Order Programming. Sub-
mitted Lo Theoretical Computer Science, March 1990,

Takavama, Y. Extraction of Redundancy-free Programs {rom Constructive Natural
Deduction Proofs. Journal of Symbelic Computation, (to appear).

Takayama, Y. and Havashi, 5. Extended Projection Method and Realizability. Pre-
sented at ESPRIT LF Workshop in May 1990, Submitted to Information and Com-
pulation, July 1990,

Tatsuta, M. I'rogram Svnthesis Using Realizability. Theoretical Computer Science,
{to appear).

I Troelstra, AS., cditor. Mathematical investigation of intwitionistic arithmetic and

analysis. Lecture Note in Mathematics. 344, Springer-Verlag, 1973

I Troclstra, A.S. and van Dalen, D. Construetivism in Mathematics, An Introduction.

Studies in Logic and the Foundation of Mathematics 121 and 123. North-Holland,
10188,

25

Figure 1: Tetch Xy and Output the First Element M{X,)

Figure 2: Interleaving a New Process

26

