ICOT Technical Report: TR-615

TR-615
Knowledge-Based Parallel Inference System

by
H. Kitakami & H. Yokota (Fujitsu)

February, 1991

1991, 1ICOT

Mita Kokusai Bldg. 21T (03)3456-3191~5

|CDT 4.28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Knowledge-Based Parallel Inference System

Hajime Kitakami and Haruo Yokota
Fujitsu Limited

1015 Kamikodanaka, Nakahara-Ku, Kawasaki 211, Japan

Abstract

We need a knowledge-based parallel inference system to support
problem solving by those using computer systems. Today's systems
tend to produce combinatorial growth and large-scale knowledge
bases.

This paper describes parallel programming using
mctaprogramming based on the parallel logic programming
language guarded Horn clauses(GHC). Since GHC does not include OR
parallel functions for knowledge retrieval systems, we selected a
simple way than this perpetual process for representing knowledge
bases. Data is represented in the knowledge base using $-variables,
which are specific constants, to distinguish them from any other
GHC variable in GHC's interpretation system. Since we found no
advantage in implementing $-variable processing in GHC, we wrote
it in C. The system includes a knowledge retrieval system which
supports a large-scale knowledge base and an interface between it
and GHC's interpretation system.

We present the performance of the parallel constraint logic
programming system, including the kernel system, used for

knowledge-base-oriented parallel inference.

Keywords
Knowledge base, parallel inference, GHC, OR-parallel, AND-parallel

1. Introduction

We need a knowledge-based paraliel inference system to support
problem solving by wusers of computer systems [Fuchi '78].
Knowledge information systems using this concept include medical
diagnosis, electrodynamic system fault diagnosis, electric power
system planning, production and transportation scheduling, and
physical phenomena simulation.

New knowledge information systems require faster processing to
cope with combinatorial growth in inference and large-scale
knowledge base access. Detailed examples include genome analysis
[Lander '88], transportation scheduling, LSI design, and particle
simulation [Sato '90]. We believe that the parallel inference
machine PIM [Uchida '88, Hattori '89] effectively speeds up
execution times for these symbolic processing applications.

This paper presents a parallel inference system including a
knowledge base mechanism. We implemented the system using
metaprogramming [Bowen & Kowalski ‘81, Kitakami '84] using GHC
on a SEQUENT parallel computer.

The basic actions of the system are OR-parallel knowledge base
search and AND-parallel knowledge inference. However, prior
research on OR- and AND-parallel processing has been separate. For
example, PRISM [Kasif '83], and P-Prolog[Yang '87] were researched
in OR-parallel processing. GHC [Ueda '85, Ozawa '90], Parlog [Clark
'84] and Concurrent Prolog [Shapiro '84] were researched in AND-
parallel processing. Since the parallel inference system needs both
OR- and AND-parallel processing, existing programming languages
are inadequate, One research paper [Takeuchi '87] discusses

translating OR- into AND-parallel processing, but the method is

incomplete.

Since the kernel language of the parallel inference machine is
GHC, we implement knowledge-base-oriented parallel inference by
adding AND-parallel GHC to OR-parallel knowledge base search. We
propose a way to separate knowledge base variables from the
restrictions of single assignment of GHC variables. We developed a
simple, extendable metaprogramming technique using GHC. With it,
cut symbol implementation becomes easy. Knowledge base variable
management is implemented in C instead of GHC 1o minimize
memory use. We also describe a way to interface GHC and
knowledge retrieval system processes [Yokota '89] to support large-
scale knowledge base access using shared memory.

Finally, we evaluate system performance with a simple constraint
programming system. It extends the parallel inference system and
adds a simple constraint solver using Gaussian elimination. Our
example is of clectrostatic fields [Heintze '87]. In general, constraint
logic programming systems are implemented by extracting and
computing constraint equations from the knowledge bases [Lassez
'87]. Extraction is implemented by extending the parallel inference
system. Computation is implemented by AND-parallel computing
for a Gaussian elimination algorithm. GHC runs about 9 times faster
with 9 processors than with one processor. We also assigned the
knowledge retrieval system to 1 or 6 processors.

The parallel inference system was developed by researchers at
Fujitsu Laboratories Ltd. sponsored by the Institute for New

Generation Computer Technology.

2. Inference Using Metaprogramming
Our parallel inference system uses melaprogramming techniques

to apply Prolog logic to GHC parallelism. Most programming on

metalevel language system is object-level; metaprogramming
interprets user programs. Since metaprogramming is an interpreter,
the language involved can easily be extended without revising the
original language system.

For example, a knowledge information system has the knowledge
base (Fig. 1) as an object-level program, and has the inference rules
(Fig. 2) as a metalevel program. Fig.l shows a knowledge base
defining ancestry. The first two lines show the rules of the
ancestor concept. The term "ancestor(X,Y)" shows that "X" is the
ancestor of "Y". The ancestor program also defines the term
"parent(X,Y)" which means that "X" is the father or mother of "Y",

The program in Fig. 2 is implemented by metaprogramming and
represents the simplest Prolog interpreter. This program finds one
solution on the search tree. If a user defines a problem "7-
solve(Goals).”, the second rule in Fig. 2 resolves the goal sequence
"Goals”". The goal is analyzed by searching the knowledge base and
resolving retricved knowledge with the third rule in Fig.2. Analysis
continues until the goal is evaluated as true or false. A goal is true if
it agrees with by the first rule in Fig. 2. If it is not retrieved by the
knowledge base search "clause(P, Q)" of the third rule, the system
backtracks on the search tree. If backtracking cannot be done, the
goal is false.

Since metaprogramming does not distinguish between the
knowledge base as input data and inference processing as
procedure, we can use the input data as Prolog variables.

The metaprogramming in Fig. 2 gives one solution on serial
computers. The process is searching a path on the search tree, which
is difficult to do in parallel. If we execute the problem "?-

solve(ancestor(X,Y)).", metaprogramming outputs "X=fl, Y=f2". It is

difficult to get ideal parallel performance in AND-parallel. The
system can be extended to search all possible paths in parallel,
Exhaustive searches have many applications such as constraint logic
programming, knowledge base management, and so on. Knowledge
base management can check consistency and eliminate redundancy
in the knowledge base. We will introduce a simple constraint logic
program and describe a way to implement exhaustive searches
using metaprogramming on parallel computers. It is important to
know how knowledge base access is implemented in GHC. The
inference system including knowledge base access is summarized
in the following procedures:
(1) Accessing knowledge bases

This procedure retrieves knowledge which relates to the goal. If
the procedure does not find any, the system executes procedure
(4). Otherwise, the system executes procedure (2) for each
possibility.
{2) Changing variable names

Since retrieved knowledge (Horn clauses) are copies of existing
knowledge in the knowledge base, the retrieved knowledge must
use different variable names. The procedure assigns variables the
retrieved Horn clause variables and executes procedure (3).
(3) Analyzing retrieved Horn clauses

If the retrieved Horn clause has a conditional part, the procedure
defines it as a new goal(s). If not, the Horn clause is true. The
procedure outputs the result and executes procedure (4).
(4) Backtracking

Backtracking removes instances assigned to goal variables and
assigns instances for previous procedures (1). If the previous

instances are exhausted, the procedure repeatedly executes

ascendant nodes (goals) in the proof tree. If there are no more

ascendant nodes, the procedure stops.

3. Parallel Implementation in GHC

The previous section showed that exhaustive parallel inference is
executed by (1) searching the knowledge base, (2) duplicating and
renaming variables, (3) analyzing retrieved Horn clauses, and (4)
backtracking.

It is possible to implement procedure (3) by metaprogramming
techniques, but procedure (1) is difficult because it is implemented
in GHC, which lacks the OR-parallel search. Since GHC cannot assign
multiple values to a variable, not all solutions of a knowledge base
search can be stored in one variable. Also, since GHC cannot
distinguish between wvariables and constants, we cannot implement
procedure (2) without adding to GHC. If we implement paraliel
backtracking in procedure (4), it results in searching all paths on
the search tree in parallel. Parallel searching is executed by
defining goals for each path, It is awkward to assign goals for each

path by copying the original goals.

3.1 New Data Type $-Variable

Qur idea is to distinguish between GHC variables and knowledge
base variables. To do so, we add a new data type, the "$-variable,”
to GHC to represent knowledge base wvariables (Fig. 3). We
represent $-variables using parentheses ($(1), $(2), $(3)) in GHC
programming, but a simplified representation of $-variables uses
none ($1, $2, $3). A knowledge base search is done using the

following expression:

fi

7. clause_stream(ancestor($10,511), Out_Stream).
Out_Stream=| [(ancestor($12,$13):- parent($12,813)), Binfl],
[(ancestor($14,$15):- parent($14,$16), ancestor($16,$15)), Binfl]].

The knowledge base representation using the $-variables in Fig. 3
could not be managed by the GHC interpreter. Metaprogramming
needs unification and substitution mechanisms to manage $-terms.
(1) unify(Terml, Term2, NewTerm, OutputBinf).

This predicate unifies "Terml1" and "Term2" including $-
variables. The unification result is returned in the third argument
"NewTerm" and the binding information of $-variables is returned
in the fourth argument "OutputBinf". "Terml"” and "Term2" are left
unchanged. For example, if the wser gives the goal
"unify(p(a,$1),p($2,b),Result,OutputBinf)", the predicate outputs
"Result=p(a,b)" and "OutputBinf=[bind($1,b),bind($2,a)]".

(2) substitute(InputBinf, Term, Result, OutputBinf).

This predicate rewrites "Term” using binding information
for $-variables and outputs "Result=p(a,b)” and
"QOutputBinf=[bind($1,b),bind($2,a)]". For example, if the user gives
the goal "substitute([bind($1,b), bind($2,a)], p($1, $2), Result, Binf)",
the predicate outputs "Result=p(h,$3)" and "OutputBinf=[bind($1,b)]"

3.2 Parallel Programming

Exhaustive parallel inference can be implemented by meta-
programming using the previous unification and substitution for
GHC $-variables.

The inference processing in Fig. 2 obtains all solutions by
backtracking. Since parallel inference searches for every solution
on the search tree in parallel, the predicate “"clause(P,Q)" must be

extended to search the knowledge base. The predicate is extended

to receive a stream of retrieved Horn clauses. The set of Horn
clauses received by the previous “clause_stream" predicate is

analyzed by the following parallel program:

bagof_solve([1, VL, Binf, His, Result):-truel
Define "Hisl" as the result of assigning the set of terms "His"
into binding information "Binf" by substitution predicare,
Result=] [VL,Binf,Hisl]].

bagof solve([true], VL, Binf, His, Result):-truel
Define "Hisl" as the result of assigning the set of terms "His"
into binding information "Binf" by substitution predicate,
Result=[[VL,Binf Hisl]].

bagof_solve([PIQ], VL, Binf, His, Result):- Q =[] |
bagof_solve([P], VL, Binf, His, Resultl),
and_solve(Q, Binf, Resultl, Result).

bagof_solve([P], VL, His, Result):-otherwisel
clause_stream(P, ClauseStream),
or_solve(ClauseStream, VL, Binf, His, Result).

The first argument of the predicate "bagof_solve" specifies goals to
be solved by parallel inference. The program represents the goals
using list expressions. The second argument specifies output
variables. For the user's goals, each variable is assigned a value
obtained by parallel inference. The third argument specifies
binding information for the parallel inference, represented by list
expressions. The fourth argument specifies the proof tree to be
generated by parallel inference. The fifth argument specifies the set
of solutions obtained by parallel inference.

The first and second clauses of the program are procedures for
the first clause in Fig.2. The third and fourth clauses are procedures
for the second and third clauses in Fig. 3. The program is the
parallel procedure for searching the knowledge base, analyzing

retrieved Horn clauses, and finding all solutions. The third clause is

the procedure for analyzing from the left side of AND-goals.
Solutions for the variable "Resultl” are transferred from the
predicate "bagof_solve” to the predicate "and_solve" to maintain the
consistency of shared $-variables for the AND-goals. The
"and_solve" predicate in the third clause is implemented by

following parallel program:

and_solve(Q, Binf, [[VL, BinfHis, His | | R |, Result):-wait{(Q) |
Define "Ql" as the result of assigning Goals "Q" into binding
information "BinfHis" by substitution predicate,
bagof_solve(QI1, VL, BinfHis, His, Resultl),
and_solve(Q, Binf, R, Result2),
merge(Resultl, Result2, Result).

and_solve(Q, Binf, [], Result):- wait(Q) | Result = [|.

The first argument of the "and_solve” predicate specifies goals to be
solved. The second argument specifies information bound to $-
variables during inferencing. The third argument specifies execution
results of AND-goals connected before AND-goal "Q". This includes
the output variables ("VL") of the goals, information bounded
("BinfHis") $-variables, and a path of the generated proof tree
("His") during inferencing. The fourth argument specifies execution
results for "Q".

If the AND-goals connected before "Q" have solutions, the first
clause of the program is executed to assign $-binding information
for one of the solutions to "Q" to give duplicate values for terms
with shared $-variables and solves goal "Q1". After that, the clause
solves other goals with the "and_solve" predicate. Execution results
"Result] and Result2" are merged by the "merge” predicate. If the

AND-goals connected before AND-goals "Q" have no solutions, the

second clause is executed. In this case, the clause outputs nil ("[]")
for the execution result in the fourth argument.

This "or_solve" predicate implements the following parallel

program:

or_solve([[(Head:-Body),Inf] | ClauseList], VL, Binf, His, Result):-truel
Define "NewVL" as the result of assigning variables” VL"” into
binding information "Inf" by substitution predicate,
append(Inf, Binf, NewBinf),
append(His, [(Head:-Body)], NewHis),
bagof_solve(Body, NewVL, NewBinf, NewHis, Resultl),
or_solve(ClauseList, VL, Binf, His, Result2),
merge(Resultl, Result2, Result).

or_solve(| 1, VL, Binf, His, Result):-true | Result = [].

The first argument of the "or_solve” predicaie specifies clauses
retrieved from the knowledge base by the “clause_stream”
predicate. The second argument specifies output variables ("VL") of
the user defined goals. The third argument specifies a path of
generated proof tree ("His"). The fourth argument specifies the
proof tree to be generated by parallel inference. The fifth argument
specifies execution results.

The first clause executes retrieved clauses with the
"clause_stream” predicate in the recursive structure. Since
information about $-variables replaced by the “clause_stream"”
predicate is stored in binding information ("Inf"), the first clause
assigns the information to "VL". After that, it adds the old proof
history to a "Head:-Body" clause to make a new proof history and
analyzes the condition part ("Body") of the clause using the
"bagof_solve” predicate. Execution results "Resultl” and "Resuli2”

are merged by the "merge” predicate. If the knowledge base search

fails, the second clause is executed and the execution result in the

fifth argument is nil "[]".

3.3 Processing Cut Symbols

Cut symbols are processed by an extension of the parallel
inference system. We assume that the cut symbol includes only one
conditional part, and represent it using an “ifthen(P, Q)" predicate.
An example including the predicate is shown in the following

knowledge base:

children{ %1, $2):-

children{ £1, [], $2).
children($1, $2, $3):-

parent(father($1, $4), children($1, [$41$2], $3)).
children($1, $2, $2).

The predicate "children($1, $2)" specifies that children of
father "$1" are "$2"; "$2" is represented by a list structure. The
parallel programming to execute the cut symbol adds the following
clause between the third and fourth clauses of the program

"bagof_solve":

bagof_solve([ifthen(P,Q)], VL, Binf, His, Result):-true |
bagof_solve(P, VL, Binf, His, resultl),
then_part{ Q, Binf, Resultl, Result).

The "then_part” predicate is a parallel program to analyze the goals

"Q" of the metapredicate "ifthen(P,Q)":

then_part(Q, BindInf, [Resultll Result2], Result):-true
and_solve(Q, Binf, [Resultl], Result2),
If "Result2” is null "f]", assigns the result "Result” into a value
" [fail]”. If not, assigns it into a value of "Rsult2".

then_part{ Q, BindInf, [], Result):-true | Result=[].

Parallel programming also needs to add the "or_solve” program of

the previous section to the following clause:

or_solve([[(Head:- [ifthen(Cond, Body)]), Inf] | ClauseList], VL,
Binf, His, Result):-true |
Define "NewVL" as the result assigned from "VL" (o
“Inf* for variable bindings by the substitution predicate
of section 3.1,
append(Inf, Binf, NewBinf),
append(His, [(Head:- [ifthen(Cond, Body)])], NewHis),
bagof_solve([ifthen(Cond, Body)], NewVL, NewBinf,
NewHis, Resultl),

next_solve(ClauseList, VL, Binf, His, Resultl, Result).

If the execution result ("Resultl”) of the "bagof_solve” predicate is
null ("[1") after "ifthen(Cond, Body)" is analyzed in the "or_solve"
predicate, the "next_solve" predicate analyzes the next clause list
("ClauseList") using the OR-parallel program "or_solve". If the result

is not null, it prunes the clause list

4. Large-Scale Knowledge Base Search

The previous section described how the knowledge retrieval
function ("clause_stream”) of the parallel inference system was
implemented in GHC. An issue involved in this approach is that $-
unification ("unify") and $-substitution ("substitute™) implemented
in GHC do not have enough parallel performance and require more
memory than when implemented in C. This issue becomes
important when we use large-scale knowledge bases.

We programmed the knowledge retrieval, $-unification

processing, and $-substitution in C. It is easy to interface GHC and

C. The knowledge base must be shared by multiple GHC processes.
We implemented the knowledge retrieval with the knowledge
retrieval system retrieval by unification (RBU) to speed up access.
We call the knowledge retrieval system interface between GHC and
RBU [Yokota '89] a “parallel knowledge retrieval subsystem,”
described as follows:

The system configuration for the parallel knowledge retrieval
subsystem is shown in Fig. 4. The system uses shared memory and
a parallel inference machine made by the SEQUENT Corporation. We
implemented the system on a parallel operating system (DYNIX)
with UNIX. Hash and tree structures speed up knowledge base
ACCESs. Horn clauses stored in shared memory are accessed from
RBUs in parallel. Each RBU is assigned one UNIX process.
Concurrency control for parallel access applies to each set of Horn
clauses with the same relation name. Concurrent retrieval is allowed
(shared mode), but concurrent updates are not (exclusive mode).
The parallel knowledge base is searched by interaction between
GIIC and RBU processes.

The system runs 25 times faster for 6 RBU processors and 10 GHC

processors than for Quintus-Prolog on one processor.

5. System Evaluation

The system can be used as the kernel of several knowledge
information systems. We obtain good parallel performance for
problems such as in Fig. 3 and problems such as
"append(X.,Y,{a,b,c,...])" without an included database, for example.
We created a simple constraint logic programming system to
evaluate the performance of the system. Fig. 5 shows the system’s

parallel action. Given a problem, the system searches the knowledge

base using exhaustive parallel inferencing. Parallel inferencing
combines OR- and AND-parallel execution. The parallel inference
system is the kernel of the constraint logic program. We use a two-
dimensional electrostatic field design problem to evaluate
performance. The constraint logic programming system is
implemented by extending the “"bagof_solve" program (Section 3.2)
and adding it to the constraint solver. The extension collects all sets

of linear equations in paraliel inferences.

5.1 Example of Design Problem

Fig. 6 shows the design problem for a two-dimensional
electrostatic field. Phenomena in electrostatic fields are
characterized by Laplace's equation, represented by Liebman's 5-
point approximation (Fig. 7). The knowledge base has two
constraints: the space potential of the center, restricted to the range
"74.9 volts to 75.1 volts,” and the space potential approximated by
Liebmann's equation. The problem is to compute boundary potential
X. The other three boundaries are defined as 100 volts. Fig. 8 shows

a knowledge base for the design problem.

5.2 Performance

Given the following problem,

?- constraint_solve(design([[$900, $900, $900, $900, $900],
[100, %911, $912, $913, 100],
[100, $921, $999, $923, 100],
[100, $931, $932, $933, 100],
[100, 100, 100, 100, 100]],
$200, $999)),

the system solves the problem using "bagof solve". The system
generates linear equations for each element of the member in Fig. 8.
The system then calls the constraint solver with linear equations.
The constraint solver converts these equations to matrices for
parallel computation. Computation is implemented by AND-stream
parallel programming using GHC,

Fig. 8 shows an example of a 4 x 4 matrix. Each matrix is
computed by assigning each element to a GHC process and applying
Gaussian elimination from the upper elements of the diagonal to the
lower elements in parallel.

The second of the diagonal elements, for example, is computed as
follows:

(1) The GHC process of the second element sends a message to its
vertical and horizontal neighbors.
(2) Each element which receives a massage sends a new message (o
these neighbors.
(3) Each element receiving a message from these neighbors
computes based on Gaussian elimination,

Eight processors were 6 times faster than 1 for parallel matrix
computation.

We measured the performance of the parallel inference system
with the constraint solver connected to 15 processors assigned to
GHC and RBU. Hardware performance of the parallel computer
using shared memory corresponds to the number of processors. The
maximum number of GHC processors was 9, and the maximum
number of RBU processors was 6. Fig. 9 shows parallel performance
measured by assigning RBU to 1 or 6 processors, and GHC to 1, 3, 5,
7, or 9 processors. The black circles in Fig. 9 denote 1 RBU

processor and the white circles 6 RBU processors.

Six RBUs are 6 percent faster than one when there is 1 GHC
processor. As the number of GHC processors increases, the parallel
performance ratio decreases. However 9 GHC processors are
roughly 9 times faster than 1 processor for each case.

The following parallel performance summarizes the previous
results:

(1) All sets of linear equations are collected.

(2) Equations are converted to matrices and processed in parallel.
If the number of elements in the example increases, the number
of GHC processes to be executed in parallel is increased by the
number of OR-parallel executions collecting linear equations. If the
number of meshes dividing the electrostatic field increases, the
number of GHC processes needed to compute the matrix is increased
by the increase of matrix size.

The constraint problem I have described for reducing linear
equations including equality can be extended to reducing lincar

equations including inequality.

6. Conclusions

I have described a knowledge-based parallel inference system
using metaprograming techniques in GHC. 1 showed how a method
to add OR-parallel functions to GHC, which has only AND-parallel
functions. I also described functions to manage $-variables
representing the knowledge base. We implemented these in C to
avoid excessive GHC garbage collection. The system can be
extended to handle knowledge bases including cut symbols. We also
interfaced GHC and the knowledge base retrieval subsystem to

speed up large-scale knowledge base access.

Lastly, I have described a simple constraint logic programming
system for evaluating performance which is implemented by
extending the parallel inference system and adding a simple
constraint solver. The system performed well.

This research demonstrates the basic techniques for
implementing parallel applications efficient from the symbolic point
of view, and related to partial evaluation [Fujita '88, Furukawa '88]

and reflective programming |Tanaka '90].

7. Acknowledgements
We thank Messrs. H. Hayashi and A. Hattori of Fujitsu
Laboratories Ltd. for their valuable suggestions. We also thank the

researchers in [ICOT's KBM working group for their very useful

suggestions.

[References]

[Bowen & Kowalski '81] K. A. Bowen and R. A. Kowalski:
Amalgamating Languvage and Meta-Language in Logic Programming,
TR 4/81, Syracuse University, 1981.

[Clark '84] K. L. Clark and S. Gregory: Notes on Systems
Programming in Parlog, Proc. of the International Conference on
Fifth Generation Computer Systems ‘84, 1984,

[Fuchi '78] K. Fuchi: Problem Solving and Inference mechanism,
Journal of Information Processing of Japan (in Japanese), Vol. 11,
No. 10, 1978,

[Fujita '88] H. Fujita, A. Okumura, and K. Furukawa: Partial
Evaluation of GHC Programs Based on the UR-set with Constraints,

Proc. of the Fifth International Conference and Symposium on Logic

Programming, 1988.

[Furukawa '88] K. Furukawa, A. Okumura, and M. Murakami:
Unfolding Rules for GHC Programs, New Generation Computing,
Ohmusha LTD., 1988.

[Hattori '89] A. Hartori et al: A Hierarchical Structured FParallel
Inference Machine, Parallel Computing '89, 1989.

[Heintz '87] N. Heintze, S.Michaylov, P.Stuckey: CLP(R) and Some
Electrical Engineering Problems, Fourth IEEE Symposium on Logic
Programming, 1987.

[Kasif '83) S. Kasif, M Kohli, and J. Minker: 'PRISM: A Parallel
Inference System for Problem Solving', Proc. of the Logic
Programming Workshop '83, 1983.

[Kitakami '84] H. Kitakami, 5. Kunifuji, T. Miyachi, and K. Furukawa:
A Methodology for Implementation of a Knowledge Acquisition
System, Proc. of the 1984 International Symposium on Logic
Programming, 1984,

[Lander 'H8] E. Lander and P. Mesirov: Protein Sequence
Comparison on a Data Parallel Computer, Proc. Int. Conf, Parallel
Processing, 1988,

[Lassez '871 C. Lassez: Constraint Logic Programming, Fourth IEEE
Symposium on Logic Programming, 1987.

[Ozawa '90] T. Ozawa, A. Hosoi, and A. Hattori: Generation-Type
Garbage Collection for Parallel Logic Languages, NACLPY0, 1990.
[Sato '"90} H. Sato and M. Ikesaka: Particle Simulation on a
Distributed Memory Highly Parallel Processor, Supercomputing in
Nuclear Applications '90, 1990.

[Shapiro '84] E. Shapiro: System Programming in Concurrent Prolog,
Proc. 11th Annual ACM Symp. on Principles of Programming
Languages, ACM, 1984.

— 18

[Takeuchi '87] A. Takeuchi: Parallel Problem Solving Lanpuage
ANDOR-II, Proc. of the 2nd Program Symposium, Japan Society for
Software Science and Technology(in Japanese), 1986.

[Tanaka '90] J. Tanaka, Y. Ohta, and F. Matono: Overview of an
Experimental Reflective Programming System: ExReps, Fujitsu
Scientific and Technical Journal, Vol. 26 No. 1, 1990.

[Uchida '88] S. Uchida, K. Taki, K. Nakajima, A. Goto, and T.
Chikayama: Research and Development of the Parallel Inference
System in the Intermediate Stage of the FGCS Project, Proc. of the
International Conference on FGCS '8, 198§,

[Ueda '85] K. Ueda: Guarded Horn Clauses, Technical Report TR-103,
ICOT, 1985.

[Yang '87] R. Yang: P-Prolog: A Parallel Logic Programming
Language, Series in Computer Science - Vol. 9, World Scientific
Publishing Co Pte LTD., 1987.

[Yokota '89] H. Yokota, H. Kitakami, and A. Hattori: Term Indexing
for Retrieval by Unification, Proc. of 5th Int'l Conf. on Data

Engineering, 1989,

Jqenaea-¢ Bunuasaadau
aseq adpajmouy e jo aydwexy ¢ aundiy

“(#3 ‘) pudaed
(€J ‘73 wadaed
(7 ‘13 hudaed

(7% ‘€%)10s30ue ‘(g% ‘T$ Judded -:(z$ ‘1§)a0)s30ue
*(Z$ ‘1%)Iuaaed -:(7$ 1%)10)soue

Buissadoud dudsayur jo ajdwexy 7 andiy

(0)aajos (D ‘4)asned -:(g)aa[os
(0)24108(d)3410s -:((D ‘d))aajos
't -:(ana})aajos

aseq a3pajmouy € Jo 3pdwexy | aundryg

*(b3 ‘€3 pudaed
"(€) ‘Y Nudaed
() ‘1) Nudaed

‘(A *Z)40s20ue(Z *x Nuaded -i(§ ¥ JJ0)soue
(A ‘X Nudaed -:(A ‘Y JJo)sa0ue

4

UoNeIN3Yuod WIISAS § 2an3Ly

Alowam padeys uy seq IFpapuony -l

-

dassazoad o O

Emﬂmhgﬁfm.w U-.—W\

3IBJIIIUI [BAILI)AI ITPI[M oY

plerd-JyO Ruered-qQNV

JIALIP DUIIIJUI PP[[ede]

~

aseq adpajmony

J

L1owawn L1epuodag

A1)

uonde Pe.Ieg < dansyy

(et s i as R Rae b et UOTIBTII[BY XLAJBJAL -vveveeermssessicrsseensssssssasmnssssessesnssssssssassmnny
..... OOO OOO OOO OOO
..... QOO O _Wﬁ.mw_.m% O_%n.mw_.mﬁ ---.Q,MWM.A_M_.ME
TO_MW.N.%A_Z& O Oo O OO OOO

o b. M\W “,A V S — V

_m__m._.E MG\\. .‘_.m__:____ 95eq

m AZpIjMouyy
NUIRJUI P[[BIR |

(T'SL=>V =>6bL)
UOIZ3.X [BUOISUIWIP-T PISO[dUs] 9 3anS1y]

SPI31J d11BIS0IIII[D SUIZA[euR 10) ISB(Q IFPIJMOUY] /7 3an8i1y

"([9$°S$] ‘[P$°c$] ‘[2$°14] Juuewqary
"((ZTSITTOT1[8$1L$°9%1 [F$l€$ T4 uuRwIqar]
‘0=98+-L$+S$+T$H0TS

~([TISITTS 0T $ 631 (8%1$°0$ S$1 [PSI€$ TS T$]) uurUIqaN]

‘([z$‘1$)920ede]

‘([pSle$zSooedel ‘(€474 T$ Juuewmqan -:([p¢lcs z1])9ae1dR]

(€$'T$) dquidur -:([¢$]7$1T$) IPquUID W
"((Z$1$11$) I_PquUIBW

‘TEL=>PS F=—>6 pL([7$|1$])0ede|
‘(IT°0°1-]*e$)12quUID W
- (p$'e$(zglr$Dudisap

24

uonnN[os XLjew Pesed § an3iyg

T
5 1%

S Lo
/

!
@) |-

-8 -6 |-

$10s53204d 3pdiy[nuI 10J OIJEI IIUBULIOJIdJ 6 N3

- s10ss3304d HHO Jo JoquInpN
8 L 9 S 14 3 (4

| _ ! | | |

ngatr @

01

26 -

