ICOT Technical Report: TR-612

TR-612

Consequence-Finding Based on
Ordered Linear Resolution

by
K. Inoue

January, 1991

© 1991, ICOT

Mita Kokusai Bldg. 21F (13)3456.3191 -5
I (:D I 4-28 Mita 1-Chome Telea ICOT 132064
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Consequence-Finding Based on Ordered
Linear Resolution *

Katsumi Inoue

ICOT Research Center
Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F
1-4-28 Mita, Minato-ku, Tokyo 108, Japan

inouelicoet.or. jp

March 27, 1991

Abstiract

Since linear resolution with clanse ordering is incomplete for consequence-
finding, it has been used mainly for proof-finding. In this paper, we re-evaluate
consequence-finding. [irstly, consequence-finding is generalized to the problem
in which only interesting clauses having a certain property (called characteristic
clauses) should be found. Then, we show how adding a skip rule to ordered
linear resolution makes it complete for consequence-finding in this general sense.
Compared with set-of-support resolution, the proposed method generates fewer
clauses to lind such a subset of consequences. In the propositional case, this is
an eleganl tool for computing the prime implicants /implicates. The importance
of the results presented lies in their applicability to a wide class of Al problems
such as procedures for nonmonotonic and abductive reasoning, truth maintenance
systems, and their possible applications including diagnosis, design and planning.

Keywords: consequence-finding, linear resolution, prime implicates, abduction

"A short version of this paper i= to appear in The Twelfth International Joind Conference on Artificaal
Intelligence (IJCAL01), Sydney, Australia, August 1691,

1

1 Introduction

It is well known in antomated dedunction that while resolution [Robinson, 1965] is complete for
proof-finding (called refutation complete), that is, it can deduce false from every unsatisfiable
set of formulas, it is not deductively complete for finding every logical consequence of a given
satisfiable set of formulas. For example, resolution cannot derive the formula p Vv ¢ from a set
of formulas T = {p, ¢} although 7" |= pV ¢q. Lee [1967] addresscs himsell to this problem and
defines the consequence-finding problem, which is expressed in the following form:

Given a set of formulas T' and a resolution procedure P, for any logical consequence
D of T, can P derive a logical consequence ' of 1" such that (' subsumes D7

If a resolution procedure is complete [or consequence-finding, then it is useful in spite of
lacking deductive completeness because in general the logical consequences not deducible
from the theory are neither intercsting nor useful. Namely, such a formula is subsumed by
some formula deducible from the theory and thus it is weak and redundant.

Historically, conscquence-finding had been investigated intensively since Hobinson in-
vented the resolution principle [Robinson, 1965] for proof-finding. Lee’s completeness theo-
rem [Lee, 1967] was proved for the original resolution principle. Slagle, Chang and Lee [1969)
cxlended the result to various kinds of semantic resolution. However, after Minicozzi and
Reiter [1972] extended these results to various linear resolution strategies in the carly 70s,
conscquence-finding was once abandoned in research of automated theorem proving and at-
tention has been directed towards only proof-finding *. It appears that there are three reasons

for this discouragement:

1. T'he results presented by [Minicozzi and Reiter, 1972] are in some sense negative. Linear
resolution involving C-orderiug [Loveland, 1978; Reiter, 1971; Kowalski and Kuhner,
1971; Chang and Lee, 1973; Shostak, 1976] (literals are ordered in each clause in the
theory), which is the most familiar and efficient class of resolution procedures because
it contains several restriction strategies, is unfortunately incomplete for consequence-
finding. Thus, the completeness result that we would most like to obtain does not

hold.

2, Even if a resolution procedure is complete for consequence-finding, it is neither practical
nor useful to find all of the theorems in some applicalions. However, there has not been
an intellectual method which directly searches interesting formulas, instead of getting
all theorems and then filtering them by some criteria.

1One can see that textbooks of resolution-based theorem proving, such as [Chang and Lee, 1973; Loveland,
1978], have no sections for consequence-finding.

3. As opposed to proof-finding which can be used, for instance, in planning and synthesis
problems where answer extraction techniques are available to obtain useful information,
consequence-finding has lacked useful applications in Al

In this paper, we re-evaluate consequence finding and give new perspectives. The propos-
als are motivated and justified by the following solutions to the above three problems:

1. Recently, Finger [1987] gave a complete procedure hased on set-of-support deduction
for generating formulas (called ramification) derivable from a theory and a newly added
formula as an initial set of support. We provide a complete procedure for consequence
finding, which contains more restriction strategies than Iinger's, by adding one rule
called skip operation to C-ordered linear resolution.

2. Bossu and Siegel (1985] give a complete algorithm for finding the set of positive clauses
derivable from a groundable theory (called characteristic clauses). Recently, Siegel
[1987] redefined the notion of characteristic clauses for propositional theories and pro-
posed a complete algorithm for finding them. We show how our results can both im-
prove the efficiency of Bossu and Siegel’s algorithin and lift Siegel's for the general case.
Moreover, easy modifications of the proposed procedure can be shown to be applied to
broad, more efficient variations of consequence-finding.

3. Przymusinski [1989] defines MILO-resolution to be used in his query answering pro-
cedure for etreumseription of ground theories. MILO-resolution can be characterized
as C-ordered linear resolution with skip operation {Inoue and Helft, 1990]. On the
other hand, most procedures for abduction [Pople, 1973; Cox and Pietrzykowski, 1986;
Finger, 1987; Poole, 1989; Slickel, 1990] can utilize consequence-finding procedures to
generate explanations [Inoue, 1990]. We show how the proposed procedure can be ap-
plied to generate such interesting formulas for nonmonetonic and abductive reasoning.
In particular, for the propositional case, the technique can be viewed as an elegant al-
gorithm to compute prime implicants/implicates [Tison, 1967], and thus can be utilized
for the clause management system [Reiter and de Kleer, 1987] that is a generalization
of the ATMS [de Kleer, 1986]. Consequently, the methods can be applied to many Al
problems, including diagnosis, design, and planning.

The importance of the results presented lies in their applicability to a wide class of Al
problems. In other words, the methods shed some light on better understanding and im-
plementation of many Al techniques. Applications of the present methods to compnt-
ing circumscription and to the CMS/ATMS are demonstrated in [Tnone and Helft, 1990;

Inoue, 1990].
The present paper is organized as follows. The next section characterizes consequence-

finding in a general way, and shows how various AT problems can be well defined by nusing this

3

notion of characleristic clauses. Section 3 presents the basic procedure, which is sound and
complete for characteristic-clause-finding, based on C-ordered linear resolution. Variations
of the basic procedure and their properties are provided in Section 4, where computational
complexity is also taken into account. Differences with other related rescarch are explained
as occasion calls throughout the paper. Becanse of space limitation, proofs of propositions
arc given in the full paper except that some proofs for the propositional case are given in

[Inoue. 1990].

2 Characterizing Consequence-Finding

We deline a theory as a set of clauses, which can be identified with a conjunctive normal form
(CNF) formula. A elause is a disjunction (possibly written as a set) of literals, each of which
is a possibly negated atomic formula. Each variable in a clause is assumed to be universally
quantified. For a method converting a formula to this form of theory, see [Loveland, 1978).
If S is a set of clauses, we mean by S the set formed by taking the negation of each clause in
5. The empty clause is denoted by 0. A clause C is said to subsume a clanse I if there is a
substitution # such that €8 C D and € has no more literals than 7 2. For a set of clanses
E, by pX or p[E] we mean the set of clauses of ¥ not subsumed by any other clanse of L.
E is closed under subsumption if it satisfies 5 = p¥. A clause € is a theorem, or a (logical)
consequence of L if L |= €. The set of theorems of E is denoted by Th(X).

2.1 Characteristic Clauses

We use the notion of characteristic elauses, which is a gencralized notion of logical conse-
quences and helps to analyze computational aspects of many of Al problems. The idea of
characteristic clauses was introduced by Bossu and Siegel [1985] for evaluating a kind of
closed-world reasoning and was later redefined by Siegel [1987] for propositional logic. In-
oue [1990] investigated the properties extensively. The description below is more general than
[Bossu and Siegel, 1985; Siegel, 1987; Inoue, 1990] in the sense that the notion is not limited
to some special purposes and that it deals with the general case instead of just the proposi-
tional cases. Also, these notions are independent of implementation; we do not assume any
particular resolution procedure in this section. Informally speaking, characteristic clauses are
intended to represent “interesting” clauscs to solve a certain problem, and are constructed
over a sub-vocabulary of the representation language.

*This definition of subsumption is called f-subsumpfion in [Loveland, 1978]. Unlike in the propositional
case, the second condition is necessary because a clause implies its factor. For example, p(z) V p{f(y)) D
plfiz}) is valid but p{f{2)) should not be deleted iy deduclion sequences.

Definition 2.1 ({1} We denote by A the set of all atomic formulas in the language. The set
of literals is denoted £ = AU A 3.

(2) A production field P is a pair, { Lp,Cond), where Lp (called the characteristic literals)
is & subset of £, and C'ond is a certain condition to be satisfied. When Cond is not specified,
P is just denoted as { Lp }. A production field { £) is denoted Pg.

(3) A clause ' belongs to a production field P = { Lp,Cond) if every literal in C belongs to
Ly and (7 satisfies C'ond. The set of theorems of ¥ belonging to P is denoted by Thp(E).
(4) A production field P is stable if for any two clauses (' and D such that ¢ subsumes D,
it holds that if) belongs to P, then € also belongs to P.

Example 2.2 The following are examples of stable production fields.

(1) Py = Pe: The, () is equivalent to Th(Z).

(2) P, = (A): Thp,(Z) is the sct of positive clauses implied by E.

(3) Ps = (A, size is less than k) where A C A: Thp, (T) is the set of negative clauses
implied by ¥ containing less than k literals all of which belong to A.

Example 2.3 Py = (A, size is more than k) is not a stable production ficld. For example,
il k =2 and p(a), g(b),r(e) € A, then D, = p(a)V g(b) subsumes D; = p(a) v g(b) Vr(c), and
Dy belongs to Py while Dy does not.

Definition 2.4 (Characteristic Clauses) Let T be a set of clauses, and 7 a production
field. The characteristic clavses of ¥ with respect to P are:

Carc(X,P) = uThe(L).

Care(E, P) contains all the unsubsumed theorems of T belonging to a production field P
and is closed under subsumption. To see why this notion is a generalization of consequence
finding, let P be Pz. From the definition of consequence-finding, for any clause D € Th(E),
a complete procedure P can derive a clause ' € Th(E) such that € subsumes). Therefore,
F can derive every clause ¢ € u Th(E) because " is not subsumed by any other theorem of
. Hence, Care(X, Pr) = pTh(X) have to be contained in the theorems derivable from E by
using F. Note also that the empty clause D belongs to every stable production field P, and
that if X is unsatisfiable, then Clare(X, P) contains only 0. This means that proof-finding is
a special case of consequence-finding. Next is a summarizing proposition.

Proposition 2.5 Let T be a theory, P a stable praduction field. A clause [J is a theorem
of X belonging to P if and only if there is a clause C in Clare(X, P) such that (7 subsumnes
D. In particular, ¥ is unsatisfiable if and only if Care(Z, P) = {O}.

%A and £ may be implicitly defined. If R is a set of predicate symbols, we denote by B (R™) the positive
(negative) occurrences of predicates from R in the language. If R is the set of all predicates in the language,
A and £ can be defined as A =Rt and L=RYUR".

=

As we will see later, when new information is added to the theory, it is often necessary
to compute newly derivable consequences caused by this new information. For this purpose,
consequence-finding is extended to look for such a ramification of new information.

Definition 2.6 (New Characteristic Clauses) Let £ be a sel of clauses, P a production
field, and F a formula. The new characicristie clauses of F with respect to ¥ and P are:

Neweare(S,F,P) = p|[Thp(ZU {F}) - Th(Z}].
In other words, (' € Newecare(X, F,P) if:
L. (i) BU{F}EC, (i) C belongsto P, (i) EEC, and

2. No other clause subsuming ' satisfies the above three.

The next three propositions show the connections between the characleristic clauses and
the new characteristic clauses. Firstly, Newcare(E, F,P) can be represented by the set
difference of two sets of characteristic clauses.

Proposition 2.7 Newecarc(E, F,P) = Carce(¥ U {F}, P) -~ Care(L, P).

When F is a CNF formula, Newearc(Z, F, P} can be decomnposed into a series of primiiive
Newcare operations each of whose added new formula is just a single clause.

Proposition 2.8 Let F =) A--- A, be a CNF formula. Then

Newecare(L, F,P) = u| U Newcare(E;, C;, P) |
=1
where &; = %, and B,y =5, U {Ci},fori=1,...,m~ 1.
Finally, the characteristic clauses Clarc(X, P) can be expressed by constructively using

primitive Newcarc operations. Notice that for any atomic formula p, if £ £ p, £ ¥ -p, and
p V =p belongs to some stable production field P, then p V —p belongs to Care(Z, P).

Proposition 2.9 (Incremental Construction of the Characteristic Clauses)

Care(B,P) = {pV-p|p€ A and pV ~p belongs to P}, and
Care(EU{C}LP) = p[Care(Z,P)U Neweare(Z,C,P)].

Implementation of computation of these consequences depends heavily on which operation
between C'arc and Newcarc is chosen as the basis: Clarc can be taken up as the basic oper-
ation in Proposition 2.7, while primitive Newcare can be used for Propositions 2.8 and 2.9.

6

2.2 Applications

We illustrate how the use of the (new) characteristic clauses enables elegant definition and
precise understanding of many Al problems.

2.2.1 Propositional Case

In the propositional case, A is reduced to the set of propositional symbols in the language.
The subsumption relation is now very simple: a clause (' subsumes D if ¢ € D, A theorem
of ¥ is called an implicate of ¥, and the prime implicates [Tison, 1967; Kean and Tsiknis,
1990] of £ can be defined as:
PI(E) = p TH(E).

The characteristic clauses of £ with respect to P are the prime implicates of £ belonging to
P. When P = Pg. it holds that Care(E.P) = PI(E) 4.

Computing prime implicates is an essential task in the ATMS [de Kleer, 1986] and in its
generalization called the elause management system (CMS) [Reiter and de Kleer, 1987]. The
CMS is responsible for finding minimal supports for the queries:

Definition 2.10 [Reiter and de Kleer, 1987] Let ¥ be a set of clanses and ' a clause. A
clause 5 is a support for C' with respect to Tif: (i) B = SUC, and (i) D £ .

A support S5 for €' with respect to ¥ is minimal if there is no other support ' for €' which
subsumes S. The set of minimal supports for €' with respect to T is written MS(E,0).

The above definition can be easily extended to handle any formula instead of a clause as
a query. Setting the production field to Py we see that:

Proposition 2.11 [Inoue, 1990] Let F be any formula. MS(E, F) = Newcare(E,-F, P;).

When we choose the primitive Newcarc operation as a basic computational task, the
above proposition does not require computation of PI(Z). On the other hand, the compiled
approach [Reiter and de Kleer, 1987] takes PI(E) as input to find MS(E,C) for any clause
(' easily as:

MS(ECl=p{P-C|PecPIE)and PNC #0}.

In de Kleer’s versions of ATMSs [de Kleer, 1986; de Kleer, 1989], there is a distinguished
set of assumnptions A C L. An ATMS can be defined as a system responsible for finding the
negations of all minimal supports for the queries consisting of only literals from A [Reiter

YThe prime implicants of a disjunctive normal form formula can be defined in the same manner if the
duality of A and V is taken into account.

and de Kleer, 1987; Levesque, 1989; Inoue, 1990]. Therefore, the ATMS label of a formula F
relative to a given theory ¥ and A is characterized as

L(F A E) = Newecare(%, —-Jf',._.'i-';j* where P = {4},

Inoue [1990) gives various sound and complete methods for both generating and updating the
labels of queries relative to a non-Horn theory and literal assumptions.

2.2.2 Abductive and Nonmonotonic Reasoning

As Reiter and de Kleer [1987] pointed out, the task of the CMS/ATMS can be viewed as
propositional ebduction. The abductive characterization of the CMS/ATMS can also be seen
in [Levesque, 1989; Selman and Levesque, 1990; Inoue, 1990]. For general cases, there are
many proposals lor a logical account of abduclion [Pople, 1973; Cox and Pietraykowski, 1986;
Finger, 1987; Poole, 1989; Stickel, 1990], whose task is delined as generation of explanations
ol a query.

Definition 2.12 Let E be a theory, A C L (called the hypotheses), and (7 a closed formula.
A conjunction E of ground instances of H 15 an ezplanation of & from (E, H) if:

(i) EU{FE} E G and (1) EU{E} is satisfiable 5

An explanation E of G is minimal if no proper sub-conjunction E' of E satisfies TU{E'} |= G.
An ertension of (£, H) is the set of logical consequences of T'UJ { M} where M is a maximal
comjunction of gronnd instances of H such that T'U {M} is satisfiable.

The next two characterize abduction by using the new characteristic clauses.

Proposition 2.13 [Inoue, 1990] Let &, H and & be the same as Definition 2.12. The sel
of all minimal explanations of & from (Z, H) is

Newcare(Z, -G, P), where P=(H).

Corollary 2.14 [Inoue and Hellt, 1990] Let £, H and G be the same as Definition 2.12.
There is an extension of (£, H) in which & holds if and only if

Newecare(E, -G, P)# 0, where P=(H).

5This definition is based on [Poole, 1988] and deals with ground explanations. To get universally quantified
explanations, we need (o apply the reverse Skolemizafion algorithm described in [C:’JI and Pietreykowski,

1986).

Another important problem is to predict formulas that hold in all extensions. This prob-
lem is known to be equivalent to circumseription under the unique-names assumption (UNA)
and the domain-closure assumption (DCA). Proving a formula holds in a circumseriptive the-
ory [Przymusinski, 1989; Ginsberg, 1989], as well as other proof methods for nonmonotonic
reasoning formalisms (including explanation-based argument systems [Poole, 1988] and vari-
ations of closed-world assumplions [Bossu and Siegel, 1985; Minker and Rajasekar, 1990]),
are based on finding explanations of the query, and showing that these explanations cannot
be refuted:

Proposition 2.15 [Inoue and Helft, 1990 Suppose that Ly = P* U Q% UQ=, where P
iz the minimized predicates and @ is the fixed predicates in circumseription policy and that
P = {Lp). Every circumscriptive minimal model satisfies a formula F il and only if there is
a conjunction ' of clauses from Thp(E U {-I"}) such that Newcare(Z, -G, P) = .

When a query in abduction or circumseription contains existentially quantified variables,
it is sometimes desirable to know for what instances of these variables the query holds. Lhis
answer extraction problem is considered in [Helft ef al., 1991].

2.2.3 Other AT theories

Since we have characterized the prime implicates, the CMS/ATMS, abduction and circum-
scription, any application area of these techniques can be directly characterized by using
the notion of the (new) characteristic clauses; for instance, constraint satisfaction problems
[de Kleer, 1989], principles of diagnosis [de Klcer et al., 1990], synthesis [Finger, 1987] (plan
recognition, prediction, design), and natural language understanding [Stickel, 1990]. Also,
some advanced inference mechanisms such as inductive and analogical reasoning may also
take abductive forms of representation.

kixample 2.16 Here is an illustration of what plan synthesis looks like. To satisfy a goal G,
we look for a sequence A of actions thal can perform this goal. This problem is in essence the
same as abduction: we can compute it by negating each clause in Newcarc(E, -G, P), where
¥ is the background theory and Lp is the action vocabulary. Then, the obtained plan A
should be added to the theory to check whether an unintended effect is caused. For example,
to clear block(a) irom the table, ¥z clear(z) would perform this goal, but this plan will cause
unintended effects. This ramification can be found from Newearc(L, A, Pe).

3 A Complete Ordered-Linear Resolution Procedure
for Consequence-Finding

We now present the basic procedure for implementing the primitive Newcarc operation. The
important feature of the procedure is that it is direct, namely it is both sensitive to the given
added clause to the theory and restricted to searching only characteristic clauses.

3.1 Basic Procedure

Given a t.hmry ¥, a stable pmducl.iuu lield P and a clause ', we show how ."'vrﬂwmrc{ﬂ, C, P:I
can be computed by extending C-ordered linear resolulion ®. As seen in Propositions 2.8 and
2.9, both Neweare(E, F,P) for a CNF-formula F and Care(X, P) can be compuled by using
this primitive Newcarc operation. There are two reasons why C-ordered linear resolution is
useful for computing the new characteristic clauses:

1. A newly added single clause (' can be treated as the top clause of a linear deduction.
This is a desirable leature for consequence-finding since the procedure can directly
derive the theorems relevant to Lhe added information.

2. 1t is easy to achieve the requirement that the procedure shanld focus on producing only
those theorems that belong to P. This is implemented by allowing the procedure to
skip the selected literals belonging to P. The computational superiority of the proposed
technique compared to set-of-support resolution that is used by Finger's resolution
residue [Finger, 1987], apart from the fact that C-ordered linear resolution contains
more restriction strategies in natural ways, comes from this relevancy notion of directing

search to P.

There are some procedures to perform this computation. 7. For propositional theories, Sicgel
[1987] proposes a complete algorithm by extending SI-resolution [Kowalski and Kuhner,
1971). Inoue and Helft [1990] point out that Przymusinski’s MILO-resclution [Prz;.rnmaiﬂski,

SRy the term C-ordered linear resolution, we mean the family of linear resolution using ordered clauses
and the information of literals resolved upon. Examples of C-ordered linear resolution are Model Elimination
[Loveland, 1978], m.c.l. resolution [Reiter, 1971], SL-resolution [Kowalski and Kuhner, 1971], OL-resolution
[Chang and Lee, 1973], and the GC procedure [Shostak, 1976). This family is recognized to be one of the
most familiar and efficient classes of resolution for non-Horn theories because il contains several restriction
strategies.

"Bossu and Siegel’s [1985] saturation procedure finds Care(X, P} where Ly are fixed to ground atoms.
However, it does not use C-ordering, but A-ordering, and their method to compute Newcarc(E,C,P) is
a naive implementation of Proposition 2.7, which should first deduce all the Care(Z,P) prior to giving

Carc{EU{F},P).

10

1989], an extension of Chang and Lee’s [1873] OL-resolution, can be viewed as C-ordered
linear resolution with skip operation for ground theories with a particular production field

for circumscription (see Proposition 2.15).

The following proposed procedure called SOL (Skipping Ordered Linear) resolution is a
kind of generalization of [Przymusinski, 1989; Sicgel, 1987]. The description below is based
on terminology of OL-resolution [Chang and Lee, 1973), bul the result is not restricted to
its extension. An erdered clause is a sequence of literals possibly containing framed literals
which represents literals that have been resolved upon: from a clause C' an ordered clause
C is obtained just by or dermg the elements of C; conversely, from an ordered clause €' a
clause (' is obtained by removing the framed literals and converting the rema.mdﬂ' to the set.
A struetured clanse { P, Q; is a pair of a clause P and an ordered clause (), whose clausal
meaning is P U Q.

Definition 3.1 Given a theory I, a clause C, and a production field P, an SOL-deduction
of a clause 5 from ¥ <4 (7 and P consists of a sequence of structured clauses Dy, Dy, ..., D,
such that:

1. Dy = (0O, O).
2.0, ={5, 0O}
3. For each D; = (P, @), P,UQ; is not a tautology.

4. For each D; = (F;, G.), P.u@, is not subsumed by any P;u@);, where D; = { F;, (5_,}
is a previous structured clause, j < 7. This rule is not applied if D; is generated from
1), by applying the skip rule (5(a)i).

5. Disa = { Pisa, Q:H} is generated from D; = (F;, l’i-} according to the following steps:

(a) Let I be the left-most literal of ;. Fiy; and H.-:.l are obtained by applying either
of the rules:
i (Skip) If P, U {l} belongs to P, then Piy; = F; U {I} and Ry, is the ordered
clause obtained by removing [from Q.
i. (Resolve) If there is a clanse B; in ¥ such that -k € B; and ! and k are
unifiable with mgu 6, then Fiy, = F# and R.4y is an ordered clause obtained
by concatenating B ﬂ and Qlﬂ framing 18, and removing —k#8.
ni. (Reduce) If erther
A. For Cj".- contains an unframed literal k different from { (factoring), or

B. Q; contains a framed literal (ancestry),

11

and [and k are unifiable with mgu 8, then P, = F,# and R,-;., is obtained
from Q.6 by deleting 8.

(b) Q:,.l is obtained from Riy; by deleting every framed literal not preceded by an
unframed literal in the remainder (truncation).

Remarks. (1) At Rule 5a, we can choose the selected literal [with more liberty like
SL-resolution [Kowalski and Kuhner, 1971] or SLI resolution [Minker and Rajasekar, 1990].

(2) Rule 4 is included for efficiency. It does not affect the completeness described below.
This deletion rule is overlooked in the definition of OL-deduction [Chang and T.ee, 1973] (and
g0 is in MILO-resolution [Przymusinski, 1989]), but is clearly present in Model Elimination
[Loveland, 1978].

(3) When the production field P is in the form of { Ly }, factoring {3(a)iilA} can be omitted
in intermediate deduction steps like Weak Model Elimination [Loveland, 1978]. In this case,
Rules 3 and 4 are omitted, and factoring is performed at the final step, namely it is taken
into account only for P, in a structured clause of the form (F;, O).

(4) The selection of rules 5(a)i, 5(a)ii and 5(a)iii must be non-deterministic; for I € Ly any
rule may be applied. This is not a straightforward generalization of MILO-resolution [Przy-
musinski, 1989} or Siegel’s algorithm [Siegel, 1987], because they do not deal with Reduce as
an alternative choice of other two rules, but make Qi41 as the reduced ordered clause of the
ordered factor of R,y that is obtained by Skip or Resolve ®. Both Przymusinski and Siegel
claim that the lifting lemma should work for their procedures. Unfortunately, their claims are
wrong: this simpler treatment violates the completeness described below. Furthermore, even
if we don’t consider consequence-finding, OL-resolution [Chang and Lee, 1973], which also
handles the reduction rule as a subsequent rule of Resolve, is incomplete for proof-finding.
For example, when the theory is given as

E:{ pfﬂ]VP[I]VﬁQ{mji [lj

~p(b), (2)
q(b) (3) 1,
it is easy to see that ¥ |= p(a). However, there is no OL-refutation from ¥ + -p(a):
(4) =-pla) given top clause
(5) plz)V —g(z)Vv|-pla)| resolution with (1)
(6) —gla)V, —pla) reduction

Here, each underlined literal denotes a selected literal in the next step. The clanse (6) is the
dead-end of the OL-deduction. Hence, the reduction rule must be an alternative rule. Model

gpyrthermore, MILO-resoluiion prefers Skip to Resolve. See also Section 4.2,

12

Elimination [Loveland, 1978] and SL-resolution [Kowalski and Kuhner, 1971] deal with the
reduction rule as an alternative.

The Skip rule (5(a)i) reflects the following operational interpretation of a stable produc-
tion field P: by Definition 2.1 (4), if a clause ' does not belong to P and a clause D is
subsumed by C, then I does not belong to P either. That is why we can prune a deduction
sequence if no rule can be applied for a structured clause D;; if Skip was applied nevertheless,
any resultant sequence would not succeed, thus making unnecessary computation.

For 50L-resolution, the following theorem can be shown to hold.

Theorem 3.2 (1) Soundness: If a clause S is derived using an SOL-deduction from ¥ +
and P, then S belongs to The(Z U {C}).

(2) Completeness: If a clause T' does not belong to The(L), but belongs to The(Z U {C}),
then there is an SOL-deduction of a clause S from ¥ + (7 and P such that S subsumes T,

Recall that C-ordered linear resolution is refutation-complete [Loveland, 1978; Reiter,
1971; Kowalski and Kuhner, 1971; Chang and Lee, 1973], but is incomplete for conscquence-
finding [Minicozzi and Reiter, 1972]. Theorem 3.2 (2) says that the procedure of SOL-
resolution is complete for characteristic-clause-finding, and thus complete for consequence-
finding if P = P¢, because it includes the additional skipping operation.

Example 3.3 Suppose that the theory ¥ apd the clause C are given by

S={ —cV-a (1,
eV ob (2)],
C= avb (3).

There is no OL-deduction of ~¢ from X + (7, but =c is derived using an SOL-deduction from
Y+ and P as:

(O, avb), top clause (3)

(O, =¢Vv[a]vh), resolution with (1) — OL-deduction ends here.
(=c, [dIVh), skip and truncation

{(—e, =gV } . resolution with (2)

{ —e, ¥ factoring and truncation

Definition 8.4 Given a set of clauses £, a clause C, and a stable production field P, the
preduction from & + C and P, denoted by Prod(Z,C,P), is defined as:

#{S |5 is a clause derived using an SOL deduction from ¥ + €' and P}.

The next theorem shows how we can compute primitive Newecare(%,C, P) for a single
clause €, by checking for each clause § € Prod(X, C, P), only whether £ |= S or not.

Theorem 3.5 Let (' be a clause. Neweare(E,C,P) = Pred(Z,C,P) — Thp(L).

L3

3.2 Consistency Checking

Tn Theorem 3.5, we have to test whether a clause S, produced from £ 4 (' and P, belongs to
The(E) or not. The question is how effectively this consistency checking can be performed.
We alrcady know that S belongs to P. A direct implementation is to use proof-finding
property provided by Proposition 2.5: £ |= § if and only if Prod(X, 8, P) = {0}7. In this
case, since the only target clause produced from I 4+ -5 is O, the production field P can be
replaced with {§) so that Skip (Rule 5(a)i) will never be applied: there is a C-ordered linear
refutation from % U {~S} if and only if there is an SOL-deduction from ¥ 4+ =5 and (@).

However, there is another way for consistency checking. When the restricted vocabulary
represented by P is small compared with the whole literals £, the computation of Carc(Z, P)
can be performed better as Lhe search focuses on P. Having Care(X, P), consistency checking
is much easier; S € Thp(L) if and only if there is a clause T' € Carc(X,P) such that T
subsumes S (Proposition 2.5)'®. This checking can be embedded into an SOL-deduction:
Skip (Rule 5(a)i) of Definition 3.1 can be replaced with the following rule:

5(a)i'. (Skip & Check) If P, U {I} belongs to P and is not subsumed by any
clause of Carc(Z, P), then the same as Rule 5{a)i.

Proposition 3.6 If Skip & Check is used as Rule 5(a)i of an SOL-deduction instead of
the original Skip rule, then Prod(E,C,P) = Newcare(Z,C,P).

3.3 Computing Prime Implicates

If the given theory is propositional, the prime implicates can be incrementally constructed
using every clause as a top clause as follows.

Proposition 3.7 [Inoue, 1990] Given PI(X) and a clause C, PI(EU {C}) can be found

incrementally!'!:

{pv-p|peA}, and
u[PI{£) U Prod(PI(X),C,P¢)] .

PI(9)
PI(SU{C})

1l

The computation of all prime implicates of £ by Proposition 3.7 is much more efficient
than the brute-force way of resolution proposed by Reiter & de Kleer [1987], which makes
every possible resolution until no more unsubsumed clauses are produced. The computational

SEach variable (universally quantified) in S is replaced by a new constant in =5 (Skolemization).
10y the propositional case, Care(E, P) is called the minimal nogoods in ATMS terminology [de Kleer,

1986).
[n practice, no tautology will take part in any deduction; tautologies decrease monotonically {see Defini-

tion 3.1).

14

superiority of the proposed technique comes from the restriction of resolution, as the key
problem here is to generate as few as possible subsumed clauses together with making as
few as possible subsumption tests. Also, ours uses C-ordered linear resclution and thus
naturally has more restriction strategies than set-of-support resolution that is used in Kean
and Tsiknis’s [1990] extension of the consensus method |Tison, 1967| for generating prime
implicates,

This difference becomes larger when there are some distinguished literals representing
assurnptions in ATMS cases. The most important difference lies in the fact that the formula-
tions by Reiter and de Kleer [1987} and by Kean and 1'skinis [1990] require the computation
of all prime implicates whereas ours only needs characteristic clauses that are a subset of the
prime implicates constructed from P [Inoue, 1990).

4 Variations

In the basic procedure in Section 3.1, two rules Skip (Rule 5{a}i) and Resolve {Rule 5(aj}ii)
are treated as alternatives in Step 5a of an SOL-deduction (Definition 3.1). This treatment
is necessary to guarantee the completeness of SOL-resolution. In this section, we violate this
requirement, and show properties of efficient variations of SOL-resolution and their applica-
tions to Al problems. Note that the Reduce rule (Rule 5{a)ii1) still remains as an alternative
choice of other two rules (see Remark (4) of Definition 3.1).

4.1 Preferring Resolution

The first variation, called SOL-B deduction, makes Resolve precede Skip, namely Skip
is tried to be applied only when Resolve cannot be applied. In a special case of SOL-
R deductions, where the production field is fixed to Pg, Skip is always applied whenever
Resolve cannot be applied for any selected literal in a deduction. In abduction, the resultant
procedure in this case “hypothesizes whatever cannot be proven®. This is also called dead-
end abduction, which is first proposed by Pople [1973] in his abductive procedure based
on SL-resolution [Kowalski and Kuhner, 1971] . The criterion is also used by Cox and
Pietrzykowski [1986].

4.2 Preferring Skip

In the next variation, called SOL-§ deduction, Skip and Resolve are placed in Step 5a of
SOL-deductions in the reverse order of SOL-R deductions. That is, when the selected literal
belongs to Lg, only Skip is applied by ignoring the possibility of Resolve:

YPople's synthesis operation performs “factor-and-skip”.

15

5(a)i”. (Skip & Cut) If F, U {l} belongs to P, then the same as Rule 5(a)i.
H(a)ii”. (Resolve”) Otherwise, the same as Rule 5{a)ii.

This skip-preference has the following nice properties. Firstly, this enables the procedure
Lo prune the branch of the search tree that would have resulted from the literal being resolved
upon. Secondly, SOL-S deductions are correct model-theoretically, Let us divide the set of
clauses A produced by using SOL-deductions from £+ C and P, not necessarily closed under
subsumption, into two sets, say A; and Ag, such that

& =2 UA and EU N, |=ﬁ1
Note that Pred(Z,C,P) = pA. Then adding A, to A, does not change the models of EUA,:
Mod(TUA;) = Mod(SUAY) = Mod(£ U Prod(s,C,P)),

where Mod(T') is the first-order models of T'. Thus only Ay needs to be computed model-
theoretically. The next theorem shows SOL-S deductions produce precisely such a A;.

Theorem 4.1 If a clause T is derived by an SOL-deduction from & 4 €' and P, then there
is an SOL-§ deduction of a clause S from ¥ + €' and P such that ¥ U {S} 1"

In abduction, recall that for a clause § € A and f = T, =5 is an explanation of =C
from (X, H) if £ £ S. Thus, an explanation in A; is the weakest in the sense that for any
clause S; € Ay, there exists a clause §; € A, such that £ U {-5;} = =5, holds '3,

In circumscription, this is particularly desirable since we want to answer whether a query
holds in every minimal model or not; the purpose of using explanation-based procedures is
purely model-theoretic. One of advantages of Przymusinski’s procedure [Przymusinski, 1989}
compared to formula-based abductive procedure for circumscription [Ginsberg, 1989] lies in
the fact that MILO-resolution performs a kind of SOL-§S deductions [Inoue and Helft, 1990].

4.3 Between Skipping and Resolving

We can consider another interesting procedure that offers an intermediate alternative to the
SOL-R and SOL-S deductions. The set of literals £ can be divided into three sets: those
never skipped, those which can be non-deterministically chosen either skipped or resolved,
and those immediately skipped. This is useful for a sort of abduction where we would like to
get explanations in appropriate detail.

One further generalization of this idea would be best-first abduction. This notion was orig-
inally introduced by Lee [1967] in consequence-finding. Stickel [1990] also uses the minimal-
cost proof where we can choose an operation whose expected computational cost is minimum,
but it is difficult to apply the idea to non-Horn theores.

3An explanation E) is said to be less-presumptive than E; if ¥ U {Eq} E By [Pocle, 1989]. Therefore, an
explanation in A is a least-presumptive explanation of -7 from (E, i)

16

4.4 Approximation

We can consider more drastic variations of the basic procedure. To do so, let us remember the
complexity issnes of consequence-finding in the propositional case 14, which-have been recently
examined for the CMS/ATMS by [Provan, 1990; Selman and Levesque, 1990]. Provan [1990]
shows that the ATMS complexity inherits from enumeration of prime implicates that is NP-
hard. Thus any complete algorithm for computing ATMS labels is intractable. Selman and
Levesque [1990] show that finding an explanation of an atom from a Horn theory and a set of
atomic hypotheses is NP-hard. Therefore, even if we abandon the complefeness of the primi-
tive Newcare operation, for instance, by limiting the production to only those clauses having
some small number of literals [de Kleer, 1989] belonging to P = (A, size is less than k)15,
it is still intractable.

Are there any rescues [rom the computational difficulty? We can consider approximation
of abduction; either discard the consistency or dispensc with the soundness. In the former
case, we may only run an SOL-deduction and belicve the result, omitting consistency check-
ing described in Section 3.2. This is a sort of optimistic reasoner without taking care of
ramification. On the other hand, the latter casc happens if we skip literals not belonging
to the characieristic literals: the soundness is violated in the sense that there is a clause
5 € Prodx(E,C,P) such that S & Thp(Z U {C)) ", This is an extreme of an SOL-S de-
duction in Section 4.2. We can stop deductions in accordance with computational resources;
the unresolved literals in a leaf of the deduction are then immediately skipped. These literals
are deall with as defaults and will he reconsidered later. Levesque [1988] also gives a hint for
this kind of computation in terms of erplicit abduction.

The fact that the procedure is sound and complete is valuable although the computational
complexity is exponential. This is because we can improve the quality of solutions as time
goes by; we can expect to get the correct answer if we can spend enough time to solve il.
This property of “anytime algorithm” is a desirable feature for any future Al system.

5 Conclusion

We have revealed the importance of consequence-finding in Al techniques. Most advanced
reasoning mechanisms such as abduction and default reasoning require global search in their

"The cemplexity of consequence-finding in the general case is bounded by the limitation that the set
ol all theorems is recursively enumerable. Notice, however, thal whether a given formula is not a logical
consegquence of such a theory cannot be determined in & finite amount of time,

®Notice that this P is stable. In practice, this size-restriction is very useful for minimizing the search
effort, because it causes earlier pruning in SOL-deduction sequences.

¥ However, since for any structured clause I, = { P, ;) in every deduction from T + C and P, it holds
that ZU{C] | F;UQ;, we can always guarantee that § ¢ Th(EZ U {C}).

17

proof procedures. This global character is strongly dependent on consequence-finding, in
particular those theorems of the theory belonging to production fields. That is why we need

some complete procedure for consequence-finding.

For this purpose, we have proposed SOL-resolution, an extension of C-ordered linear
resolution augmented by the skip rule. The procedure is sound and complete for finding the
(new) characteristic clauses. The significant innovation of the results presented is that the
procedure is direct relative to the given production field. We have also presented incomplete,
but efficient variations of the basic procedures with different properties of consequence-finding.

Acknowledgment

I especially wish to thank Mark Stickel for his valuable comments on SOL-resolution and Nicolas
Helft for introducing Stegel’s work to me. I would also like to thank Ray HReiter and Wolfgang Bibel
for helpful suggestions on earlier work, Koichi Furukawa, Yoshihiko Ohta and Ryuzo Hasegawa for
discussion on this topic, and Kazuhiro Fuchi for giving me the opportunity to do this work.

References

[Bossn and Siegel, 19585] Genevieve Bossu and Pierre Siegel. Saturation, nonmonotonic rea
soning, and the closed-world assumption. Artificial Intelligence, 25: 23-67, 1985.

[Chang and Lee, 1973] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and
Mechanical Theorern Proving. Academic Press, New York, 1973.

[Cox and Pietrzykowski, 1986] P.T. Cox and T. Pietraykowski. Causes for events: their com-
putation and applications. In Proceedings of the Eighth International Confercnee on Auto-
mated Deduetion, Lecture Notes in Computer Science 230, pages 608-621, Springer-Verlag,

1986.

[de Kleer, 1986] Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28: 127-
162, 1986.

[de Kleer, 1989] Johan de Kleer. A comparison of ATMS and CSP techniques. In Proc. of
the 11th IJCAIL pages 290-296, Detroit, MI, 1989,

[de Kleer et al., 1990] Johan de Kleer, Alan K. Mackworth and Raymond Reiter. Character-
izing diagnoses. In Proc. of the 8th AAAI pages 324-329, Boston, MA, 1990.

[Finger, 1987} Joseph J. Finger. Exploiting constraints in design synthesis. Technical Report
STAN-CS-88-1204, Department of Computer Science, Stanford University, Stanford, CA,

April 1987.

18

[Ginsberg, 1989] Matthew L. Ginsherg. A circumseriptive theorem prover. Artificial Intelli-
gence, 39: 200-230, 1989,

[Helft ef al., 1991] Nicolas Helft, Katsumi Inoue and David Poole. Query answering in cir
cumscription. In Proc. of the 12th IJCAL Sydney, Australia, 1991.

[Inoue, 1990] Katsumi Inoue, An abductive procedure for the CMS/ATMS. Tn: Joao P. Mar-
tins and Michacl Reinfrank, editors, Proceedings of the ECAI-90 Workshop on Truth
Maintenance Systems {Stockholm, August 1990), Lecture Notes in Artificial Intelligence,
Springer-Verlag, 1991,

[Inone and Ilelft, 1990 Katsumi Inoue and Nicolas Helft. On theorem provers for circum-
scription. In Proceedings of the Fighth Biennial Conference of the Canadian Sociely for
Computational Studies of Intelligence, pages 212-219, Ottawa, Ontario, May 1990.

[Kean and Tsiknis, 1990] Alex Kean and George Tsiknis. An incremental method for gener-
ating prime implicants/implicates. J. Symbolic Computation, 9: 185-206, 1990,

[Kowalski and Kuhner, 1971] Robert Kowalski and Donald Kuhner. Linear resolution with
sclection function. Artificial Intelligence, 2: 227-260, 1971.

{Lee, 1967] Richard Char-Tung Lee. A completeness theorem and computer program for
finding theorems derivable from given axioms. Ph.D. thesis, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, CA, 1967.

[Levesque, 1989] Hector J. Levesque. A knowledge-level account of abduction (preliminary
version). In Proe. of the 11th IJCAI, pages 1061-1067, Detroit, MI, 1989,

[Loveland, 1978] Donald W. Loveland. Aufomated Theorem Proving: A Logical Basis. North-
Holland, Amsterdam, 1978,

[Minicozzi and Reiter, 1972] Eliana Minicozzi and Raymond Reiter. A note on linear resolu-
tion strategies in consequence-finding. Artificial Intelligence, 3: 175-180, 1972,

{Minker and Rajasekar, 1990] Jack Minker and Arcot Rajasekar. A fixpoint semantics for
disjunctive logic programs. J. Logic Programmang, 9: 45-74, 1990.

[Poole, 1989] David Poole. Explanation and prediction: an architecture for default and ab-
ductive reasoning. Computational Intelligence, 5: 97-110, 1989.

[Paple, 1973] Harry E. Pople, Jr. On the mechanization of abductive logic. In Proc. of the
rd TJCAI, pages 147-152, Stanford, CA, 1973.

19

[Provan, 1990] Gregory M. Provan. The computational complexity of multiple-context truth
maintenance systems. In Proc. of the 9th FCAI pages 522-527, Stockholm, 1990.

[Przymusinski, 1989] Teodor C. Przymusinski. An algorithm to compute cirenmseription.
Artificial Intelligence, 38: 49-73, 1989.

[Reiter, 1971] Rayimmond Reiter. Two results on ordering for resolution with merging and
linear format. J. ACM, 18: 630-646, 1971.

[Reiter and de Kleer, 1987] Raymond Reiter and Johan de Kleer. Foundations of assumption-
based truth maintenance systemns: preliminary report. In Proc. of the 6th AAAJ pages
183187, Seattle, WA, 1987.

[Robinson, 1965] J.A. Robinson. A machine-oriented logic based on the resolution principle.
JoACM, 12: 23-41, 1965,

[Selman and Levesque, 1990] Bart Selman and Hector J. Levesque, Abductive and default
reasoning: a computational core, In Proc. of the 8th AAAL pages 343-348, Boston, MA,

1990.

[Shostak, 1976] Robert E. Shostak. Refutation Graphs. Artificial Intelligence, 7: 51-64,
1976.

[Siﬂgﬂl, 1987] Pierre Siegel. Représentation el utilisation de la connaissance en calcul propo-
sitionnel. These d'Etat. Université d'Aix-Marseille II, Luminy, France, 1987.

[Slagle et al., 1969] J.R. Slagle, C.L. Chang and R.C.T. Lee. Completeness theorems for
semantic resolution in consequence-finding. In Proe. of the IJCAI, pages 281285, Wash-
mmgton, D.C., 1969,

[Stickel, 1990] Mark E. Stickel. Rationale and methods for abductive reasoning in natural-
language interpretation. In: R. Studer, editor, Natural Language and Logic, Proceedings
of the International Scientific Symposium (Hamburg, May 1989), pages 233-252, Lecture
Notes in Artificial Intelligence 459, Springer-Verlag, 1990.

[Tison, 1967] Pierre Tison. Generalized consensus theory and application to the minimization
of baolean functions. IEEE Transactions on Electronic Computers, 16: 446-456, 1967.

20

