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Abstract

The notion of minimality is widely used in three different areas
of Artificial Intelligence: nonmonotonic reasoning, belief revision, and
conditional reasoning. However, it is difficult for the readers of the
literature in these areas to perceive the similarities clearly, becanse
vach formalization in those areas uses its own language sometimes
without referring to other formalizations. We define ordered struc-
tures and families of ordered structures as the common ingredient of
the semantics of all the works above. We also define the logics for
ordered structures and families. We present a uniform view of how
minimality is used in these three areas, and shed light on deep recip-
rocal relations among different approaches of the areas by nsing the
ordered structures and the families of ordered structures.



1 Introduction

The notion of minimality is proving Lo be a key unifying idea in three different
arcas of Artificial Intelligence: nonmonotonic reasoning, belief revision, and
conditional reasoning. However, it is difficult for the readers of the literature
in these areas to perceive the similarities clearly. The models used differ,
sometimes superficially, sometimes in depth, and the notation is different,
making it hard to apply results on, say, conditional logic to, say, belief revi-
sion. Even within the same area there is confusion, as, for example, different
anthors use different formalisms for conditional logic, sometimes without re-
lating their proposals to the literature. We present a uniform view of how
minimality is used in these three areas, shedding light on deep connections
amoug the areas. We clarify differences and similarities between different
approaches by classifying them according to the notion of minimality that
they are based on.

The first field in which minimality plays a crucial role is nonmonotonic
reasoning. Shoham [1987] proposes a uniform approach to subsuming vari-
ous formalisms of nonmonotonic reasoning in terms of preferential relations
among interpretations. Kraus, Lehmann and Magidor [1990] propose several
consequence relalions that capture general patterns of nonmonotonic reason-
ing. A consequence relation, denoted by p |~ ¢, means that u is a good
enough reason to believe ¢, or that ¢ is a plausible consequence of u. We
can regard their work as an extension of Shoham's work since some conse-
quence relations can be characterized in terms of preferential relations HINOTIE
possible worlds.

The second field in which minimality is discussed is knowledge base re-
visien and update. Alchourron, Gardenfors and Makinson [1985) propose,
on philosophical grounds, a set of rationality postulates that belief revision
operators must satisfy. Katsuno and Mendelzon [1980; 1991a) show thal
the AGM postulates precisely characterize revision operalors that accom-
plish a modification with minimal change among models of knowledge bascs
expressed in a finitary propositional logic.

Katsuno and Mendelzon [1891b] clarify a fundamental distinetion between
knowledge base revision and update. They propose update postulates in the
spirit of the AGM revision postulates, and show that the update postulates



precisely characterize minimal change update operators just as the revision
postulates characterize minimal change revision.

The third field is conditional logic, which is concerned with the logical
and semantical properties of counterfactuals, statements such as “if I were
a bird then I could fly.” Many applications of counterfactuals in Artificial
Intelligence are pointed out by Ginsherg [1986]. Delgrande [1988] uses a
conditional logic to formalize default reasoning.

There are several different conditional logics, and some of them can be
formulated in terms of minimal change Nute, 1984]. According to this mini-
mality view, a counterfactnal. g > ¢, iz true if we add its antecedent u to our
set of beliefs, modify the set as little as possible to preserve consistency, and
then its consequent ¢ is true under the modified set of beliefs. Gardenfors
|1988| shows the difficulties associated with using revision to model this view
of counterfactuals; Katsuno and Mendelzon [1991b] suggest using update in-
stead of revision. This suggestion is carried out by Grahne [1991] in a logic
UE llpd.i:l.tl":i li:l.lld C{Jll!]“.‘l'rﬂ{'tuﬂ-lﬁ.

Lewis [1973] proposes conditional logics called VO and VW. In the se-
mantics of VO and VW, total pre-orders (in Lewis’ terminology, “systemns
of spheres”™ ) play a kev role. Pollack [Pollock, 1981: Nute, 1984] proposes
another conditional logic, called 55, the semantics of which is determined by
changing total pre-orders in V(' to partial orders.

In this paper, we discuss fundamental similarities and differences among
the above works, and give a unified view of all the above in terms of notions
of minimality.

A good deal of previous work has been done, especially recently, on cour-
parisons among consequence relations, knowledge base revision and condi-
tional logics. Kraus, Lehmann and Magidor [1990] point out a relationship
between one of their consequence relations and conditional logics. We extend
their result and show more accurate semantic and syntactic correspondences.

Makinson and Gardenfors [Makinson and Gardenfors, 1991: Gardenfors.
1990] show the relationship between the AGM postulates for revision and
postulates for non-monotonic consequence relations. Gardenfors [1988] also
investigates the relationship between knowledge base revision and conditional
logic based on Ramsey test in lerms of synlax. He shows that although there
are close resemblances between his postulates for revision and axioms of



conditignal logic, it i1s impossible to formulate conditional logic by knowledge
hase revision and Ramsey test. We show the distinctions between conditional
logic and knowledge base revision in light of their semantics, and show that
there is a close relationship between knowledge base update and conditional
logic. Grahne [1991] proposes a new logic in which counterfactual and update
are treated in a unificd way.

Hell [1989] proposes using a conditional logic, called C, to extend Shoham's
work. The O logic is no more than S5, although the semantics of U seems to
be slightly different from the semantics of SS.

Boutilier [1990a; 1990b] establishes a2 mapping between two conditional
logics, called CT4 and C'T4D, and consequence relations. We show the dif-
ferenves between his conditional logics and other conditional logics in light
of notions of minimality. We also extend these results to other conditional
logics.

The outline of the paper is as follows. We define, in Section 3, ordered
structures and families of ovdered structures as the common ingredient of the
sernantics of all the works above, based on the observation that an order
among possible warlds 13 a key concept in all of them. We define logics for
ordered structures and families, and give sound and complete axiomatiza-
tions for them. In Section 4, we consider in detail each of the three areas
- nonmonotonic logic, beliet revision, and conditional logic - and show how
the works in each area fit inte our framework. Finally, in Section 5 we use
our framework to derive new cross-connections among the areas.

2 Preliminaries

Let L be a language of propositional logic that may have an infinite number
of propositional letters. Let [, be a finitarv propositional language that
has exactly n propositional letters. We denote the set consisting of all the
interpretations of L, by I,,. Throughout this paper, we use ¢, p and ¢ to
denote a well-formed formula of L.

A preorder < over a zet W iz a reflexive and transitive relation. We
denote the strict order of < by <. An element w 15 a minaimuwm with respect
to < if we < ' for any w' € W= {w}. Let W’ be a subset of W. An element



w ie minimal in W' with respect to < if w is a member of W' and for any
w' € W' w < wimplies w < w'. We denote by Min(W', <) the set of
minimal elements in W' with respect to <. We can define a total pre-order
and a partial order in a nsual way.

3 Common Language

We define a common language L. to discuss consequence relations, knowl-
edge bhase revision, update and conditional logics in a unified way. The
language L... is a language augmented L with a binary connective ~. The
connective ~» is direct]ly related to the connective b~ in the context of conse-
quence relations and the conditional connective > of conditional logics. We
also use Lhe nwtation L, .. to denote the language augmented L, with ~s.
We define WL, as the sel consisting of all the well formed formulas of
I.... We also define §- Wi, as the set of formulas that have no nesting of ~.
For example, ¢~ (U~ ) is not a formula of 5-Wf.. We define Wi, .. as
the sel consisting of all the formulas in Wi, such that every propositional
letier occurred in the formula is a propositional letter of L. Let WT | be
the set of all the formulas in Wi, such thal the depth of ~» in the formula

15 at mmost e,

3.1 Ordered Structure

An urdered structure is one of the central notions in the semantics of the
works that involve minimality,. We can give semantics of the formulas in
S-WH.. by using ordered structures. An ordered structure is a special case
of Kripke structure used in modal logics.

We define an ordered structure O as a triple (W, <, V), where W is a
nonemply set of worlds, < is a pre-order over W satisfying the smoothness
property defined later, and V" is a function that maps a pair of each propo
sitional letter of L and an element of W to T or F.

For an ordered structure @ = (W, <.V}, we define truth of each formula
in S-WH. as follows. First, we recursively define the truth of formulas at a

world w by using O, w .



Quwep it Vippwl=T1

Ow k= —a iff OLw Ea,

OuwEgaenri iff Owkaand Owlp 3,

Owi o~ e iff Min(]6ll,<) C ol
where |lof| = {w | V(g,w) =T}

We say that a formula o in S- WL, is true under an ordered structure O,
denoted by O | o, i O, w | o for any w in Min{W, <), that is. o is true at
every minimal world of .

Note the following facts.

1. I w, £ wy means wy is a more natural world than w;, then the seman
tics defined above shows that ¢ ~+ & is true under O if and only if all
most natural worlds that satisfy & also satisfy .

2. If W is an infinite set, there might exist infinite descending chains of
elements of W. Then, although some ||¢] is not empty, Min(||@[l. <)
might be empty.

The smonthness condition, mentioned in the definition of ordered struc-
ture, precludes the possibility of the above emptiness problem. A pre-order <
satisfies the smoothness condition if, for any formula ¢ of L and any w € |||,
there is somne world w' such that v’ << w and w’ is minimal in ||¢|| with respect
lo <.

We consider various restrictions on an ordered structure @ = (W, <, V).
If the pre-order < is a total pre-order (or a partial order), then we say that
O is a tolally ordered structure (or partially ordered structure). If W is finite,
we say Lhat O is a finite ordered structure. I, for any two different worlds,
wy and wy, there is some formula ¢ of L such that V{g,w,) # V(¢,ws), then
we say thal O is a distinguishable ordered structure. If O is a distinguishable
ordered structure then no two worlds represent the same interpretation of L.
If the pre-order < has a nnimum in W, we say that O is an ordered structure
with « minimum. The ordered structures with a minimum are used Lo give
semantics to formulas of WL,

The readers who are familiar with ranked models and preferential mod-
els of consequence relations may easily notice that totally (resp. partially)
ordered structures are very similar to ranked (resp. preferential) models.
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Another restriction is the case where a finitary propositional logic L, is
used instead of L. An ordered L, -structure is an ordered structure (W, <, V')
such that if a propositional letter p is not in L, then V(p,w) is undefined.
We can also define various restrictions (total, partial, finite, distinguishable,
with a minimum) on ordered L, structures.

Next, we consider a collection of ordered structures in order to give seman-
tics to any formula of Wil.. A family of ordered structures O = (O )ew 18
a collection of ordered structures such that W is a nonempty set of worlds,
each O, = (W,,<,,V) is an ordered structure, W,, is a nonempty subset
of W, w is minimal in W,, with respect to <,, and a stronger smooth-
ness condition defined later is satisfied. For a family of ordered structures
O = ({Wer <o, V) hew, if each w is the minimum of W, with respect to
<, then we say that O is a family of ordered structures with minimum. We
can also define varions restrictions on a family of ordered structures {with
minimum) in a similar way to the case of ordered structures.

For a family of ordered structures O = (O, )pew. we recursively define
the truth of formulas at each world w in W as follows.

QuwkEp it Vipw) =T,

O,w s —A iff  O,w A,

O,wkEAAB iff O,wpk Aand O.uwE B,

Ow A~ B it Min(|4]° 2 W,.<.) C|B|°,
where |A|® = {w| O, w & A}. Intuitively, the set || A denotes all the
worlds under which 4 is true. We say that A is true under a family of
ordered structures @ if A€ = W,

The stronger smoothness condition for a family of ordered structures ')
15: for any formula 4 in W, and any w € W if w' € ||r4.|1ﬂf'] W, thEIA'I there
is some world w” € W, such that w” < v’ and w” is minimal in [ 4| N W,
with respect to <.

3.2 Validity

We invesligate the relationship between ordered structures and families of
ordered structures (with minimum) in light of the validity of formulas. We
also show how various restrictions on those structures are related to the
interpretation of formulas.



First. we can show that there is no difference between ordered structures
and families of ordered structure in light of the validity of formulas of 5- W{T...

Theorem 3.1 For any formula a in 5-Wfl.. o is valid under totally (resp. par-
tially) ordered structures if and only if o is valid under famailies of totally
(resp. partially) erdered structures.

The validity under families of ordered structures and the validity under
families of ordered structures with minimum are different as shown in the
following example. We show, at the end of this subsection, that the twe
validities are equivalent for some restricted formulas.

Example 3.1 Let a be ((pAg)VirAs)) 2 (p~ q)V(r~» s). Let O be an or-
dered structure ﬂ:Hf', =<, if":l such that W = {'ii-‘h H'z]-. “= {(wh wy ), (g, wi}}-
and

Viw,p) = Viwq) = Viw,r)=T, Viw,s}=F,

Viwg, p) = Viwg,r) = Viwg,s) =T, V(iwg.q)=F.
Then, o is false under €. On the other hand, it is rather easy to show that

e is true under any family of ordered structures with minimum.

Next, we can show that all the restrictions on totally ordered structures
introduce no distinction as long as we consider formulas of 5-Wf., in the
context of L,. This result implies that none of the restrictions influence the
validity of each formula .

Theorem 3.2 For any totally ordered strueture O, there exists a finate, dis-
tinguishable, totally ordered L, -structure O such that for any formula o in
S-W[T, .o, @ is true under O if and only if « is true under O,

The case of partially ordered structures is different from the case of to-
tally ordered structures, The validity under finite, distinguishable, partially
ordered L, structures is exceptional.

Example 3.2 Let Ly contain p and g and e be
((pV gl ((mpAg)VipA=gl)) D ((p~ gV ig~ =pl)
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Let @ be an ordered structure (W, <, V) such that W = {wy, ws, wa, wy},
<= {{wy, wy), (wa,wg)} U {{wy, ) |1 ¢ <4}, and

Viw,p) =T, Viw.g)=F Viwgp)=Viwyq)=T,

1"?[7-'-"31 P] = 1:|:- '*’J[‘Hfad;"]' =T, "J{m-l-'-p] = ‘(whq] =T

Then. o is false under @. Ou the other hand, we can show that a is true
under any finite, distinguishable, partially ordered Lo-structures.

Theorem 3.3 For any partially ordered structure O, there erists a finite,
partially ordered L, -structure (' such that for any formula o in S-Wff, .,
1s true under O if and only if o s true under ',

We can show similar theorems about families of ordered structures (with
minimum) in the context of WfL,.

Theorem 3.4 For any family of totally ordered structures O (resp. family
of totally ordered structures with minimum O, ) and any positive integer m,
there erists a famiy of finite, distinguishable, totally ordered L, -structures
& (resp. family of finute, distinguishable, lotally ordered L, -structures with

minimum () such that for any formula A m WL, A is true under O

it o

(resp. {:'31} if and only if A 15 true under o {resp. (rj’lj

Theorem 3.5 For any family of partially ordered structures O (resp. family
af partially evdered siruciures wilth minimum I.'f'j'l I and any positive infeger m.
there exists a family of finite partially ordercd L, -strucfures O (resp. family
of finite partially ordered L, -structures with minimum Cj’l ) such that for any
formula A in W, A 1s true under O (resp. Oy) if and only if A is true
under O (resp. L??ij.

Third, we can define a conditional Horn formula by regarding p ~+ ¢ as
an atorm. For example, a formula (py ~ o) A LA (e ~ @) D (g~ ¢)
i= a conditional Horn formula. Then, we can prove that the validity of a
conditional Horn formula is independent of whether total pre-order or partial
order is used in ordered structures.

10



Theorem 3.6 For any conditional Horn formula o, the following two con-
ditions are equivalent.

I. e t5 valid under totally ordered structures.

2 o s valid under partially ordered structures.

This thearem is interesting in light of axiomatizations, because in the
axiomatic systems proposed in various works, non-Horn axioms are used to
disciminate total pre-order cases from partial order cases.

Furthermore, we can show that the validity of a conditional Horn formula
under families of ordered structures is the same as the validity under families
of ordered structures with minimum.

Theorem 3.7 For any conditional Horn formula e, the following four con-

diftons are equivalent.

I. e s valid under families of totally ordered structures.

ta

o 15 valid under families of totally ordered structures with mimimum.
.o 1s valid under fomilies of partially ordeved structures.

4. o is valid under farnidies of parfially ovdered structures with minimurnm.

3.3 Axiomatization

We show axiomatic systems for ordered structures and families of ordered
structures {with minimum|. As we see later, the axiomatic system for or-
dered structures is the same as the axivmatlic system for [amilies of ordered
structures except for the fact that a variable of the former system ranges over
a formula in cither 5- Wff. or L, but a variable of the latter system ranges
over a formula in WL, _
First. Jet . i and £ be formula variables that range over formulas of
L. Let 5 and & be formula variables that range over formulas of S-Wf,.
Let X. ¥ and Z be formula variables that range over formulas of Wff..

11



An axiomatic system 10 is a set of the following axiomatic schemas and
inference rules.!
Axiom Schemas
{PC) Truth-functional tantologies.
(1D} (i
(MP}  ({~75) D (¢ 20l
(AND} ({~ g} A((~ &) D~ (n L))
(OR)  ({~ E)A(p~ £) DICV )~ E)
(CE)  ({~ap)Alg~ OQA{(~E§) Dn~E)
(RM)  ({~s ) A [~ —m) D Aq)~ £
Inference Rules
(Mp) From é and & O + infer ~.
(RCM)  From 5 2 £ infer (( ~»n) 2 ({ =~ &).
Anather axiomatic system PO is the axiomatic system obtained from TO
by removing the axiomatic schema (RM].
We can show a kind of the completeness theorem.

Theorem 3.8 A formula o in S-W{l., is a theorem of TO {resp. PO) if and
only if o is valid under totally (resp. partially) ordered structures.

Next, let us give an axiomatization for families of ordered structures. An
axiomatic system FTO (resp. FPO} is the axiomatic system obtained from
TO (resp. PO} by replacing the formula variables (, 5, &, & and ¥ with X,
Y. Z, X and Y, respectively.

Theorem 3.9 A formula A in Wi, is a theorem of FTO {resp. FPO) if and
only if A 15 valid under familics of totally (resp. partially) ordered structures.

Third, we consider an axiomatization of families of ordered structures
with minimum. An axiomatic system FTOM {resp. FPOM) is the axiomatic
system obtained from FTO (resp. FPO) by adding an axiomatic schema:

(CS) (X AY)2(XN--Y)

"T(] and the other axiomatic systems given are based on the axiomatization of Bell's
O logic [Bell, 1988]



Theorem 3.10 A formula A in Wi, ts a theorem of FTOM (resp. FPOM)
if and only if A is valid under families of totally (resp. partially) ordered
structures with minimum.

For each axiomatic system above, we can construct a kind of canonical
model such that a set consists of all the true formulas at a world of the
medel if and only if the sel is a maximally consistent set under the axiomatic
systern. A later version of this paper will provide the details.

Finally, we consider axiomatic systems in the context of L, ... The fol-
lowing results show that we can use PO and TO even if we add restrictions
to ordered structures. The results easily follow from Theorems 3.2, 3.3 and
3.8
Corollary 3.1 Let n be any positive integer. Then, the following hold.

i. A formula o in S-Wil, . ts @ theorem of TO of and only if o 15 valhd
under finile, disbinguishable, totully ordered L, -stroctures.

2 A formula o in S-Wf, . 15 a theorem of PO of and only if o 15 valid
under finite, partially ordered L, -structures.

We note that neither 'I'0} nor PO depends on n. However, if we consider
finite, distinguishable, partially ordered L, -structures, then we can show that
such an axiomatic syvstem independent of n does not exist.

Theorem 3.11 No ariomatic system A consisiing of finite number of az-
iomatic schemas and inference rules satisfies the condition: for any positive
infeger n and for any formula o i S-Wi, ., the fellowing two conditions
are equivalent.

1. o is a theorem of A.
2 o s valid under fintle, distinguishable, partially ordered I, -structures.

Nespite this theorem, Katsuno and Mendelzon [1991a] give a kind of
axiomatization of finite, distinguishable, partially ordered L, -structures n
the context of knowledge base revisions. They achieve this by introducing a
revision operalor that corresponds to a kind of function mapping a formula
to another formula.

14



4 Comparison

4.1 Consequence Relation

A consequence relation represents a well-behaved set of conditional asser-
tions, where a conditional assertion p b~ ¢ intuitively shows that p is a good
enough reason to helieve ¢. Kraus, Lehmann and Magidor [Kraus et al., 1990;
Lehmann, 1980] define preferential (resp. rational) consequence relations as
a set of conditional assertions that is closed under a set of inference rules,
P (resp. R). They also define preferential models and ranked models to dis-
cuss the semantics of the consequence relations. They show that preferential
(resp. rational) consequence relations can be characterized by preferential
(resp. ranked) models. It is easy to define a bijection between preferential
(resp. ranked) models and partially (resp. totally) ordered structures.

By associating the connective ~+ to the connective F~, we can transform
the results on TO or PO to the results on consequence relations. and vice
versa. A superficial difference between consequence relations and 10 or PO
is the way of representations of rules and axioms. Gentzen-style rules are
used in consequence relations, while a Hilbert-style axiomatization is used
for ordered structures. Since a transformation between the two styles is
straightforward, we can easily find a counterpart of cach rule of R or P in
the axioms, the inference rules, or the theorems of TO or PO. However, note
that: when we consider the converse transformation, there is no counterpart
ta (MP) in the rules of consequence relations.

Another difference is that some logical combinations of conditional asser-
tions are not allowed in rules of consequence relations, while all combinations
are allowed in 5-Wf.. For example, ({1, b ¢1) V (g2 b @#2)) D p 18 not
allowed. but ({j; ~ @)V (g ~ @2)) 2 p is allowed. Boutilier [1990a; 1990b!
also extends the syntax of consequence relation so that we may use logical
combinations of conditional assertion. However, his semantics of an extended
formula is different from ours.

Although the above differences exist, Theoremn 4.1 shows that there is no
essential distinction between R (resp. P) and TO (resp. PO). For any subset
' of S-WH... we define C'on(T) as a set of conditional assertions such that
Con{T')={p~od|pu~>¢el}l

14



Theorem 4.1 A sel of conditional assertions (' is a ranked (resp. preferen-
tial] consequence relation if and only if there is some deductively closed set

I of S-WH.. under TO [resp. PO) such that C' = Con(T').

4.2 Knowledge Base Revision

A major problem for knowledge base management is how to revise a knowl
edge base (KB) when new information that is inconsistent with the cur-
rent KB is obtained. Alchourrén, Girdenfors and Makinson [1985] propose
rationality postulates for the revision operation. Katsuno and Mendelzon
(1089; 1991a] characterize the AGM postulates in terms of minimal change
with respect to an ordering among interpretations. We discuss the relation-
ship between those works and the results on ordered structures.

Gardenfors and his colleagues [Alchourrén et al., 1985; Gardenfors, 1988:
Gardenfors and Makinson, 1985] represent a KB as a knowledge set. A
knowledge set 15, in our context, a deductively closed set of formulas in L.
Given knowledge set K" and sentence p, Ay is the revision of K by p. K*yu
is the smallest deductively closed set containiug A and u. K, is the set
consisting of all the propositional formulas. The AGM postulates consist
of the following eight rules. See |Géardenfors, 1988] for a discussion of the
intuitive meaning and formal properties of these postulates.

(K*1) h*pis a knowledge set,

(K*2) p € K™u

(K*3) A"u C K*y

(K*4) If - & K. then Ay € K*p
(K*5) A" = K only if g is unsatisfiable.
(K*6) If 4t = & then K™ = K*4.

(K*T) K*(pne)C (R ujte

(K*B) If —o & K u then (R u) o © R (puha)



We note that (K™3) and (K*4) imply the condition: if new knowledge p
is consistent with a knowledge set K then the revised knowledge set K™p is
K* . We call this condition an ezpanston condition.

Makinson and Gérdenfors [1991] discuss similarities between these pos
tulates and rules of consequence relations by fixing a knowledge set A and
by using the transformation rule: @ € K=p iff p b~ @. Since the rules of con-
sequence relations can be translated into formulas in 5- Wi, we can apply
their discussion to the relationship between the postulates and formulas in
S-Wi..

We give a semantic characterization of the postulates { K*1}~(K*8) by
using the ordered structures. We can capture a revision operator * by a
callection of totally ordered structures, where a totally ordered structure is
assigned to each knowledge set. The total ordered structure Og = (Wg. <y
Vi) assigned to a knowledge set K must satisfy a rovering condition®: for
any satisfiable formula p there is some world w € Wy, such that Viclpow) =T.
The expansion condition of the postulates implies a remarkable property {the
third condition of Theorem 4.2): cach consistent knowledge set A consists
of all the propositional formulas that are true under every minimal world of
O. The second condition of Theorem 4.2 corresponds to the transformation
rule proposed by Makinson and Gardenfors,

Theorem 4.2 A revision operator + satisfies (K*1)~(K*8) of and only «f
for each knowledge set K. there is a totally ordered structure Oy such that

1. O satisfics the covering condition,

2. Rp={¢| Ok | p~ o},

5. K ={0|0x b0} f K # K.

Katsuno and Mendelzon [1989; 109]a] consider knowledge base revision
in the framework of a finitary propositional logic L. They represent a KB as
a Tornula of L., since a computer-based KB must be finitely representable.

We note that every knowledge set K (i.e., deductively closed set) can be
represented in the context of L, by a formula v of L, such that K = {¢[¢'F

IThis property is related to (K*3).
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¢}. We denote by o p the revision of a KB v by p. where o is a revision
aperator.

Katsuno and Mendelzon show the following six postulates (R1)~(R6) for
a revision nperator o that are equivalent to (K*1}~(K*8).

(R1) ¢ o p implies u.

(R2) If ¥ A p is satishiable then o p =40 A p.

(R3) If g is satistiable then ¥ o p is also satisfiable.

(R4) If vy = v and g = p then iy o gy = vn o pa.

(R5) (ou) A ¢ implies v olp Aol

(R6) If (v o u) A ¢ is satisfiable then ¢ o (i A @) implies {y: 0 ML

By introducing total pre-orders among interpretations of L, they char-
acterize all the revision operators satisfving (R1)~(R6} in light of minimal
change with respect to the introduced total pre-orders. It is possible to
rephrase the characterization in terms of finite, distinguishable, totally or-
dered [, -structures, and show a theorem similar to Theorem 4.2.

Katsuno and Mendelzon {1991al show postulates for a revision operator
that is defined by minimal change with respect to parfial orders among n-
terpretations. The postulates consist of (R1)~(R5) and other two postulates
(BT} and [K8).

(R7) Il ¢ o gy inplies g and ¢ o py implies jo; then ¥ o gy is equivalent to
0O iy,

(R8) (w o pq) A (o py) implies g o (g Vo pgl.

The postulate (K8) is noteworthy in light of the axiomatization of finite,
distinguishable, partially ordered L -structures, because it is difficult to find
a counterpart to (R3) in formulas of 5-Wff..

We can show the relationship between revision operators satisfying (R1)~{R3},
(R71. (R&) and finite, distinguishable, partially ordered L, -structures. To do
so. we need a restriction on partially ordered L,-structures. We say that a
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partially ordered L.-structure O = (W, <, V) has a minimumn set if it satisfies
the condition: for any w € Min(W, <) and any v’ € W, if w' & Min(W, <)
then w < w' holds. 'I'he reason why we must impose this condition is related
to the expansion condition which requires that every model of 1 be less than
any non-model with respect to the order that characterizes minimal change.

Theorem 4.3 A revision operator o satisfies (R1)~(R3), (R7) and {R8)
if and only if for each formula v of L, there is a finite, distinguishable,
partially ordered Ly, -structure, Oy, such that

Lvop= Mo|Oy b u~ o},

A

2., satisfies the covering condition and has a minimum set,

3 ¢ =Me

Oy & ¢} if ¢ is conswstent,
{. if v and ¢y are logically equivalent then Oy is equal to Oy, .

The fourth condition of ‘I'heorem 4.3 says thal revision is independent of
the syntactic representation of a KB .

4.3 Knowledge Base Update

We disenss the relationship between knowledge base update and families of
ordered structures with minimuni. in this subsection. The revision discussed
in Section 4.2 is used to modify a KB when we obtain new information about
a static world, while we need another operation, update, Lo bring the KB up
to date when the world described by it changes, ‘L'he distinetions between
update and revision are extensively discussed in [Katsuno and Mendelzon.
1991b).

Kaisuno and Mendelzon propose the following postulates (U1)~(118) for
an update operator under L, and characterize all the update operators that
satisfy the postulates in terms of partial orders among interpretations.

(U1) @ o pimplies j.

(U2) If v implies g then < g is equivalent to .
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{U3) If both v and p are satisfiable then 1 o p is also satifiable.
(U4) If vy = 4y and py = py then iy o oy = 1y © pg.

(US) (¢ o p) A & implies ¢ o (1 A B).

(UB) Tf 1> < gy implies jq and 1 ¢ g implies gy then ¢ <y = o o g,
(UT) If v is complete then (v < i) A (30 @ pz) implies ¥ < (pq V iz ).
(U8) (v Vian)eopu={vyop) Vi opu)

The postulates (U1)~(US) are defined along the same lines as (R1)~
{R8). However, two important differences exist; one is that (Ul )~{U8) do not
require the expansion condition, that is, even if a KB ¢ and new information
p are consistent, the new KB > op is not necessarily equivalent to ¢ A u. The
other difference is that an update operator should satisfy a “disjunction rule”
('8} gnaranteeing that each possible world of the KB is given independent
consideration.

We can show that an update operator satisfying (U1)~{U8) can be iden-
tified with a family of finite, distinguishable, partially ordered L, -structures
with minimum, where an ordered struciure is assigned to each interpretation
of L.

Theorem 4.4 An updaic operator o satisfies (I'1)~(1'8) if and only if there
i5 a ﬁmf!'y of finite, distinguishable, partially ordered L -structures with min-
imumn O = () e, such that

[, Oy satisfies the covering condifion,
2 the ranimum of Qp s T,

Jpop=Mo|OE Y D(p~d))
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Table 1: Conditional Logic and Axiomatization

['f"'nnr-litinn'ﬁl Logic ] Axiomatization |
VW ([Lewis, 1973; Nute, 1984]) FTO

VO ([Lewis, 1973; Nute, 1984]} FTOM
S5 or C ([Nute, 1984; Bell, 1080]) [ FPOM

4.4 Conditional Logic

The conditional logics consist of the propositional logic augmented with a
conditional connective denoted by =. If we replace ~» with =, we can regard
L.. as a language of conditional logics.

The varions conditional logics are surveyed in [Nute, 1984]. Table 1 shows
a correspondence between the proposed conditional logies and the axiomati-
zation in Section 3.3.% For instance, the table states that FTO is an axiom-
atization of VW. In the logics listed in the table, g > ¢ intuitively means
that ¢ is true under all the worlds that s most similar to .

(‘onditional logics that are not appeared in [Nute, 1984] are OT4 and
CT4D proposed by Boutilier [1990a; 1990b]. The logics are formalized to
represent and reason with “normality™. The semantics of u > ¢ under C'T4
{or C'T4D) is that ¢ is true under the most nermal situation where g is true.
Roughly speaking, he considers an order such that the more distant a world
is from w, the more normal the world 5. A later version of this paper will
provide a formal analysis on the relationship between Boutilier's semantics
and the notion of ordering.

5 Reciprocal Relation

5.1 Consequence Relation versus Revision

If we fix a knowledge set A, we can identify a revision operator + satisfying
(K*L)~(K™8) with a rational consequence relation determined by a ranked

We have not found any conditional logic proposed in the literature that corresponds

te FIMO.
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model satisfying the covering condition. The identification is established by
Condition 2 of Theorem 4.2. In general, a revision operator * satisfying
(K*1)~(K*8) corresponds to some collection of rational consequence rela-
tioms.

The discussion in Section 4., in light of P or PO, suggests a way of deter-
mining the rationality postulates for revision to knowledge sets that corre-
spond to preferential consequence relations.

5.2 Consequence Relation versus Conditional Logic

Consequence relations are, in some sense, equivalent to “nesting-free” condi-
tional logics. We can show the following theorem® by extending the discussion
of Sectivn 4.1 and by using 1'heorems 4.1 and 3.9,

Let r be a Gentzen-style rule of consequence relations such as

ah sy, apd
a by

Then, let a(r) be a corresponding conditional formmuia such as

(e r 3)=v)Aala=> ) 2 (a>v))

Theorem 5.1 For wn gy rule v that holds in all rational {resp. Fr‘ﬁfﬁf‘ﬁﬂﬁﬂ”
consequence relations, the corresponding formula &lr) of conditional logic
is a theorem of VW [resp. FPO). Conversely, for any theorem o of VW
(resp. FPOY, if there is a rule v of consequence relations such that é(r) = a ®,

then the rule v holds in all rational {resp. preferential) consequence relations.

5.3 Revision versus Conditional Logic

Girdenfors [1988] investigates the relationship between the posiulates for
revision and the conditional logic VC in light of the Ramsey test: 3 € K o
iff @ > 7 ¢ K. He shows that the Ramsey test is incompatible with the
postulate (K™4) (intuitively, the expansion condition) in his framework, Since

PRoutilier [1990a; 1990b] shows a similar theorem in terms of CT4 and CT4D.
“Note that the syntax of rules of consequence relations is restricted as discussed in
Section 4.1: far example, neither p b (g ~ r) nor r A (p |~ g) is allowed,
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he considers a knowledge set constructed from formulas of L, whereas we
use a knowledge set as a set of propositional formulas, we can not translate
his results into our context.

A revision operator satisfving (K=1)~(K*#) is equivalent to some collec-
tion of totally ordered structures. However, the semantics of VC is deter-
mined by a familv of totally ordered structures with minimum. The two
differences, i.e., having minimum or not and different tvpes of collection,
suggest an incompatibility result similar to the incompatibility obtained by
Gardenfors.

5.4 Update versus Conditional Logic

The update operators satisfying (U1 )}~{U8) are characterized by families of
finite, distinguishable, partially ordered L, structures with minimum. The
semantics of the conditional logic 88 (or eguivalently C) is determined by
families of partially ordered structures with minimum. We can expect more
simnilarities of update Lo conditional logic than those of revision from the
above two facts. To develop the correspondence, we must define an update
operator in the context of knowledge scts, and find postulates for the update
that correspond to (171~ (TTR).

Grahne [1991] proposes a conditional logie VCU? having an update op-
erator, and shows the Géardenfors’ incompatibility result does not hold in
VO,

6 Concluding Remarks

We define ordered structures and families of ordered structures {with min-
imum) as tools to develop a unified view of existing work on consequence
relations, knowledge base revision, update and conditional logics. By using
ordered structures and families of ordered structures, we can show reciprocal
relations among the different approaches.
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