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Abstract

Extended logic programs were proposed by Gelfond and Lifschitz (1990) as
logic programs with classical negation capable of expressing incomplete knowl-
edge. Their work is expanded in this paper to deal with broader classes of com-
monsense knowledge. Like Poole's framework, some clauses are dealt with as
assumptions distinct from a theory about the world and are used to augment
the theory, This theory formation framework can be used for default reasoning,
abduction and inconsistency resolution. We also show a translation of the frame-
work to an extended logic program whose answer sels correspond to consistent
belief sets of augmented theories.
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*This iz an extended version of a paper that is to appear under the same title in the Proceedings of the
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1 Introduction

Recent investigations in theories of logic programming have revealed the close relationship
between the semantics of logic programming and other theories of nonmonotonic reasoning
developed in Al: negation as failure in logic programming is a nonmonotonic operator. This
relationship opened up the new application of logic programming to commonsense reasoning,.
To deal with incomplete information easily, Gelfond and Lifschitz [8] extended the class of
general logic programs by including classical negation, in addition to negation as failure,
and showed ways to represent some incomplete knowledge by extended logic programs. The
semantics of an extended logic program is given by the answer sefs, which is a suitable
extension of the stable models [7] of a geperal logic program. As a result of incorporation
of classical negation in extended logic programs, the notion of consistency becomes more
important.

In this paper, we expand the idea of Gelfond and Lifschitz extensively, and present meth-
ods to deal with broader classes of commonsense knowledge. To fill gaps in knowledge, one
wants to represent and use “default” and “prototypic” knowledge. However, since defaults
are usnally inconsistent as a whole. simply adding all defaulis to the theory would often
result in no consistent answer set in the framework of Gelfond and Lifschitz. To overcome
this difficulty, we shall deal with default knowledge as a part of knowledge distinct from a
theory about the world, and use defaults to angment the theory and to predict what we
expect to be true. This view of default reasoning can be best seen in Poole’s framework for
consistency-based hypothetical reasoning [20], which relates the Theorist framework [21] to
Reiter’s default logic [25]. Formally, a knowledge system K is represented by a pair, (T, H ),

where

1. Each of T and H is an eztended logic program, that is, a set of clauses of the form
LU L LI:“ & ,Lm,ﬂﬂthq.[,- ‘i :Wan

where n > m > 0, and each L; is a literal, a formula of the form 4 or =A (A is an

atom),
2. T represents a set of facts that are known to be true in the domain, and
3. H represents a set of possible assumptions that may be expected to be true as defaults.

Then, the main task of a knowledge system is theory formation, that is, to find a subset F
of H such that T U E is consistent (such that there is a consistent answer set of T'U F). We
would not like to accept an incoherent theory (a theory with no answer set) as a set of beliefs.
By using this mechanism, two types of reasoning can be performed:



1. Default reasoning. Find a maximal (with respect to set inclusion) subset £ of H such
that T' U I is consistent. Such 2 maximal set E is the basis of an expansion of the
incomplete theory in accordance with default reasoning. The notion of such an answer
set of T'U E corresponds to the set of literals that belong to an extension in [20].

2. Abduction. Find an explanation £ (C H) of a formula O such that (i) T'U E is consistent
and (ii) O is derived from T'U E. The second condition may be expressed in either of
the lwo possible ways: there is an answer set of TUE which satisfies O; or, O is satisfied
by every answer set of T' U F.

The syntactical difference of our knowledge system from Poole’s framework [20] is that
while the latter uses the first-order predicate calculus, ours uses extended logic programs to
formalize commonsense knowledge. Therefore, another view of the goal of this paper is to
demonstrate what occurs if a hypothetical reasoning framework is represented by extended
logic programs. Unfortunately, because our knowledge representation language contains the
nonmonotonic operator not and the constructive implication «, a knowledge system cannot
inherit some of the elegant properties of Poole’s framework. In particular, the fact that a
formula has an explanation does not imply that the formula holds in an extension (an example
will appear in Example 3.13). In this sense, default reasoning is clearly distinguished from
abduction. If H represents a set of defaults, then an explanation is acceptable only when it
is included in a maximal subset F of H such that T'U £ is consistent.

A simple form of default assumptions can be represented by

L—notl,

where [ is a literal and L is the literal complementary to L: for instance, when A is an atom,
A= -4 and =4 = A. These assumptions are also considered by Gelfond and Lifschitz (8]
as the closed world assumption or assumable atomic predicates. However, they don't deal
with them as assumptions distinct from the theory, but include them in the programs. For
example, let a theory consist of two clauses:

Q — ~F(A), ~P(B),
Qe

and let us consider the closed world assumption for the predicate P:
- F(x) — nol P(z).

If these clauses are conjoined, no answer set is available. Instead, we would like to get two
consistent answer sets, {-P(A), ~Q} and {-P(B), -Q}, by dealing with the assumptions as
distinct clauses which can be invalidated or ignored when they cause inconsistencies. More-
over, sometimes assumptions may be added to make an incoherent program have consistent
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answer sets. We will firstly consider this simple form of default assumptions. Then later we
will extend the framework to deal with any extended logic program as default assumptions.

A naive computation to lind each maximal consistent sel of assumptions would be carried
out to search through the power set of H, starting from the whole set [ as the initial E' and
removing one clause from E at a time until we get consistent answer sets of T U E. We will
show alternative methods for the computation by translating a knowledge system K = (T, I)
to an extended logic program K'* so that each answer set of K* corresponds to an answer set
of T U K where F is a consistent suhset of H. Thus the proposed framework can be viewed
as a system for inconsistency resolution.

Finally, the proposed framework will be compared to other hypothetical reasoning sys-
tems based on logic programming in Section 5. Our system differs from abductive frameworks
proposed by Gelfond [10] and Kakas and Mancarella [15], which do not deal with default rea-
soning. The proposed method for inconsistency resolution can be applied to much broader
classes of default knowledge than Kowalski and Sadri’s system [16], which handles only a
simple form of exceptions. Also, the method is different from the TMS-style contradiction
resolution [11]. Basically, the TMS does not deal with retractable assumptions, and when a
contradiction occurs, the T'MS lmposes a new clause to believe a literal that has not been
believed. Because our system represents assumptions explicitly, some assumptions are invali-
dated to remove incoherency; other clauses are not affected and new clauses are never added.
In this sense, the proposed framework can be considered as a generalization of nonmonotonic

ATMSs [4, 14].

2 Classical Negation and Consistency

This section presents basic properties of extended logic programs that were introduced by
Gelfond and Lifschitz [8], on which our framework of theory formation is based. As seen
in later sections, cven in the notion of the simplest form of assumptions—assuming gronnd
atomic formulas  there is the concept of classical negation. An atom A can be assumed to be
true if it is consistent with a theory, that is, if =4 is not derived from a theory. One may write
this kind of assumptions by using a propositional letter, something like A’, as A «— not A".
However, such an introduced proposition again imposes the concept of consistency hecause
A and A’ cannot be believed at the same time. In fact, classical negation can be shown to be
computationally eliminated in such a way in [8]. Therefore, it is quite natural to represent
hypothetical reasoning, whose central part is maintaining consistency, by using extended logic
pmgrﬂ.mﬁ..

In the semantics of extended logic programs, a clause containing variables stands for the
set of its ground instances. We denote by Lit the set of ground literals in the language. Then
the semantics of an extended logic program is given by its answer sets.



Definition 2.1 [8] Let IT be a set of ground clanses not containing not. The answer set,
a(IT), of T is the smallest subset § of Lit such that

1. for any clause Ly +— Ly,..., Ly, €, if Ly, ..., L,, € 5, then Ly € 5, and

2. if § contains a pair of complementary literals, then 5§ = Lit.

Definition 2.2 [8] Let Il be any extended logic program. A set § C Lit is an answer sel of
IT if S is the answer set of II%, that is, § = a(I1¥), where II® is the set of clauses without not
obtained from II by deleting

1. every clause containing a formula not L mn its body with L € 5, and

2. every formula not L in the bodies of the remaining clauses.

Intuitively speaking, each answer set is a possible set of beliefs; each literal in an answer
set can be considered to be true in the helief set, and any literal not contained in an answer
set 1s believed to be neither true nor false in that belief set. In this semantics, for each atom
A, positive and negative literals have the same status so that the result of negation by failure
to prove A means neither that 4 is false nor that =4 is true !.

If I1 is a general logic program, i.e., a set of clauses without classical negation, then the
answer sets of I are identical to the stable models of IT given by Gelfond and Lifschitz [7].

For convenience, we classify cxtended logic programs as follows.

Definition 2.3 Let II be an extended logic program. IT is consistent if it has a consistent
answer set. I is coniradiclory il it has an inconsistenl answer set, I is inecoherent if it has

no answer sel.

The above definition is exclusive and complete: every program is either consistent, con-
tradictory, or incoherent. This is verified by the following two propositions.

Proposition 2.4 (Minimality of answer sets [8]) Let Il be an extended logic program. For
any two answer sets 5 and 5' of [l, if 5 C 5" then §5=5".

Proposition 2.5 No extended logic program is both consistent and contradictory, and a con-
tradictory program has only one answer sel Lit,

YThis is a big difference from well-founded semantics [22] or stationary semantics [23]): we do not allow
the inference that if A does got match the head of any clauge of I in accordance with the default rnea.m;;-ning
behind negation as failure, then put A into the false part.



Gelfond and Lifschitz [8] show the relation between the answer sets of an extended logic
program and extensions of the corresponding Reiter’s default theory [25]. Every clause in an
extended logic program II of the form

Lo+— Ly,..., Ly ot Lypsa, ... not Ly (1)

can be identified with the default rule

iAo ALy : MIpaq,..., ML,
Lo '

According ta [8], there is a 1-1 correspondence between the answer sets of Il and the extensions
of the default theory (II,#). Note that a clause not containing nel

Loe—Liy....Lm (2)

can be identified with the default rule
L] .l'"'; - jﬁ,' Lm_ -
I .

While the last form of default rules are not excluded by Heiter's definition, the existence of
at least one justification for each default rule is presupposed in [25, Corollary 2.2], which says
a closed default theory (D, W) has an inconsistent extension if and only if W is inconsistent
2 In our case, the default theory (II,®) may have an inconsistent extension even though the
set of wifs W is empty. The precise characterization of contradictory programs can be given
as follows.

Proposition 2.6 An ertended logic program T is contradictory if and only if the set of
clauses of the form (2) (i.e., the clauses without not} in Il s contradictory.

Proof: Lit is an answer set of Il if and only if Lit is the answer set of 15 that is the set of
clauses obtained from IT by deleting every clause containing a formula not L in its body (by
Definition 2.2) if and only if I1%* has an inconsistent answer set (by Definition 2.1). O

Ips far as the author knows, this observation for justification-free defaults has first been discussed by
Brewka [1]. These default rules cannot be replaced with

Lyt n Ly o Mirue
Ly ’




The above propoesition tells us that for a contradictory program, contradictions may not
be removed even if either any clause is added to the program or any clause with not is removed
from the program (see Proposition 3.2). Thus our main goal is Lo resolve incoherent programs
rather than contradictory programs. Although Gelfond and Lifschitz insist that the class of
extended logic programs is the place where logic programming meets default logic halfway,
the relation itself does not provide us how to do default reasoning by using extended logic
programs because every clause is identified with a default rule, and because considering all
clauses together may result in an incoherent program, as seen in Section I.

3 Theory Formation

The last ohservation encourages us to split an extended logic program IT into two parts (T, H)
for hypothetical reasoning such that TU H =11 and TN H = @, where T stands for a set of
facts and I for a set of assumptions that may be expected to be true. The resulting system
is called a knowledge system. As explained in Section 1, the main task of a knowledge system
is theory formation, that is, to find a subset E of H such that T'U E is consistent.

Definition 3.1 Let K = (I, H) be a knowledge system. K is consistent if there is a set
E © H such that T'U E is consistent. K is contradictory if for any set £ C H, TU FE is
contradictory. K is ineoherent if K is neither consistent nor contradictory.

The above definition is .exclusive and complete.

Proposition 3.2 {Correspondence with [25, Corollary 2.2]) 4 knowledge system (T, H) is
contradictory if and only if T is contradictory.

Proof: The only-if-part is obvious from Definition 3.1. The il-part 15 a direct consequence
of Proposition 2.6. O

Proposition 3.3 let K = (T, H) be a knowledge system. If T is consistent then K is
consistent, If K is incoherent then T is incoherent.

Proof: The first claim is obvious from Definition 3.1. We prove the contrapositive of the
second claim. Suppose that T is not incoherent, that is, T is either consistent or contradictory.
If T is consistent, then K is consistent by the first claim. If T is contradictory, then K is
contradictory by Proposition 3.2. In both cases, K is not incoherent. O

The converse directions of Proposition 3.3 do not hold, Adding assumptions to an inco-
herent program may make the knowledge systemn oblain consistent answer sets.



Example 3.4 Let us consider a knowledge system (I, Hf) where T = {P + notP} and
H = { P« }. While T is incoherent, 7'U H has a consistent answer set {P}.

Iu the following subsections, we will consider formalizations for two kinds of commonsense
reasoning by using theory [ormation.

3.1 Default Reasoning

One of the most obvious and important applications of theory formation is default reasoning,
where default assumptions are assumed to be true unless there is evidence to the contrary.
Thus as many assumptions as possible are taken into account in a set of beliefs. The notion
of such an answer sel of the augmented program by a maximal consistent set of assumptions
roughly corresponds to the set of literals that belong to an extension in [20].

Definition 3.5 Let K = (T, H) be a knowledge system. An ertension base of K is an answer
set of T'U E where E is a maximal (with respect to set inclusion) subset of H such that I'UL&

15 consistent.

For default reasoning, the task of a knowledge system is to get its extension bases. “This
framework can make a contradictory or incoherent program II become a consistent knowl-
edge system (T, H) such that Il = T U H, provided that prototypic or typical knowledge is
appropriately put into a set H of default assumptions that is distinct from a set T of clauses
representing factual or exceptional knowledge. To obtain extension bases, some assumptions
are allowed to be ignored, but no assumption can be dispensed with unless it is necessary to
do so.

Example 3.6 Suppose we have a knowledge system K = (T, H), where

T ={ ~Flies(z) + Penguin(z),
Bird(z) «— Penguin{z},
Bird( Polly) «~ ,
Penguin(Tweety) «— I,

H ={ Flies(z) — Bird(z) }.

Here it is easy to see that T U H is contradictory. There is the unique extension base of
K: { Bird(Polly), Flies(Polly), Penguin(Tweety), Bird(Tweety), ~Flies(Tweety) }. No-
tice that the assurnption is used for = = Polly but is ignored for z = Tweety. In this case
the extended logic program

T U { Flies(z) «— Bird(z), not ~Flies(z) }

B



has the unique answer set that iz identical to the extension base of K. The recason why
the translation works is that the exceptional clause —Flies('weety) + Penguin(Tweety)
cancels the normal default rule Flies(Tweety) «— Bird(Tweety), not ~Flies(Tweety). This
translation is similar to the method used in Kowalski and Sadri's system [16].

Example 3.7 (Barber’s Paradox) Let K = (T, H) be a knowledge system where

T={ —Shaves(Ken, Ken) +— 1,
i ={ Shaves(Jun,z) — not Shaves(z,z) }.

Here T U H is incoherent because the clause Shaves(.Jun, Jun) « not Shaves(Jun, Jun)
is present in the program. This default is ignored in the unique extension base of K that
is { ~Shaves(Ken, Ken), Shaves(Jun,Ken) }. Tn this case, ~Shaves(Ken, Ken) is not an
exception of the default conclusion, and therefore the default cannot be translated in the
same way as Example 3.6.

3.2 Closed World Assumption

Another interesting application along this line of theory formation is the closed world assump-
tion (CWA) [24] for some predicates in the language. Gelfond and Lifschitz use the CWA
to fill the gap between a stable model of a general logic program I1 and an answer set of I1
when interpreted as an extended logic program: an extended program I1’ that consists of the
clauses of Il and the CWA for each predicate P with n distinct variables in the language

“Plzy,...,2,) + not P{zy,...,2,) (3)
precisely characterizes the meaning of II in stable model semantics [8, Proposition 4).

Proposition 3.8 Let I1 be an ertended logic program without classical negation. And let
II"=TTUCW where CW is the CWA (3) jor all predicates as above. Then, S is an answer
set of [1" if and only if § ts an eztension base of the knowledge system (11, CW).

Proposition 3.8 says that the CWA for all (or some specific) predicates is consistent with
any coherent general logic program. However, as shown in Section 1, if the CWA is used
together with an extended logic program then the augmented program is not consistent in
general. In fact, for an extended logic program II, Proposition 3.8 does not hold. Thus, we
would not like to assume all negative ground literals even if cach of them can be consistently
assumed °. For a ground positive literal 4, = A can be assumed in a belief set if it is a member

¥This problem is analogous to the application of the CWA to non-Horn clauses in databases, which may
produce an inconsistent augmentation [24]. For disjunctive databases, Minker [18] proposes the generalized
closed world assumption (GOCWA) which concludes —A for a ground positive literal A if 4 is false in every
minimal model of the clauses. In our case, instead of simply using the minimal models, A can be tested for
the membership in the extension bases.



of an extension base of (11, CW), and =A can be concluded to hold if it is contained in every
extension base of (11, CW).

Example 3.9 Let an extended logic program II consist of the following three clauses:

Q — ~P(A),
~Q — —P(B),
P(C) +— P(A), P(B).

And suppose that H consists of the CWA for the predicate P:
=Piz) « not P(x).

It is easy to see that T U H is incoherent. Now consider a knowledge system K = (IL H ).
There are two extension bases of K: { ~P(A), =P(C), @ } and { ~P(B), -P(C), -Q }. Since
=P{C) is coutained in both extension bases, it can be concluded.

Unlike Poole’s system [20], semimonotonicity [25] does not hold even if either all default
assumptions in a knowledge system are clauses without bodies or they can be identified with

Reiter’s normal default rule
Lo+~ Li,..., Ly, nat =Ly,

In other words, when we have two knowledge systems K = (7, H) and K' = (T, H') such
that H' C H, for an extension base §' of K’, there may not be an extension base § of K
such that §' € §. This is because the clauses T can be identified with Reiter’s nonnormal
defaults. '

Example 3.10 Let K = (T, H) and K' = (T, H') be two knowledge systems where

T={ P« B,
Q— A, not P,
P — not @ }
H={ A« not-A,
B +— not-H 1,
H={ A+not-A }.

K" has two extension bases: Sy = { A, @ } and S; = { A, P}. Clearly H' C H. However, 5,
is not a subset of the unique extension base of K: 5 ={A, B, P}.

Although many other theories for default reasoning, such as multiple extension problems,
priorities between defaults and skeptical reasoning for inheritance hierarchies, are out of the
scope of this paper, it might be possible to incorporate them in this framework. Thanks to the
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two connectives in logic programming, the nonmonotonic operator not and the constructive
implication +, some of these topics would be more naturally dealt with than by systems
using the first-order predicate calculus as knowledge representation language 4.

3.3 Abduction

Theory formation was origivally motivated by the goal of providing a formal account of
inference to the best explanation of observations. This inference has been known as abduction.
In this case, the task of a knowledge system is to find an ezplanation E of a given formula O

as follows.

Definition 3.11 Let K = (T, H) be a knowledge system, and O be a formula. A set E C H
is an erplanation of O [unth respect to K ) if:

1. T U FE is consistent, and
2. O is derived from T U E.

While the first condition is clear, the meaning of the second condition is somewhat contro-
versial. It may be expressed in either of the following ®:

(a) there is an answer set of 7'} I which satisfies O.
{b) O is salislied by every answer set of T U E.

Here, we assume that O is simply a conjunction of literals, and we say that O is satisfied by
a set § C Lit if every literal in O is contained in § °. We write £ erplains; O if E is an
explanation of O in the sense of the first definition of derivability (a), and write E erplainsy
O if F is an explanation of O in the sense of the second definition of derivability (b).

*Another feature of using — is that, as discussed in [16], while Poole’s system [20] needs constraints to
prevent the use of contrapositives nnfclnus-es they are not necessary for extended logic programs.
“‘For restricted Hs, the first criterion is used in [15], and the second is in [10].

*The assumption that an explained formula is a conjunct of literals can be reduced when the model
theoretic semantics for not and + is provided. For this purpose, we need the following three-vaiued semantics.
Let L be a literal, (7 be a conjunct of literals audfur formulas with not, and S C Lit. Lis truein Sif L € §;
false il L € §; otherwise unknown. not L is true in 5 if [ € 5; otherwise false. (7 is true in S if every elernent
in (7 is true in 5 false il at least one element in ' is false in 5; otherwise unknown. [ «— @ is true in § if
either both G and L is true in 5 or (7 is not true in S; otherwise false. For example, P — —P is true in @ and
in {P} but false in {~P}. P — not P is false in @ and in {~P} but true in {P}. 5 is a three-valued model of a
set I of clauses if every clause in I is true in S. By using this semantics, we can show that every answer set
of II is a minimal (in the sense of set inclusion of literals) thres-valued model of II. Note that this semantics
differs from the model theory for three-valued stable model semantics given by Preymusinski [22, 23].
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Unlike Poole’s system, the fact that a [ormula has an explanation does not imply that the
formula is satisfied by an extension base. That is, for knowledge systems, explicability and
membership in an extension differ. In this sense, default reasoning is clearly distinguished
from abduction. In default reasoning, a set H of assumptions is used as defaults, whereas
in abduction it is used as premises. 1f H represents a set of defaults, then an explanation is
acceptable only when it is included in a maximal subset E of H such that TUF is consistent.
In other words,

Definition 3.12 Let K = (T, H) be a knowledge system, and O be a formula. Assume
that H represents a set of defaulfs and that £ C H. A set I explains O by defaults (or, E
plausibly explains Q) (with respect to K if:

1. E explainsy O,
9. there 1= a maximal set F' such that

(a) FCE'CH, and
(b) T U E’ is consistent and has answer sets A (= the extension bases of K),

3. and either

(a) there is a set § € A satisfying O (written E ezplainsg O}, or
(b) every set S € A satisfies O (written E explainsg O).

K cautiously predicts O (written K predictsy Q) if every extension base of K satisfies O.

Example 3.13 Let K = (T, H) be a knowledge system where

T={ P—B,

@ — A notP,

P not ) I
H={ A+,

B+~ }.

1. By = {A+}. TUE, has two answer sets: S ={A, @} and S;={A, P}.
E, erplains; both Q and P, but cannot erplains; P A Q).
E; erplainsg neither @ nor P.

2. E; = {B «}. T'UE, has the unique answer set: S;={5, P}.
E; ezxplains; and ezplainsy P.

12



3. H = Ey U F;. K has the unique extension base: S ={A4, B, P}.
H erplaing; P for every i = 1,2,3,4, and K predictss P.
E; (and E;) explainsg and explains; P.
) can be neither explaineds nor explainedy.

Il we follow the first definition of derivability, 2 has an explanation F, because S; contains
(). However, since 57 is not a subset of the unique extension hase 5 of K, ¢ does not hold
in an extension. Notice that in this case F; can also explain P because S, contains £. It is
curious that P A () cannot be explained by E; while [} can explain both # and Q).

If we use the second definition of derivability, () cannot be explained from K because S5
does not satisfy ¢). In this case, P cannot be explained by E; either, but P can be explained
by either F; or H.

Since T'U H is consistent, if H represents default knowledge, then P can be explained by
defaults, but ) cannot be explained, whichever definition of derivability we choose.

4 Reduction to Extended Logic Programs

In this section, we will show a method of the transformation from any knowledge system
K = (T, H) to an extended logic program K* such that the extension bases of K correspond
to a class of the answer sets of K*. Recall that even if a program II is incoherent, an
angmented program II' 2 II may be consistent (see Example 3.4). Thus, for a set E C H
such that 7'U E is incoherent, we cannot prune the supersets of F in 27 to find an extension
base of K. Hence, the methads have computational advantages because we can characterize
all consistent answer sets of T'U E for any £ C H by analyzing the single program K*.

In the following, for an extended logic program I, without loss of generality we can assume
that II does not contain variables. And for II, we denote the heads of the clauses of II as

HEﬂd[nj = {Lﬂ‘_{pﬂ —_ L]_, ---}Lm-|nﬂt'['m+1:-- ,,ﬂ-ﬂth i ]I},
and the literals complementary to the heads of clauses in 1l as

Head(Il) = {Ly| Ly «— Lyy..., Lynyniot Ly yq,... ot Ly € T1 }.

4.1 Simple Default Assumptions

We firstly consider simple knowledge systems each of whose assumptions is in the form of an

assertion of a ground literal
Le. )
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Since positive and negative literals are dealt with symmetrically in extended logic programs,
we have no reason to restrict the simplest form of assumptions to being positive. Let us
consider a knowledge system Ko = (T, Hy) where Hy is a set of clauses of the form (4).
We will translate Ky to a non-contradictory program T U H then to a consistent program
K=Tui".

Adding all literal assertions in Hy to the program T° would result in a contradictory or
incoherent program. For example, when H, is contradictory, T'U Hy must be contradictory
by Proposition 2.6. To remove contradictions, we can simply block the application of a
default (4) if it happens that L can be derived, by adding a formula not L to its body. Now
let K = (T, H) be the knowledge system obtained from Ko = (7, H}) by replacing each clause
in Hy of the form (4) with a clause in i of the form

Le—notl, (5)

Then, T" U H is not contradictory if T 15 not contradictory. This is because H does not
contain a clause of the form (2) so that the following properties can be shown to hold by
Proposition 2.6.

Lemma 4.1 Let K = (T, H) be a knowledge system such that H is a sef of clauses of the
form (1) where 0 <m < n. TU H is contradictory if and only if T is contradictory.

Corollary 4.2 Let Ko = (I, 1ly) and K = (T, H) be two knowledge systems as above. K, is
contradictory if and only if T'U I is contradictory.

Definition 4.3 Let H be any extended logic program, and Il be any consistent extended
logic program. An answer set S of IT is H-mazimal if there is no answer set S of I such

that § N Head(H) C §' N Head(H).

For a knowledge system K = (T, H), the distinction between the H-maximality of an
answer set and an extension base of K is important. When T U H is consistent, since every
assumption is not ignored, every answer set of T'U H is an extension base of K, but it may
not be an H-maximal answer set of T U H. On the other hand, when S is an H-maximal
answer set of T U E for some set £ € H, it may not be an extension base of K. In an
H-maximal answer set, assutnptions in a maximal subset of H are used in practice, whereas
i an extension base, assumptions just take part in a maximal subset of 4 but some of them
may be canceled.

For the first translation, the next proposition is shown to hold.

Proposition 4.4 Let Ky = (T, Hy) and K = (T, H) be two knowledge systems as above.
Suppose that T U H is consistent. If 5 is an H -mazimal answer set of T U H, then § is an
extension base of K.

14



Proof: We firstly prove that if § is an answer set of T U H, then § is an answer set of
T'U HE. Suppose that S is an answer set of TUH. Since HS = {[— |L —notL € H, L ¢
S}={L+—€eHy|LgS}C Hyand § = a(TUH)®) = o{(TUH)), § is an answer set
of TU HY,

Now, suppose that S is an H-maximal answer set of T'U H. Suppose also to the contrary
that S is not an extension base of K. Then, there exists a set Fy (H® C Ey € Hp) such
that T U Ey is consistent. Let 5’ be an answer set of T U Fy. By II¥ C By, € H g clearly
{LeS|LeHead(H)} C{L&S|L€Head{H)}, contradicting the H-maximality of 5. O

The converse of Proposition 1.4 does not hold: there is an extension base of Ky = (T, Ily)

which is not an H-maximal answer set of 1" LU If (suppose a case that an extension base 5
contains neither L nor L for a literal I. € Head(J7)). Moreover, it cannot give every consistent
answer set of T'U F, for any set By C Hy, which is sometimes useful for abduction.

Example 4.5 Let us consider a knowledge system K, = (T, H,) and the translated knowl-
edge system K = (T, I), where

T'={ =FPenoth,

CePQ,
=) — 1,

Hy={ P+, H={ P« not-P,
Q ¥ Qe not-Q }.

There are two extension bases of Ko: S; = { P, ~C'} and S; = {-F, ¢, =C }. But only S,
is the unique answer set of T U H. In S, neither () nor = holds. Note also that there is an
answer set of T =T UD: §3 = {-~P, =C'}, which cannot be obtained from the answer sets of

TUH.

Another difficulty of Proposition 4.4 is that the consistency assumption for T'U H is
indispensable. For example, we have seen in Section 1 and in Example 3.9 that an extended
logic program with the CWA may be incoherent but the corresponding knowledge system may
have extension bases. Therefore, adding all assumptions L + net L in H to the program T
would result in an incoherent program even if T is consistent. Thus our next target is to
remaove incoherencies. In the following translation, we can characterize all consistent answer
sets of T U Ey for any set Ey C Hy as well as each extension base of K.

Now, for knowledge systems Ky = (T, Hy) and K = (T, H), we shall impose the following
restriction on the syntax of 7. This restriction will be removed completely in the next
subsection.

Forany L «— notL € H (L — € Hp), every jla.u:u: in 7' does not contain L (6)
in its head, and contains neither L nor nof L in its body.
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Although the restriction (6) on 1" seems strong, there are gtill three utilities of assumptions
within this restriction. For each L « not L € H, we allow T to include the following clauses:

1. Conditioned conelusions: Lo +— L, In,... Ly, not Lpyy,... ,not L, .
Ly may be concluded if L can be assumed to be true. For example, it can represent

properties of normal cases.

2. Cancellation of defaults: L — Ly, ..., Lyp.not Ly, ... not Ly .

This clause may block to assume L and represents a condition for an exception to hold.

3. Ezceptional conclusions: Lo +— Ly,..., Lymynot Lypyy,...,not Ly, not L.

Ly may be concluded if L cannot be assumed to be true. For example, it can represent
properties of exceptional cases.

Example 4.6 For a default assumption in ff

- Ab(z) + not Ab(z),

the following clauses in T satisfy the condition (6):

Flies(z) « Bird(z),~Ab(z)} (conditioning)
Ab(z) « Ostrichiz) (cancellation)
~Flies(z) «+ not —Ab(x) (exception).

Lemma 4.7 Let K = (T, H) be a knowledge system such that H s a set of clauses of the
form (5) and T is not contradictory. Let E be a subset of H. If T'U E has an answer set 5,
then for each clause of the form (5) in E, 8 contains either L or L but not both of them.

Proof: By Lemma 4.1, TUE is not contradictory and hence S does not contain both L and
L. If S does not contain I, then by the existence of L « not L, (T U E)® contains L « and
so L € a((T'U E)5) = §. If 5 does not contain L, then I must be contained in § because if
I ¢ S then L € § holds by the same argument as above contradicting [ ¢ §. O

The basic idea of the next translation is that we ezpand each incomplete extension base
S of Ky = (T, Hp) by adding an extra assumption for each literal undefined in S so that the
augmented set of literals contains either L or L for each L € Head(Hp) and is an answer set
of T'U H U H' (H' is the added assumptions) by Lemma 4.7.

At present, we have the original knowledge system K, = (T, Iy) such that Hp is a set
of the clauses of the form (4) and T satisfies the condition (6), and have the translated
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knowledge system K = (T, H) such that H is a set of the clauses of the form (5). Now, for

each clausc in H of the form (5) _
L —notL,

we shall consider the apposite assumption of the form
L —notlL. {7)
For any subset £ of H, we denote the set of opposite assumptions of the form (7) for £ as
E={Le~notL|LecHed(E)}.

and the union of E and E is denoted as £° = £ E. The result of the second translation is
the extended logic program

K =TUH*=TUHUH.
The next is the main result of the second translation.

Theorem 4.8 Let K = (T, H) be e knowledge system such that I is a sef of clauses of the
form (5) and T satisfies the condition (6). If 5 is a consistent answer set of T U E where E
s a subscl of H, then

8" = SUHead(lI \ E) (8)

is @ consistent answer set of T'U H*. Moreover, every consistent answer set of T'U H* can be
represented in the form (8) where S is a consistent answer set of T U E for some set EC H.

Proof: TLet S be a consistent answer set of TU E (E C H). Since no literal L € Head(f)
appears in the head of any clause in T, for any litcral L € Head(H\ E), L ¢ S. Therefore, §'
is consistent. By Lemma 4.7, Head(E®) € § and (Head(E) '\ Head( E¥)) C S, it follows that
Head([1¥) C 5" and Head(H \ E)U (Head(E) \ Head(E®)) = (Head(H) \ Head( E¥)) C §". By
the way, T'5' = TS (since no clause in T contains not L for any L € Head(H) in its body),
and H*S' = HS UH® = {L « |L € Head(E¥)}U{L ~ |L € (Head(H)\ Head(ES)) } =
ESU{L « | L € (Head(H) \ Head(E¥)) }. Now,

a((TUHS) = (T UH"Y)
a(TSUESU{L « |L € (Head(H) \ Head(E£¥)) })
a((TUE)®)U (Head(H) \ Head(E¥))

(since no clause in T' contains any L € Head(H) in its body)
SUHead(H \ E) (by (Head(E)\ Head(E®)) C 5)
5.

Il
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Hence, 5" is a consistenl answer set of T U H".
To prove the second claim, take any answer set 5' of I'U H*, and define

E={LenodlLecH|LecS}).
Clearly, F C H and HY = [L « | L ¢ Head(E)} = E¥'. Then,

§' = TS UH"

(TS UHS UTT®)

al(T" UES U{L — |LeHead(H\ E)})
a(T% U ES)UHead(H \ E).

Now, let § = a(T% U E¥'). Since §' = SUHead(H \ E), T¥ = T¥ and E¥ = E¥ hold by
the condition (6). Therefore, § = a(T% U E%) = o((T'U E)®). O

Example 4.9 Let us verify Theorem 4.8 in the example of the CWA introduced in Section 1.
Let K = (T, H} be a knowledge system, where

T={ Qe P, ~PB),
H=1{ =P(z)+ not P(z) } ,

In this case, H = { P(z) « not ~P(z) }. There are three answer sets of T LU H*: 5§, =
{—P(A), P(B), ~Q}, &' = { P(A), ~P(D), -Q }, and 53’ = { P(A), P(B), ~Q }. By using
the translation in the proof of the second claim of Theorem 4.8, we get the three corresponding
answer sets:

Sy ={-P(A), -Q} for TU{~P(A)+— net P(A)},
Sy = {-P(B), ~Q} for TU{-P(B)«—notP(H)}, and
Sy={-Q} for TUP=T.

The next two properties characterize the knowledge system Ky with literal assumptions
by the translated program K*. These are the final results of this subsection.

Corollary 4.10 Let Ky = (T, Hy) be a knowledge system such that Hy is a set of clauses of
the form (4) and T' satisfies the condition (6). If S is a consistent answer set of 1'\U £y where
Ey is a subset of Hy, then

§' = S U Head(H, \ Ep) (9)
15 a consistent answer set of T U H*. Moreover, every consistent answer set of T U H* can
be represented in the form (9) where S is a consistent answer set of T U Ey for some set

Ey C Hy.
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Proof: The first claim can be proved in a similar way as Theorem 4.8. To prove the second
claim, for any answer set §' of T'U H*, we can define Fp = { L «— € Hy | L. € §'} and use
the same argument as the previous proof. O

Theorem 4.11 Let Ky = (T, Hy) be the same knowledge system as Corollary £.10. If S is
an erfension base of Ko, then =

§' = SUHead(Ho \ Ey), where Ey={L ¢ Ho|L¢ S} (10)

is an Hy-mazrimal answer gset of T'U H*. Moveover, every Hy-mazimal answer set of T'U H*
can be represented in the form (10) where 5 is an extension base of K.

Proof: Suppose that S is an extension base of Ky Then, 5 15 an answer set of T' U Ey
because Head(E;) € 5. By Corollary 4.10, 5" is a consistent answer set of T' U H*. Suppose
to the contrary that §'is not an Hy-maximal answer set of T'U H*. Then, there is an answer
set §" of T H” such that { L € §'|L € Head(H,)} c {L € §"|L € Head(Hy)}. Since
Ey={L+~€eHy|LeS}={L+~e€Hy|LeS}, EgC{L«~¢€Hy|LeS"} holds.
This contradicts the maximality of Ey in 2f°, Hence, 5" is an Hp-maximal answer set of
TuH".

Now, we prove the second claim. Suppose that 8" is an Hy-maximal answer set of T'U ™.
By Corollary 4.10, §' can be represented by S' = § UHead(H,\ Fy), where § is an answer set
of TUEyand Ep={L+— € Hy|LeS'}={L+~ € Hy|Le€S}. Suppose to the contrary
that S is not an extension base of K. Then, there is a set F (Ep C F C Hp) such that TUF
is consistent. Let R be an answer set of T'U F. By Corollary 4.10, ' = R U Head(H \ F)
is an answer set of T'U H*. By E, C F, clearly Head(Ey) C Head(F) C K. Therefore,
{Le€&|L¢cHead(Hy)} C{L € R|L € Head(ly)} € {L € R'|L € Head(H,)}. This
contradicts the Hy-maximality of 5. O

Example 4.12 Let us consider the knowledge system Ky = (T, Ho), which is the same as
Example 4.5 and the translated set of assumptions " = H U H:

I'={ =P+—no P,

C+PQ,
= — 1,

H“={ Pd—? H:{ P nol-P, H:{ HPI—RMF’
¢~ ts Q—mnot~Q }, Q@ notQ }.

There are three answer sets of K* = TUH": 5/ = {P, ~Q,~C}, 5 = {-P.Q, ~C},
and Sy’ = {-P, =Q, ~C}. Of these, 5,' and S;' are two Hy-maximal answer sets of K~
and they correspond to the expansions of the two extension bases of Ky: 5; = { P, ~C } and
S, = { =P, @, =C}. Note that §;' is the expansion of the answer set of T S§3 = { -F, ~C}.
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4.2 Complex Default Assumptions

In the last subsection, we considered a knowledge system K = (T, H) where H is restricted
to being either a set of clauses of the form (4) or a set of clauses of the form (5). Moreover, we
considered only the case where a set of clauses T satisfies the condition (6). In this subsection,
we remove all of these restrictions: we allow any extended logic program for both T and H.

Example 4.13 Let us firstly consider the case in which T does not satisfy the condition (6)
for K = (T, H) where H is a set of assumptions of the form (5). Suppose that K is the

[ollowing knowledge system:

T'={ ¢ P,

Q «— -P,

—~Q — 1
H={ -PenotP }.

K does not satisfy the condition (6) because P appears in the body of the first clausc of T
It is easy to see that K has the unique extension base: § = { =@ }, which is an answer set of
T. However, when we introduce the opposite assumption, H = { P + not =P }, we see that
the program T'U H* = T'U H U H is incoherent. Thus Theorem 4.8 cannot be used in this
case. This is because neither P nor —F can be consistently added to T but introducing H*
forces an answer set to include cither of them by Lemma 4.7.

We shall translate a knowledge system K to an extended logic program K*. The basic
idea is “naming defaults” and is similar to Poole [20]. After the translation, we can utilize
the results for literal assumptions presented in the last subsection.

Let K = (T, H) be any knowledge system. For each clause C € H of the form (1), we
shall associate a propositional symbol &z which is not appearing elsewhere in K 7, For any
subset F of H, we define the following sets of clauses:

Ao(E) = {éc+— |CEE),
A(E) = {bc+ not=éc|Ce€E},
A(E) = {-ég+—notés |C € E}, and
NME) = {Lo+ bc,L1,...,Lem,n0t Lopyr,...,n0t L, |
C=(Lo+— Ly, Lynynot Ly y1y...,not L)€ E}.

If an assumption C containe n distinct free variables x = z7,. .., z4, then we can name O with Jﬂ{x}
where 5o 15 an n-ary predicate symbol appearing nowhere in K. Note that every variable appearing in a
clavse is a free variable in our language.
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For K = (T, ), we define the extended logic program K™ as:
K*=TUuTl(H)UA(H)UA(H).
Before analyzing the program K*, let us first consider a knowledge system
Ko = (T UT(H), Ap(IT)).

This knowledge system has only alomic assumptions and satisfies the condition (6) because
no & € Head{Ag(H)) appears in any clause other than in the body of one clause in T(H) &,
Therefare, we can apply Corollary 4.10 and Theorem 4.11 for K.

The basic property of the translation is shown by the next theorem.

Theorem 4.14 Let K = (T, H) be any knowledge system, and £ be a subset of I such that
T U E is consistent. S is an answer set of T U E if and only of

§' = St Head(Ao( 7))

15 a consislent answer sel of T UT(E) U Ao E).

Proof: Suppose that 5 is an answer set of TUL. L'hen 5 is obviously consistent. It is easy to
see that the knowledge system (TUT'(E), Ag( L)) satisfies the condition (6). ‘Lherefore, 7% =
T because S’ does not contain any new literal other than the names of assumptions of E.
Similarly, I'(£)% = { Lo « bc, Ly L | € = (Lo +— Ly, ... Lppyniol Lyyyyy ... not L) €
E Lpgry.. . Lo @8} =T(E)S. And Ag(E)S = Ag(E) = {§c =~ |C € E} holds.

Now,

a((TUT(E) U Ag(E))¥)
a(T5 UT(E)® U Ag(E))
a(TU{dc ~ |C € E}
U{Lo#+ Li,...,Lm | Loy &= L1,..., Lo, 0t Ly yr,...,mot L, € E |
Lm+l1"“:Ln g 5’}1
(by unfolding the clauses of I'(£)® by Ay(E))
= alT*UEUANE))
= a({TU E)*) U Head(Ao(E))
= SUHead(Ag(E)) (by S Head(An(E)) =)
= &.

*We can allow T Lo include clauses containing s € Head(Ag( H)) within the restriction {(6) and use them
for exceptions and cancellations, as in the previous subsection. Sinee these clauses are not necessary for our
purpose, we do not pursue this possibility further in this subsection {sce alse Example 4.19).
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Hence, 5’ is a consistent answer set of T UL'(E) U Ay(E).

On the other hand, suppose that 5 is a consistent answer set of TU(E)U Ag(E). Since
SN Head(Ap( E)) = 0, we can inunediately identify S from 5. By using the same translation
as above, we see Lthat

S = a(T* UT(E)® UA(E)) = a{T° U E¥ U A(E)) = a({T'U E)%) U Head( Aq(E)) .

Since o (T U E)°) N Head{Ag(F)) = 8, § = o{(T U E)*) holds. Hence, S is an answer set of
TUE. O

By combining Theorem 4.14 and Corollary 4.10, we get the following result. Every answer
set of any consistent theory from K = (T, H) can be characterized by an answer set of

K*=TUT(H)UA(H)UA(H), and vice versa.

Corollary 4.15 Let K = (T, H) be any knowledge system. If 5 is a consistent answer scl
of TUF where E is a subset of H, then

8" = S U Head{Ag( E)) U Head(Ag(H \ F)) (11)

15 a consistent answer set of K°. Moreover, every consistent answer sef 8 of K* can be
represented in the form (11) where § is a consistent answer set of T'UE for some sel E C H.

Corollary 4.15 shows that for (T, H)if TUE (E € H) has a consistent answer set 5 then
¢ can be consistently added to 5 for every assumption € in £ and the negated names of
all other assumptions can be also added to S, and that we can find these answer sets of the
consistent theories from (T, H ) by removing all of positive and negative naming assumptions
from the answer sets of K™,

Finally, we can characterize the extension bases of K = (T, H) by combining Theo-
rem 4.11, Theorem 4.14 and Corollary 4.15.

Corollary 4.16 Let K = (T, H) be any knowledge system. If § is an ertension base of K,
that is, an answer set of T U E for a mazimal subset E of H such that T U E is consistent,

then

' = S U Head(Aq(F)) UHead(Ao(H \ E))

is a Ag(H)-mazimal answer set of K*.
Conversely, if 8" is a Ag{ H )-marimal answer sel of K*, then

S = 5"\ (Head(Aa(H)) U Head(Ao( H)))
i5 an ertension base of K.
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Example 4.17 Let K = (T, H) be the knowledge system introduced in Example 4.13:

T={ QP
A

-'Q"' }1
H={ =PenotP ).

Now, we can name assumplions as

Ao(H) = { 6penotp — }, and
T(H)={ =P ¢ bapeyotpsnol P }.

Recall that K has the unique extension base: S = {—-Q}. It is easy to check that &' =
SU{=b-p. natp } is the unique answer set of K* = TUT{H) U A(H)UA(H).

Example 4.18 Let us see how an incoherent program Il gets consistent answer sets. We
can construct a knowledge system (,11) and apply the reduction techniques. For example,
consider the knowledge system A = (0,11) where

I={PecnotP}.
In this case, § = @ is the unique extension base of K. Now,

Ap(IT) = { 6P ot P 1
LIy ={ P+ bpepup, notP }

The unique answer set of K~ is
§'=8U{~8ppar}-
Example 4.19 Consider the knowledge system K = (T, H) introduced in Example 3.6:
T ={ -Flies(z) — Penguin(z),
Bird(z) + Penguin(z),
Rird( Polly) + ,

Pcnguin[Tmﬁr:iy} — } ,
H ={ Fhes(z) + Bird(z) }.

In this case, we can name defaults as

Ap(H)={ Birdflies(z) — }, and
T(H)={ Flies(z) « Birdflies(z), Bird(z)} }.
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Then, we see that there is the unique Ay H }-maximal answer set of K*:

§' = { Bird(Polly), Penguin({Tweely), Bird{Tweety),
Flies(Polly), Birdflies( Polly), ~I'lies(Tweety), ~Birdflies(Tweety) } .

Removing all the naming literals from S', we get the unique extension base § of K
S = { Bird( Polly), Flies( Polly), Penguin(Tweety), Bird(Tweety), ~Flies(Tweety) } .

The difference between Poole's system and ours with respect to the naming is that the naming
in [20} has the effects of introducing normal defaults, for example,
: M Bird(r) O Flies(z)
Bird(z) > Flies(z}

where O is classical implication. This causes two side effects: (1) from —Flies(Sam) we
can conclude -~ Bird(Sam) (this should not be allowed because we do not know the rea-
son for Sarn’s inability to fly; Sam might be a penguin), and (2) from the assumption
Birdflies( Paul) and the contrapositive of that fact —Flies(z) > —Hirdflies{z) we can con-
clude Flies(Paul). To prevent the first inference, we must add a fact like —Flies(x) D
= Birdflies(z). To prevent the second inference, we must use this fact as a constraint. In our
case, both kinds of pruning rules are unnecessary.

5 Discussion

In this section, we compare the proposed framework to other hypothetical reasoning systems
based on logic programming. Qur framework makes it possible to deal with incomplete
knowledge and to remove inconsistencies, so that comparisons should be made from those
viewpoints.

5.1 Reduction to General Logic Programs

The first question is how to compute the proposed framework for theory formation. Since
we have seen that every knowledge system can be transformed to a single extended logic
program, we can use methods to compute answer sets of extended logic programs 8 For this
purpose, Gelfond and Lifschitz [§] show how to reduce an extended logic program to a general

Alternative methods to compute the framework for theory formation can be conceived. Since we have
seen that every clause in H of a knowledge system K = (T, H) can be transformed to the unique naming
assumption, we can use nonmonotonic ATMSs [4, 14] to compute explanations of each atom.
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logic program. The method is to replace every classical negation with a new propositional
symbol, for example, —A is replaced by A’. However, even if the original extended logic
program is incoherent, such a reduced program may have stable models.

Example 5.1 Let II be an extended logic program shown in the example of the CWA in
Section 1, and I1* be the corresponding general logic program obtained by the reduction in

(8):

M={ Q+« —F(4), ~F(B), M+ ={ @« P(A), P(B),
=@ —, Q'
-P(z) « not P(x) 1, P(z) ~ not P(z) }.

While II is an incoherent program, the translated program IIT has an inconsistent stable

model: M = { P(A), P(B), @, Q'}.

Note that not every incoherent program may be translated to a general logic program
that has inconsistent stable models (for example, 11 = { P «— not PP }). Conversely, not every
translated general program that has inconsistent stable models may correspond to an inco-
herent extended logic program (for example, 1T = { P «, P’ +«}}. We have classified
inconsistent extended logic programs into two types: contradictory programs and incoher-
ent programs. These inconsistent programs may be transformed to general logic program
which have either inconsistent stable models or no stable model. In either case, we cannot
accept programs, since we would like to get consistent programs by theory formation, that
is, programs whose translated programs have consistent stable models. Thus, we can prune
all inconsistent stable models regardless of the status of the original extended programs.

By the above argument, we need a mechanism to check whether the resulting stable
models have a pair of complementary propositions, say 4 and A'. If a stable model possesses
a pair then we discard it. There are some proposals to prune these undesired models and
most of them represent pruning rules as integrity constraints. For example, for each atom A
such that both pesitive and negative literals appear in the program, we may add an integrity
constraint:

—A A (12)

These constraints have to be considered at the implementation level. Eshgi and Kowalski [6],
Kakas and Mancarella [15], and the TMS-based system by Giordano and Martelli [11] can
handle integrity constraints, but all of them allow more general integrity constraints than
simple constraints of the form (12), yet none of them considers classical negation. Although
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this kind of expression is not allowed in our system, for an integrity constraint of the form
— Ly,ooo, Loy tiot Lysyy ... ot Ly 19, (13)
we can represent an eguivalent set of clauses by introducing a new proposition €' as

{7 Lh,,,,Lm1110E Lm+1,...1nﬂt L., [14]

=0 —

Thus all we have to deal with are clauses of the form (12} . Neither a general checking
mechanism like [15] nor a generator of a new clause to remove inconsistencies [11] is neces-
sary. Moreover, al the representation level, it 1s more convenient to use classical negation
because assumptions and exceptions are dealt with naturally by using classical negation, as
discussed in Section 2. In fact, Kowalski and Sadri [16] do not use integrity constraints at
the representation level but use classical negation in a restricted way.

5.2 Abductive Logic Programming

‘T'here are some proposals for abduction by using logic programming,

Eshgi and Kowalski [6] use a backward-chaining procedure to compute stable models of
general logic programs, but they do not consider assumptions other than formulas representing
negaltion as failure.

Gelfond [10] and Kakas and Mancarella (15| propose abductive fraineworks for logic pro-
grams. The most significant difference is that ours allows any extended logic programs as
assumptions but both [10] and [I5] consider only assumptions of the form of literal asser-
tions (4). For these simple forms of assumptions, our framework is in essence equivalent te

Y ntegrity constraints of the form (13) roughly correspond to quantifier-free formulas with a modal eperator
K (in the sense of Reiter [26]) of the form

SKagv. VoK Ly vE Ly V.. VE L.

"Elkan [5] shows another method to eliminate integrity constraints within the framework of general logic
programs. He translates a constraint of the form (13}, where L; {1 € ¢ < n) 15 an atom, to the following

clauses:
C—Ly,..., L, not Ly, ... om0l Ly,

(‘.lrl — ot C N

G]_ — not C}t f

CB b C‘rl 1
where C, C; and Cy are propositions nol mentioned in the original program. However, incorporating classical
negation allows us to represent it in a more concise form (14).
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them 2, Kakas and Mancarella [15] deal only with general logic programs with integrity
constraints, which are special cases of our framework, as a background theory, and assump-
tions are only atomic assertions. Gelfond [10] allows a background theory to be an extended
disjunctive program, whose semantics is given in [9]. It is possible to extend our framework
by allowing such programs for hoth background theories and assumptions according to the
semantics.

Other big difference is that their systems [10, 15] consider only abduction as an application
and cannot be applied to default reasoning. As explained in Secction 3.3, the fact that a
formula has an explanation does not imply that the formula is true in an extension of a
knowledge system. Thus, when a set of assumptions represents default knowledge, it is not
snitable for commonsense reasoning to find only explanations.

5.3 Inconsistency Resolution

The proposed method for inconsistency resolution can be applied to much broader classes of
default knowledge than Kowalski and Sadri's system [16], which handles only a simple form
of exceptions. For the simple form of exceptions, the methods are quite different (for instance,
see Example 3.6 and Example 4.19). The limitation of [16] is that clauses are antomatically
divided inte two (those having positive literals as heads and those having negative literals
as heads) so that negative literals are always exceptions of the positive ones with the same
predicates 2, Therefore, the techniques proposed in this paper are more flexible than those of
[16]. Moreover, our methods are not restricted to dealing only with exceptions. For instance,
both Example 3.7 and Example 3.9 cannot be dealt with by [16]. Qur framework has also
much richer expressive power than [16] becanse any extended logic program can be a set of
assumptions.

The definition of answer sets of extended logic programs appears to fit bottom-up (or
forward-reasoning) procedures for its computation more than using top-down (or backward-
chaining) procedures. In general, it is more appropriate to use top-down procedures for
abduction, but when we want to deal with default reasoning, simply computing explanations
may not be appropriate. In this sense, we can compare our method to the TMS-style com-
putation. According to Elkan [5], a set of justifications for Doyle’s TMS [3] can be identified
with a general logic program with integrity constraints, and the TMS computes a consistent
stable model of the program by a bottom-up manner. Classical negation is not incorporated
in the TMS.

Ngte that the definitions of ezplenations are different between [10] and [15]. See Section 3.3.
13g owalski and Sadri, however, claim that their techniques can be extended to deal with exceptions with

individual clauses rather than entire clauses and with exceptions having positive conclusions, But if we allow
these mixed exceptions at the same time, then we have to take care of the semantics for each exceplion

individually because they change the original answer set semantics of [8].
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However, inconsistency resolution by our framework is different from the TMS-style con-
tradiction resolution [3, 11, 5. When a contradiction occurs, the TMS imposes a new clause
in order to believe a literal that has not been believed. As a result of contradiction resolution,
the TMS may fail to output a stable model of the original program. Elkan [5] claims that
when the TMS finds an inconsistent stable model, it should choose another stable model if the
program has one. However, such a strategy is not tolerant of incoherent programs because if
the program has no consistent stable model then it does not output anything. On the other
hand, Giordano and Martelli [11] consider all possible models which the TMS may output by
contradiction resolution (called dependency-directed backtracking). Although their method
reflects an incremental use of the TMS, its model theory is no longer stable model seman-
tics in the sense that contrapositives of original clauses are interpreted to be valid and that
literals interpreted to be false by negation as failure in the original program can be believed
through those contrapositive clauses. This kind of semantics may throw us into confusion at
the representation level. We consider that this confusion comes from the fact that the TMS
does not deal with retractable assunptions.

Becanse our system represents assumpiions explicitly, assumptions alone are invalidated;
other clauses are not affected. In this sense, the proposed framework can be considered as a
generalization of nonmonotonic ATMSs [4, 14|, which deal with general logic program with
integrity constraints and atomic assumptions.

Besides the TMSs, there are some proposals for contradiction resolution in nonmonotonic
reasoning [19, 12]. To resolve incoherencies in autoepistemic logic, Morris [19] proposes stable
closures when there is no stable expansion. His proposal is motivated by dependency-directed
backtracking in the TMS and therefore some formulas are believed to remove inconsistencies.
Again, we do not add any new formulas but remove a minimal set of hypotheses for default
reasoning. On the other hand, Guerreiro, Casanova and Hemerly [12] propose an alternative
definition for default logic extensions. Although their definitions are quite different from ours,
their idea is similar because defaults are allowed to be ignored in their extensions to keep
consistency but no default rule can be dispensed with unless it is necessary to do so. We
consider such defeasible defaults for some distinguished clauses rather than entire defaults.

5.4 Priority

The last question is how to divide theories into the factual or background theories and default
assumptions, As every clause in extended logic programs can be identified with Reiter’s
default rules, we have to classify two types of rules for a knowledge system. One easy way
is, for a knowledge system K = (T,H), to associate integrity constraints in the sense of
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Reiter [26] with 7' and other theories with # ', Then, integrity constraints must be satisfied
by every exlcnsion base and all other clauses can be ignored as minimally as possible.

A more natural and widely acceptable view of knowledge systems is to divide the program
into subprograms (catcgories) in accordance with the degrees of credibility of defanits, where
the priority is determined depending on the problem domam. This view of hypothetical
reasoning is exactly the same idea as Rescher [27]. There may be more than two categories for
a problem. If these categories can be totally ordered, then we can have an extended knowledge
system like K = (Hy, Hy, ..., Hy). An extended framework [or hypothetical reasoning based
on first-order logic is considered by Brewka [2] as an extension of Poole’s framework [20]. It
may be possible to extend our framework in the same way as [2].

6 Conclusion

We expanded the idea of Gelfond and Lifschitz and presented methods to deal with broader
classes of commonsense knowledge. Like Poole’s framework, default knowledge H is dealt
with as a part of knowledge distinct from a theory T' about the world, and defaults are used
to augment the theory and to predict what we expect to be true.

One of the main tasks of a knowledge system is lo find a maximal (with respect to
set inclusion) subset E of H such that there is a consistent answer set of the extended
logic program T U E. If adding assumptions causes inconsistencies, then a minimal set of
assumptions can be ignored to remove inconsistencies, This framework can also be used
for abduction. Compared with Poole’s system which uses the first-order predicate calculus,
abduction and default reasoning cannot be related elegantly in our framework, but some
commonsense knowledge may be represented more easily.

We also proposed the translation of a knowledge system K to an extended logic program
K* so that each answer set of K~ corresponds to an answer set of a consistent theory from
K.

The proposed framework can handle any extended logic program as a set of assumptions.
Therefore, the presented methods of naming defaults and inconsistency resolution may also
contribute to giving the basis of generalizations of (nonmonotonic) ATMSs.

“Note that Reiter considers a database as a set of first-order senlences and defines integrity constraints as
a set of epistemic formulas [26]. In our case, both databases and integrity constraints can be any extended
logic programs that are identified with default rules. This is an extension of datahases to knowledge bases,
whose semanties can be partially given by using Levesque's autoepistemic logic [17]. The exact epistemic
sernantics of default logic and extended logic programs are considered in [13].
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