ICOT Technical Report: TR-606

TR-606

A Muodel Generation Theorem Prover in KL1.
Using a Ramificd-Stack Algorithm

by

H. Fujita & R. Hascgawa

December, 1990

1990, 1COT

Mita Kokusa Bldg. 21F (03)3456-3191 5
I G DT 428 Mis 1-Chome Telex ICOT 13720964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Model Generation Theorem Prover
in KLL1
Using a Ramified-Stack Algorithm

Hiroshi FUJITA® Ryuzoe HASEGAWA

lustitute for New Generation Computer Technology
i-1-25 Mita, Minato-ku. Tokvo 108, Japan
(ujitatsvs.erlimelco.cojp hasegawa@icot.or jp

Abstract

This paper presents a model-generation based parallel thearem prover for
first-order logic implemented in KL1. The prover, called MOTPE, is efficient
in solving range-restricted non-Horn problems. The range-restrictedness cop-
dition allows us to represent ohject-level variables with KL1 variables, and
to wse only matching rather than full unification, thereby obtaining an in-
terpreter that is very simple vet efficient. The implementation techniqies
developed are also wselul for other related areas. such as truth maintenapee
svarems and intelligent database systems. To improve the efficiency of MGTE,
wo alsodeveloped # ramified-staek (RAMS) algorithm for removing redundant
computation during conjunctive matching phase of a proving process. Exper-
imental results show that an MGTP prover with RAMS can attain orders of
magnitnde speedup over the naive one without RAMS, and can achicve good
performance for non-Horn problems on a non shared memory multiprocessor,
Multi-S1

1 Introduction

We have been conducting research on theorem proving under the Fifth Re
search Laboratory at ICO'T[FI90, HFF90, FKKFH90, HKFFK40]. The ob-
jective of this research project is to develop a parallel antomated reasoning
system on the parallel inference machine, PIM. based on KL1 and PIMOS
technology[CSMBR]. We aim at applying this systom to various fields such
as natural language processing, intelligent dalabase svstems, and antomated
Programming.

From the viewpoint of logic programming, the motive for the research is
twofold. First, the research wonld contribute to thuse aiming at extending
langnages and for systems from Horn clause logic to full first-order lngic. Sec-
vndly, theorem proving is one of the most important applications that could
be built upon the logic programming systems.

From the viewpaint of thearem proving, on the other hand, it seems that
the logic programming community is in a rather mature state for dealing

“Present address: Mitsubishi Electric Corporation
f=1=1 Teukaguchi-honmachi, Amagasaki, [[yoge 661, Japan

with more classical and difficult problems that remain unsolved or have been
abandoned. We might achieve a breakthrough if we apply logic programming
technology lo theorem proving.

Recent developments in logic programming languages and machines
have shed light upon the problem of how to implement these classical
but powerful methods efficiently. For instauce, Stickel developed a model-
elimination[Lov78] based theorem prover called PTTP[S188]. PTTP is able
to deal with any first-order formula in Horn clause form {augmented with
contrapositives) without loss of completeness or soundness, [t works by
employving unification with oceurs check, the model elimination reduction
rule, and iterative deepeuing depth-first search. Schumann et al. built a
connection-method[Bib&6] based theorem-proving system. SETHEO[Sch89],
in which a method identical to model elimination is used as a main proof
mechanism. Manthey and Bry presented a tableaux-like theorem prover,
SATCHMO[MHSS], which is a very short and simple program in Prolog.

The above systems all utilize the fact that Horn clause problems can be
very efficiently solved. In these systems, the theorem being proven is rep-
resented with Prolog clauses and most deductions are performed as normal
Prolog execution. However, that approach cannot be taken in kL1 hecause a
KL1 clause is not just a Horn clause; it has extra-logical constructs such as a
guard and a commit operator, Therefore, we have first 1o solve the problem
of how to handle variables appearing in the given theorems before going inte
the main subject of how to exploit parallelisms. This problem arises when-
ever we consider implementing meta-programs such as a Prolog or a GHC
meta-interpreter in KL1L)

Tu sulve the ahove problem, we adopted a model generation method, on
which SATCHMO is based, as a basic prool procedure, and restricted the
method to the ground model case. It turns out that this method is well
suited to our purpose of implementing a parallel theorem prover in KL1.

In the pext Section, the problem ol meta-programming in KL1 1s dis-
cussed. In Section 3, a model generation method, on which our theorem
prover is based, is explaincd. In Section 1, a simple MGTE interpreter is
presented as a solution for the above problem. In Sectivn 3, a ramified-stack
algorithm{HFF90] is presented, which improves the performance of a model
generation prover greatly. In Section #, performance resulls are presented
tngether with a consideration of parallel execution of the MGTFE prover on a
prototype parallel inference machine, Multi-PSI[NIIRC89]. After discussing
about issues concerning [urther improvements of the prover in section 7, we
vonclude the paper in sectinn 8.

2 Meta-programming in KL1

As mentioned in Section 1, it is not possible to represent a clause sel for
a theorem being proven directly with KL1 clauses. We should, therefore,
treat the clause set as data rather than as a K1.1 program. In this case, the
inevitable problem is how to represent variables appearing in a given clause

set. Two approaches can be considered for this problem:
{1} Representing objeci-level variahles with KL ground terms, or
(2} Representing objeci-level variables witl KL1 variables.

The first approach might be the right path in meta-programming where
object- and mela- levels are separated strictly, thereby giving it a clear seman-
ties. However, it forces us to write rontines for unification, substitution. re-
naming, and all the other intricate operations on variables and environments.
These rontines would become considerably large and complex compared 1o the
main program, and make overhead bigger. This deficiency would be remedied
by using a partial evaluation technique. However, we have not vel developed
a powerful partial evaluator suflicient to remove the above overhead.

In the second approach, most operations on variables and environments
can be performed on the side of the underlying system instead of routines
running on top of it. This enables o meta- programmer o prevent from writing
tedious routines and to gain high efficiency. Furlhermore. in I'rolog, one can
nse the var predicate to write routines such as oceurrence cheek in order to
make built-in unification sound, if necessary, This approach may nol always
be chosen since it makes the distinetion hetween object- and meta- levels very
ambiguons. However, this approach makes the program much more simple
and eflivient.

In KL1, however, the second approach is not always possible as in the
Prolog case. This is because the semantics of KL1 never allows us to use a
predicate like var. In addition, KL1 built-in unification is not the same as
Prolog’s counterpart in that unification in the guard part of a KL1 clause is
limited to one way and a wnification failure in the hody part is considered as
4 program error or exceplion that cannot be backtracked. Nevertheless, we
can take the second approach to implement a theorem prover where ground
maodels are dealt with, utilizing features of KL1 as much as pussible. Details
of the implementation are deseribed in the following sections.

3 Model generation

Throughout this paper, a clause is represented in an implicational form:
-’1.1,, -"1-21 raayg .—1" — E-Il: (1'2;.-. .{Cm

where A;(1 < i< n)and (1 < j < m) are atoms: the antecedent is & con.
Junction of Ay, Ay, .., A, the consequent is a disjunction of 1, Cayes O
A dause is said to be positive if its antecedent is true(n = 0}, and negative if
its consequent is false(m = 0),

There are the following two rules in the model generation method.

e Model extension rule: If there is a clause, A — (', and a substitution
@ sich that Ao is satisfied in a model M and Co is not satisfied in M,
then extend the model M by adding Co into the model M.

3

&

pla) q(h)
Cs C3
gla) ria} = fih))
3 |y C2
s(fla)) s{a) ;
cz |
ko *

Figure 1: A proof tree for 51

s Model rejection rule: If there is a negative clanse whose antecedent Ao
iz satisfied in a model M, then reject the model A7

We call the process of ohtaining As a conjunctive matching of the an
tecedent literals against elements in a model. Note that the antecedent ({rue)
of a positive clause is satistied by any model.

The task of model generation is to try to construct a model for a given
set of clauses starting with a null set as a model candidate. If the clanse
set is satisfiable, a model should be found. The method can also be used to
prove that the clause set is wnsatisfiable, by exploring every puossible model
candidate to see that no model exists for the clause set.

For example, consider the following set of clanses, S1[MDB3&]:

1 plX), (X] — falsze.
2 g X), 4(Y) - false,
C3: o g(X)— a{f{l
C1: (X)) = s(X).
Co: plX) — g X)r(X).

6 true — plal; qlh).

A proof tree for the 51 problem is depicted in Fig. 1. We siart with an
empty model, My = ¢. My is first expanded into two cases: My = {p(a}} and
My = {g(b)}, by applying the model extension rule to C'6. Then by C5, M, is
expanded into two cases: M- = {p(a),q(a)} and My = {pla),r(a)}. Further
by 3, My is extended to Mg = {p(a),q(a), s{ f(e))}. Now with My the model

rejection rule is applicable to (72, thus M; is rejected and marked as closed,
On the other hand, My is extended by €4 to My = {pla),r(a),s(a)} which
is rejected by 'L Tn a similar way, the remaining model candidate A is
extended by ('3 to M5 = {g(b),s(f(b))}, which is rejected by €'2. Now that
there is no way to construct any model candidate, we can conclude that the
clanse set 51 is unsatisfiable.

The model generation method, as its name suggests, is closely related to
the model elimination method. However. the model generation method js
a restricted version ol the model elimination method in the sense that the
polarity af literals in a clanse of implicational form is fixed to either posi-
tive or negative in the model generation method. whereas it is allowed to he
both positive and negative in the model elimination method. Moreover, from
the procedural point of view, the model generation is restricted 1o proceed
bottom-up (as in forward reasoning) starting at positive clauses [or [acts).
These restrictions, however, do not hurt the refutation completeness of the
method.

The model generation can also be viewed as wnit hyper-resolution. Our
caleulus, however, is much closer to the tableanx calculus in the sense that
it explores a tree, or a tahlean, in the course of finding a proof. Tndeed, «
branch in a praof tree obilained by the tableaux method corresponds exactly
to o model candidate,

4 MGTP for ground maodel

The model generation method does not need full unification during conjune-
tive matching if the range-restrietedness condition] MBSS] is imposed on prob-
lem clauses. A clause is said (o be range-restricted if every variable in the
clanse has at least one oceurrence in its antecedent. For example, in the §1
problem, all the clanses, ("1-('6. are range-restricted since no variable appears
in clanse C'6; the variable X in clauses €1, '3, €4 and €5 has an occurrence
in their antecedents; and variables X and Y in (2 have their occurrences in
ils antecedent.

When range restrictedness! is satisfied, it is sufficient lo consider one-way
unification, or matching, instead of full unification with accurs chock becanse
a model candidate constructed by the model generation rules shonld contain
only ground atoms. Moreover, KL1 head unification is nothing but matching,
s0 we already have a fast built-in aperation fur implementing model generation
provers for range-restricted clause sets.

1.1 Transforming problem clauses to KL1 clauses

The program of our MGTP prover consists of lwo parts: an interproter written
in KL1 and a set of KL1 clauses representing a set of clauses for the Eiven

"To ensure range-restrictedness, a dom/ I predicate is adied ta the antecedents of prab-
lem clanses and extra clauses for the predicate are added to the original set of clanses,
if mecessary. This transformation dues nob change the satisfiability of the original set of
clanscs. '

el1,p(X), 00, R):=true|R=cont.
e{1,8(X), [(p{X)],R):-true|R=false.
e{2,q(X), L), R):-true|R=cont.
c(2,8(Y),[q{X}],R) :~true|R=false.
c(3,q(x),. 0. Ry:=truelB=[={f{X))1].
ci4,T(x), 00, R):-truel|R=[s{X}].
c{E,plX), 0, R):=true|R=[q{X),r(X}].
ci6, true, [], H}:-true1R:[p{a},q(b}].
otherwise.

ct_,_,_,R):-true|R=fail.

Fignre 2: 51 problem transformed to kL1 clanses

problem. During a conjunctive matching. an antecedent literal expressed in
Lhe head of & KL 1 clanse 15 matched against a model eloment chosen ont of a
model candidate which is retained in the interpreter.

Although the conjnuctive matching can be implemented straightforwardly
in KL1 as above, we need a programming trick for supporting variables shared
among literals in a problem clanse, The trick concerns how to propagate the
binding for a shared variable from one litecal to anotler,

To see this, consider the previons example, 51, The original clanse set is
transformed into a set of KL1 clanses as shown in Fig. 2. In c(N,P,5,R),
K indicates clause number; P is an antecedent literal to be matched against
an element taken oul ol & model candidate; 8 s a pattern lor receiving lrom
the interpreter a stack of literal instances appearing to the left of P, 1hat
have already maiched model elements; and R is the result returned to the
interpreter when the match succeeds.

Notice that original clause C'1 {pi X), s(V) — false.) is translated to
the first two KL1 clanses. The conjunctive matching for 1 proceeds as
follows, First, the interpreier picks up some model element, £, out of a
model candidate and tries to match the first literal p{ X') in C1 against E)
by initiating a goal, e(1, £1,[], #1). U the matching fails, then the result
Ry = fod is returned by the last KL clause. If the matching succeeds, then
the result /ity = cont is returned by the first KL1 clavse and the interpreter
proceeds to the next literal s{ X} in C1, picking up another model element,
Ey. ot of the model candidate and initiating a goal, (1, £y, [Eq]. £2). Sinee
the literal instance in the third argument, [E], is gronnd, the variable X in
p X)) in the head of the second K11 clanse gets instantiated to a gronnd
term. At the same time, the term s{ X)) in that head is also instantiated due
to the shared variable X. Under this instantiation, ${ X'} is checked whether
it matches E;, and if the matching succeeds then the result, Ky = false, is
returned.

i

4.2 A simple MGTP interpreter

With the problem clauses transformed to KL1 clauses as above, a simple
interpreter is developed as shown in Fig. 3%,

clawses{_,.,_,_,goit}:=true|true cnagl .o, Jquit) o —true|true,

alternatively. alternat ively.

clauses([J|C=],C M, 4, B) -trusl coegl[DLIDs] F,C 0 4, B) - —true|
anteld, [true|®],[7,C,0,4L,8), cuaql{p1 M, Da F,C M &, B).
sat(hl A2 A,B), cnsgi[],F,C N 4,):-trual
clanAeaiCs ,C M 42, K) . extend(F M G4,).

clansas{[], . .4, 7 -true|d=sat.
ensql{D, [DI_] ,_._,_._.k,.) i -truelk=sat.
ANty ee e qEIE) ~trus | tTne cosglf_ [} ,Ds,F,C 0,4, B} ~trae|

altarnatively . cnsq(Ds F 0, M, 4 B)

ante(J, [PINZ] 3, C.M & B):=trual otherwiss.
mgip:c(J,P,5 Kl, cosgl (I, [_|M2]1,06,F,C.H,8,B) :=trua|
antel (1,8, P, 5 M2 ,C 4 4, B) coeqgl (I, M2 D5, F 0,8, 4 B}

antel_ [1..,_,_,8,_):~truefb=sat,
extendl_,_,_._ .quit):-trueltruoe.

antel (], Fail,_ ,5.M2,C. M. 0, R): -troe| alternat ively.
antel] M2 5 C 8 4 B extend! [D]0a] M 4 BY: —trael
antall(] cont F,5 M2, M 4 8 -truel clauses(C,C,[D|Mi A1, ¥,
antell N, [PIS],C M AL, B), unsat(41,42.4.8),
sat(Al A2 A, ,B}, extend{Dz M, C,42 B)
antel{] M2 5 ¢ M 42 B). axtand([],_,_ &,)Y:-truels=unsat.
antel(_ false, ., ., M, & B) -trae)
A=unsal ,B=quit . sat{sat sat &,) :-troe|A=sat .
antel(J.F,_,5 M2 ,C,M 4 B):-List(F)] sat{unsat,_ 4 B) c-tras | Asunsat B=guit .
enaglF B 0,8 &1 ,B), san_,ununt,l,B}-—tzunll:un::t,B=quit.
sat{d1 42,4 ,8),
antel) M2 3,0 M 3 BY. unsat (unsat ,unsat A4, _}:-troe|i=unaat .

unsat(sat, & B} :-troael|d=sat Begoit.
unsat{_ sat 4 B} -trueld=sat Bequit

Figure 3: A simple MGTEP nterpreter

The interpreter, given a list of numbers identifying problem clauses and a
madel candidate, checks whether the clavses are satisfiable or not. The top-
level predicate, clauses/S, dispatches a task, ante/7, for checking whether
each clause is satisfied or not in the current model. If all the clauses are
satisfied in the current model, the result, sat, is returned by sat/4 combining
the results from ante processes.

For each clause in the given clauses, conjunctive matching is performed
between the elements in the model candidate and the literals in the antecedent
of the clause with ante/7 and ante1/9 processes. I'he conjunctive malching
for the antecedent literals proceeds from left to right, by calling c/4 one by
one. An ante process retains a stack, 5, of literal instances. If the match
succeeds at a literal. [, with a model element, P, then P is pushed onto the

In the pPrOgram, ‘:_'Ltqrnati.vely‘ i5 a lLT compler directive which gives a preference
among clauses for evaluating guards of them in such o way that clanges above alternatively
are cvaluated before those helow it. The preference, however, may not be strictly obeyed
depending en implementation.

=1

stack 5. and the task proceeds to malching the next literal, L4, together
with the stack, [P15].

Arecording to the result of ¢/4: fail, cont, false or 1ist(F}, an antel/9
process determines what to do next. If the result is cont, for example, antel
will fork multiple ante processes to try to make every possible combination
of elements out of the current mode] for the conjunctive matching.

IT the vconjunctive matching for all the antecedent lierals of a clause sue-
ceeds, a cnsq/6 process is called to check the satisfiability of the consequent
of the clause. cnsq1/8 chiecks whether a literal in the consequent is a member
of the current model, 1f no literal in the consequent is a member of the current
miadel, the current mode] canpot satisfy the clavse. In this case, the model
will be extended with each disjunct literal in the ronsequent of the clause by
calling an extend/5 process.

After extending the current model. a clauses/5 process is called for each
extension of the model, and the results are combined by unsat/4. When a
clauses process for some of the extended models returps sat as the resalt, it
means that a model is found and the clause set is known 1o be satisfiable. If
every extension ol the model leads to unsat, the current model is not a part
of any madel, if any, for the piven set of clanses.

Thus, il the top-level clauses/5 process relurns sat as the resull, then
the given clanse set has a model and is satisfiable, and if it returns unsat,
then the given clause set has no model and is unsatisfiable,

5 Avoiding redundancy in conjunctive matching

To improve the performance of the model generation provers, it s essential to
avoid, as much as possible, redundant computation in ronjunctive matching.
This section will go into implementation techniques on this subject in more
detail.

5.1 Redundancy in the basic algorithm

The basic algorithm for model generation emploved by the simple interpreter
given in Fig. 3 containg much redundancy as well as SATCHMO does,

Let us consjder a clause having two antecedent literals. For this clanse, we
nead a pair of model elements to perform conjunctive matching. The pair will
be chosen out of the current model, M. After performing one step conjunctive
matching for each pair taken out of M, we may oblain another sel of aloms,
&, with which the model s extended. Then, in the next step, we will have to
choose pairs out of M + & The number of such pairs amounts to

(M+EP =MxM+MxE+8x M+5xd

Notice, however, that M % M nunber of pairs are those which have been
selected in the previous step. Conjunctive matching steps for such pairs are
just superfluous but only those steps which are performed on pairs containing
al least one atom from & are needed. This argument generalizes to clanses
that have more than two anlecedent literals.

T
S rise
L. 222
e [
1.2 coa L2 s
e b
2 1P | 2 (1" 3.2 oLz
1J155 157 LU ST (CLLI 0SS
So S5 Sy Sz
M lrr|_- Lj-n L$ ¥ L4

Figure 4: Literal instance stacks

A Rete-like algorithm conld be used 1o avaid this sort of redundancy and
Is easy to implement with processes and streams provided by KL1, in which a
literal instance is retained in a process and a process network is constructed
dynamically. However, if tlie given clause is non-Horn for which the Rete
algorithm is not designed, we would have to consider a sort of multiple world
problem. In this case, one should 1} copy the whole process netwark having
been created for each different model, or 2) attach a color to a literal instance
ftowing in a stream for indicating to which model the instance helongs in order
to share the network.

5.2 Ramified-stack algorithm

Now we present a new wethod to avoid the redundancy stated above and
enable us to share the comman model. This method retains in a stack, instead
in a process, an instance as a result of matching a literal against an element
of a maodel. The method is illustrated in Fig, 4, where model elements are
represented by numbers, and works for a Horn clause as follows:

® A stack, 5p, is assigned to a model candidate for storing model elements
generated.

* A stack called a literal instance stack (L1S), 5,(i = (1), is assigned to
cach literal, L;, in the antecedent of a clause for storing literal instances.
MNote that LIS for the last literal expressed in dashed boxes needs not
be allocated actually.

e Stack Si{7 = 0), is divided into two parts: § and S where & is the
most recent model elements pushed onto Sp; &(i > 0) is a set of literal
instances generated at the current stage triggered by fg; and 52 is those
created at the previous stages.

;1 16
o
51]
52 62
53 [l
. 55 66
: o
13 14
31 1]
2
33 14
5[,. 5] 52
M Ly, Ly, Ly — Lyils

Figure 30 A system of ramified stacks

+ A task, 1., being performed at each literal, L;, computes the following:
di= iy ®bp U dioy S5 U S, ® oy

where, A x 1 demotes A set of pairs of an instance taken out of A and
that of B, and 5 U T denctes set-union of 5 and T,

o Conjunctive matching for a clause with n-literals consisis of a sequence
of tasks 1), Ty, ..., T, performed from lelt 1o right.

Now we introduce the notion of ramified stacks (RAMS) for a non-Horn
clanse. The alporithm with LAMS is based on that with LIS described ahove.
The idea is as follows:

A model s represented by a branch of a ramified stack and the model
is extended only at the top of the current stack.

o After applying the model extension role to a non-1lorn clanse, the cur-
rent model may be extended to multiple descendant models.

Fvery descendant model that is extended from a parent model can share
its ancestors with other sibling models just by pointing the top of the
stack corresponding to the parent.

Each descendant model can extend the stack for ils own sake indepen-
dently of other sibling models,

10

Table 1: Performance comparison

i[Provers MGTT-S

Problemws §f PTTP | SATCHMO | MGTP-S | MGTP-R { MGTP-R
51 Blimsec Limsaer Johses Ansec L&67
52 Zdgec fRmeec | 10Tmser Gifinse: L.57
=3 — f.dsec 15800 F1msec 186

[G-queens Ridsec 23dsec | GiSlmser A0

As a result we obrain a system of ramified stacks as depicted in Fig. 5 in a
straightforward manner, where it iz assumned that the first literal L fails o
match the model element number two.

Note that ramifving a queue is not very casy in contrast to doing with
a stack as in the RAMS method, as long as the hst structure is used for
implementing it. The MGTP interpreter with the ramified-stack algorithm is
shown in Appendix A,

6 Performance evaluation

In this section, the performance of MGTP provers are compared to some of
ather theorem proving systems, and the effect of a ramified-stack alzorithm is
measured. Also shown are ways of exploiting parallelism in the MGTP prover
and several experimental results of its parallel execution on a Multi-1'S1

6.1 Performance of MGTP provers on PSI-TI

The praovers being compared are PTUP and SATCHMO, both written in SIC-
STUS Prolog and run on a SUN3 /260, asimple MGTP interpreter (MGTP-8).
and the one with RAMS (MGTP-R). Both MOTP-S and MGTP-IL run on
a Psendo-Multi-PST system with single processor mode on a PSI-T1 Table |
shows the performance comparison among these systems where problems 52
and S3[MBSS] are the Shubert’s Steamroller problem and the Pelletior and
Rudnicki®s problem, respectively. These problems are thought rather difficult
to prove by resolution provers.

Comparing PTTP with SATCHMO, we can see that there is a large dif-
ference in their performance. Problems 83 and G-queens cannot be solved by
PTTP within 30 minutes. On the other hand, SATCHMO and MGTP-S are
comparahle in terms of the order of magnitude. MGTP-S is Lhree to four
times faster than SATCHMO for problems 51,53 and 6 queens. For problem
52, however, SATCHMO is faster than MGTP-S sinee the former uses hack-
ward reasoning as well as forward reasoning and evalnates Horn clause subset
by Prolog, whereas MGTP-5 and MGTP-R use only forward reasoning,

The speedup of MGTP-H compared o MGTP-S, as the effoct of RAMS,
ranges from 1.5 to about 400 depending on the problems given. MGTP-R
shows rather amall improvements in speed over MGTP-§ for problems 51-53,

11

Bz

Figure 6: Simple allocation scheme

but achieves a remarkable improvement of 390 speedup for 6-queens problem,
The greater the number of conjuncts in the antecedent of a clanse, the mare
speedup can be observed.

6.2 Performance of MGTP-R on Multi-P51

There are major three sonrces for parallelizing the proving processes in the

MGTF prover:

o Multiple model candidates in a proof,
Multiple clanses to which maodel generation rules are applied, and
« Multiple literals in conjunclive matching,

Let us assume that the prime objective to use the maodel generation
method is to ind a mode] as a solution. There may be alternative solutions
or models for a given problem. We take it as OR parallelism to seek these
wultiple solutions atl Lhe same time, According to our assumption, multiple
model candidates and multiple clanses are taken as sonrces for exploiting the
OR-parallelism. On the other hand. multiple literals are the source of AND)-
parallelism since all the literals in a clause relate to a single solution, where
shared variables in the clause should have compatible values,

Processor allocation

With the current version of the MGTP prover, we attempl to exploil only
OR-parallelism on the Multi-P5ST machine,

Processor allocation methods we have adopted achieve *bounded-0R’ par-
allelism in the sense that OR-parallel forking in the proving process is sup-
pressed so as to meet restricted resource circumstances,

One simple way of doing this, called simple allocation, is depicted in Fig. 6.
We expand model candidates starting with empty model using a single mastor-
processor until the number of the candidates exceeds the number of available
processors, then distribute the remaining tasks to slave-processors. Each slave
processor explores the hranches assigned without further distributing tasks
to wny other processors. This simple allocation scheme for wask distribution
works fairly well since communication cost can be minimized,

12

Table 2: Performance of MGTP-R on Multi PSI

Nuinber of processors
Problem 1 2 4 b 1t
d-queens
Linne| rsec) 40 H) A0 i 44
spreedd 1.00 L.on L.02 0,50 0,90
Ired 1.45 147 118 1.50 1.50
fi-queens
Litned maec) .50 A07 2433 L &0 154
spesdup 100 1.54 244 J44 4.22
bored 235 23T 237 238 238
H-gueens
L] rnsec) 12538 G425 4436 1.815 100
speedup L0001 1.945 376 .91 12.5
bored 4} 460 AG0 460 4060
L0 gueens "
Hoee{msee) | 315404 | 5081 [70921 | 40,852 | 21,520
speedup JRIH 1.87 A0 T.72 14.5
Kred TS 8 LLILT § LELLT | 0Ly | 11,117

8.2,1 Speedups with multiple processors

One of the examples we used is the N queens problem. The problem can be
expressed by the cause set as follows:

0 frae — pl 1L1Epl 1,20 . oopl o),
Oy trae — pl2 10 p(2,2); .. sp2, 0.
A truc — pio Lhpln.2). . ple,).
Ot s PLL YL p(N Yo unsafe(Xy, ¥, X3, Yo) — false.

The first N clauses just expresses every possibility of placing queens on
the N by N chess board. The last clanse expresses the constrainl thal a pair
of queens must satisfy. So, the problem would be solved just when either a
model (one solntion) or all of the madels (all solutions) are obtained for the
lanse set. The KL1 clauses [or 4-queens problem are shown in Appendix B.

The performance has heen measured on the MGTP-R prover running on
the Multi-PSI with simple allocation method. Table 2 gives the result of the
all solution search with the N-queens probiem. Here we should note that

3Ai1 inuelels can be obilained, il they are finice, by the MGTP interpreter with all-solution
masile.

i3

” B8 N S TN O S SO SN S O

L T

H
RN
L1+ (B RS DO SO S S i/v / . iaal
‘_.' 1 L

.

i

Figure 72 Speedup of MGTP-R on Mulu-P51

the total number of reductions stays constant even though the number of
processors used increases, That means no extra computation is introduced
by distributing tasks. Speedups obtained using up to 16 processors are shown
in Fig. 7. For the 10-queens problem, almost linear speedup is oblained
as the number of processors increases. Only for the 4-queens problem. the
speedup rate is rather small. This is probably because in such a sinall size of
problemn, the constant amonnt of the interpretation overhead would dominate
the proper tasks for the proving process.

7 Discussions

The MG'TP prover using a ramified-stack algorithm achieves a good perfor-
mance yet is not optimal. There are four main issues that we are taking into
consideration for further improving the performance of the prover: index-
ing, pruning search spaces, removing interpretation overhead, and exploiting
AND-parallelism. These will be discussed briefly in the following subsections.

7.1 Indexing

If the number of predicate symbols appearing in the given set of clauses is
large, or the number of non-unifiable literals in the clause set is large. then by
introducing clause-indexing, substantial amount of matching tasks that would
eventually fail can he avoided. l'o do this, the ramified stacks for a given set
of clauses should be rearranged so that a single literal stack is assigned for
each distinct predicate or distinct literal rather than for each literal in each

clanse.

14

A wore sophisticated indexing mechanism could be employed as in [Stig4],
which retrieves any term rather than mere predicate symbols. This technigue
will become crucial in solving a class of problems whose proof size is large.
However, sinee the task of computing indexing itsell is not very small, sig-
nificant overhead would also be introdnced. With the Multi-I'S] miachine, a
lirmware-level support for the term-indexing mechanism would be desirable.

7.2 Pruning search spaces

The MGTPE prover is complete in the sense that for any given unsatisfiable
set of clavses it can construct a closed prool tree. However, it is not neces-
sarily able 1o find the simplest proof since its control strategy for searching
for a prool is fixed in the current version where a LIFO- like approach is em-
ploved for scheduling candidates for model extension. Huwever, other eontrol
strategies, such as FIFO, could also be emploved without affecting the basic
function of the RAMS algorithm.

With regard to the pruning method. another approach is now being taken
into consideration. That is the relevancy testing in [WLRY), which is also
closely related (o an indexing method. With this method only such an atom
that is relevant to a negative clause is generated as a model element. The
idea behind this is that when the prover is used in refutation mode. not all
of the atoms that will be added to a model candidate by applying the model
extension rule can be used for rejecting the model.,

Hy emploving this techniyue, substantial speedup mav he obtained for a
class of problems, for example. those dealing with predicates from a number
of disjoint domain of knowledge.

7.3 Partial evaluation

The MGTP prover runs in an interpretive manner. This means that an ap-
timization is possible by removing an interpretation averhead on the basis of
partial evaluation technique,

Fuchi developed a method to translate a problem together with its proo!
procedure into a KL1 program|Fuc®0]., Fuchi’s program runs about three
times faster than our prover. This difference of speed is smaller than the
amount to be normally expected when interpretation overhead is taken into
account. By applying partial evaluation technique it would be possible for our
interpretive method to obtain performance comparable to Fuchi’s compilation
method.

The use of the partial evaluation technique will become crucial when we
develop a more complicated interpreter than the MGTP prover for ground
models. Indeed, in order to deal with problem clanses which do not meet
the range-restrictedness condition, we will be lorced to take a ground term
approach for representing object-level variables and will need to incorporate
routines for unification. copying, and environment handling into the inter-
preter, all of which will cause substantial overhaea.

To remave these overheads, we need an automatic partial evaluator that

15

can unfold KL clauses and evaluate guard goals symbolically without chang-
ing the synchronization condition as well as the inputfoutput condition. Fur-
ther, it might be possible Lo optimize the partial evaluation process if a sell-
applhicable partial evaluator were available.

7.4 AND parallelism

In our terminology, AND-parallelism corresponds to a parallelism inherent
i t'unju]wliu‘ FITETR S hiirg PO shes ol the MGTP JrrOVEr., 'rllhnll_t'.',]i the paral-
lelism is large, it is not exploited in the current implementation of MOTP
since the Multi-PSI machine is not suited to exploit this Kind of fine-grained
AND-parallelism. This is hecanse AND-parallel processes usually share a
large amount of information to perform their tasks, and they require heavy
communications which tend ta incur a serions hottleneck in a local-memory
architecture such as Multi-PSI. We are now. nevertheless, attempting 1o ex-
ploit as much AND-parallelism as possilde by separating conjunctive matching
tasks into independent subtasks.

8 Conclusion

We have presented a model-generation theorem prover, MGTP, which is im-
plemented in KL1 and evaluated its performance. For range restricted prob
lems, madel generation provers need to wse only matching rather than full
unification and can make full use of KL1 variables, therehy achieving good
efficiency.

The key techniques for implementing MGTP in KL1 are: (1) Translating a
given set of clauses of implicational form o a corresponding set of K11 clauses,
(2] Emulating a conjunctive matching by head wnificativn for the K L1 clauses,
and (3) Obtaining fresh variables automatically just by calling a KEL1 clanse.
These techniques are very simple and straightforward vet effective,

To tmprove the efliviency of MGTP, we developed a ramified-stack al-
gorithm which enables ns to avoid redundant computations in conjunclive
matching phase of the prover. We have also obtained good performance results
by running the MGTP prover in the parallel environment on the MULTI-PSI.

For solving non-range-restricted problems, the MGCTP prover would re-
quire further extension or modification. If the problem is Horn, it can be
solved with the MG'I'I" prover extended with unification with oceurs-check
for ground represented variables without changing the basic structure of the
prover. For non-Horn problems, however, suhstantial change in the struc
ture of the prover would be required since the ramified-stack algorithm is
not designed appropriately so as to manage shared variables in literals in the
consequent of a clause,

Acknowledgements

We would like to thank Wazuhiro Fuchi for giving us the opportanity of doing
this research and for showing us his original programs which helped us to
develop MGTP. We also wish to thank Koichi Furukawa for introducing us to

16

other related works and for his advice. Thanks are also due to M. Koshimura

at JBA Co.

Ltd., M. Fujita at 5th Research Laboratorv at 1COT, and J.

limura and F. Kumeno at MRT Inc. for tuning up programs and for measuring
the performance of MGTE.

References

[Bibs6]
[CSMsH]

(FH90]

[FRKFI90]

[Fuca)]

(ITFF90!

[HEF1'W 90|

[TowTs)

(MBS

INILR (6]

[5chi9)]

[Stiss]

[Stisn]

[WOLIIR4]

[WosSs]

Bibel, W., Automated Theorem Proving, Vieweg, 1986.
Chikayama. T., Sato, H., and Mivazaki. T.. Overview of the
Parallel Inference Machine Operating System (PIMOS), in Proc
of FOGOSES, 1938,

Fujita, H. and Hasegawa, R.. Implementing A Parallel Theorem
Prover in KL1, in Prec. of K11 Programming Workshop 90,
pp-140-114%, 1990 (in Japancse).

Fujita, H.. Koshimura, M.. Kawamura, T. Fujita. M.. and
Hasegawa, R., A Model-Generation Theorem Prover in kL1,
Jot US-Sapan Workshop, 1990

Fuchi, K. Impression on KL1 programming — from my experi-
ence with writing parallel provers — in Proc. of KL Program-
ming Workshop '00, pp.131-139. 199 (in Japanese).
Hasegawa, R., Fujita, 1. and Fujita, M.. A Parallel I'heorem
Proverin KL1 and Its Application to Program Svsuthesis, Jtaly-
Japan-Sweden Workshop, [COT TR-5588, 1000

Hasegawa, K., Kawamura, 1., Fujita, M., Fujita. H.. and
Koshimura, M., MGTP: A Hyper-matching Model-Generation
Theorem Prover with Ramified Stacks, Joint UUK-Japanese
Warkshop, 1990.

Loveland, D.W., Aulomated Theorem Proving: A Logieal Basis.
North-Holland, 1973,

Manthey, R., and Bry, F., SATCHMO: a theorem prover im-
plemented in Prolog, in Proe. of C'ADE 88, Amonne, lilinois,
1888,

Nakajima, K., Inmnura, Y., Ichivoshi. N., Rokusawa, K., and
Chikayama, I., Distributed Implementation of KL1 on the
Multi-PSI/V2, in Proc. of 6th ICLP, 198G,

Schumann. J., SETHEQ: User’s Manual, Technical report., ATP-
Report, Technische Universitit Miinchen, 1989,

Stickel. M.E., A Prolog Technology Theorem Prover: lmplemen-
tation by an Extended Prolog Compiler, in Journal of Automated
Heasoning 4 pp.353-380, 1985,

Stickel, M.E., The Path-indexing method for indexing terms,
Technical Note 473, Artificial Intelligence Center, SRI Interna-
tional, Menlo Park, California, October 1989,

Wos, L., Overbeek, R., Lusk, E., and Boyle, J., Automated Rea-
soning: Introduction and Applications, Prentice-Hall, 1984,
Wos, L., Aulomated Reasoning - 33 Hasic Research Problems

17

Frentice-Hall, 1455,

[WLE9| Wilson, [0.5, and Loveland.). W ., Incorporating Relevancy Test-
ing in SATCHMO, C5-1980-24, Department of Computer Sci-
ence, Duke University, Durham, North Carolina, 1989,

A An MGTP interpreter with ramified stacks

To use the interpreter, the nser initiates a goal, do(M,FLIS,LIS,U,D,5), by
giving a ml to M as an initial model candidate. a list of initial literal instance
stacks for negative clauses to FLIS, a list ol initial Dleval instance stacks for
mixed clauses to LIS, a list of consequents of positive Horn clanses 1o U, a
list of consequents of positive non-Horn clanses to D, The result of the goal
is returned in a stream 5. I the vesult is nil. then there is no model for the
problemn, Otherwise, 3 contains [finite) models for the given problent.

i= public def/6. ;- module mgtp_1.

do(M, FLTS,LTS, [PIDisill] ,Disid, Sat) :- true |

member (P, M, TH),

(YN = yes =» do{(M, FLIS,LIS, DisjU,Disaj0, Sat);

¥YH = no -+ dol{M.P, FLIS.LIS, DisjU,Disj0, Satl)).
do(M, FLIS, LIS, [].[0i=]Diejnl, Sat) - true |

checkConaq(Dis, M, 5,

(5 = eat -» do(M, FLIS,L18, [J,Disj0, Sat);

5 = umsat -» expand{Dis, M, FLIS,LIS, Disj0, Sat}).
defM, _,.. M,I1, 5at) := true | Sat = [H].

do1(M,P, FLTS, LTS, Disjlf,Disj0, Sat) :- trus |
WM = [PIM], M = [P],
clauses (NM DM, FLIS, NFLIS, [],False, _,_).
delDecide(False, NM,DM, WFLIS,LIS, DisjU,Dis; 0, 3at).

delDecide([], M,DM, FLIS,LIS, DisjU,Disj0, Sat} :— true |
clauvses(M,0M, LI5S, NLIS, DimjU. NDi=jU, Disj0,NDisjdd,
de{M, FLIS,NLIS, NDie)jU,NDiejl, Sat).

delbecide{Falee, _,_, _,_, _.s_: Sat) = False %= [1 | Sat = {].

expand ([, _, _._, _., Bat) :- true | Sat = [].
expand([P|Pa], M, FLIS LIS, Di=sj0, Sat) :- true |
Sat = {Satl,5avi},
dat{M P, FLIS,LIS, [].Disj0, Sati),
expand(Pe, M, FLIS, LIS, Disj0, Satl?).

clauses(M.DM, [{I,Li3}ILIS] . NLIS, 51,50, Di.Ded :- true |
NLIS = [{I,NLi5}INLIS1],
clavee(I Li% KLi%, M.DM, 5i .50, Di,0m},
clanses(M,DM, LI2,MLTS1, Sm,%a, Dm, De).

clavses{_,_, [],NL.TS, 8%i,%:, Di,De} :- troe |
NLTS = [], So = Si, Do = Di.

clause(ID,[],NLi5, M,DM, 5i,5¢, Di,De) :- true |
NLiS = [],
sgtp:c(ID, DM, 5i,8, Di,Da).
clanse(ID,[5|Li5] .HL15, M,DM, 51,50, Di.De) ;= true |

15

NLi% = [NSILi51],
mgip:c(1D, DM, 8 NS, [],D8),
ankel 1D, LS, List, M.DM, 5,08, 81,80, Di,Ded.

ante(ID, [],NLiS, W,0M, Stack,DStack, 51,5, Di,Do) - true |
NLiS = |},
litaral (1D, M,DM, Stack,DStack, 5i.3c, Di,Do).

ante(ID, [SIL15],NLi5S, M,0M, Stack,DStack, 51,50, Di, Do) - troe |
NLiS = [NS[NLis:],
lateral (10, M, DM, Stack,DStack, 3,H3, [1,D83,
anbe (1D, LiS NL1S1, M. DM, 5. DS, 51,50, Di,Do).

literal(_, _,_, LJ.,1J, $1,%, Di,Do) :- true | So = 5i, Do = [i.
literal (ID, M,0M, Stack, [5|DStack], 5i.5¢, Di.Ded - true |
literal{ID, M,8, S5i,5m, Di,[m],
literal{ID, M.DM, Stack,DStack, Sm,50, [m,Do).
literal (1D, M,[F], [515tack],l], 3i,%¢, Di,De) = Lrue |
mgtp:ciiD, [FIS], S1.5m, Ui,Dm},
literal{ID, M,EF], Stack,[], Sm,Sa, Dm, Da}.

literal{_, [J,_, 85i,50, D, Do} := troe | So = §i, Do = Di.
lateral (ID, [PiP=],5. S1,.%x, Di, Do) :- true |

mgtp:e(Il, [FI5], 5i,5m, Di,Dm),

literal (I, Ps.5, 5&,5¢, Dm,.Do).

member(_, [}, YN} := trues | YN = no
member (X, [R_]. YH) - tTue | YN = ye=.
otherwise.

member (X, [_[Xs], ¥N) :- true | sember(X Xz, ¥YN).

checkConag(ll,_. 8) :- true | 5 = unsat.
checkConsql [¥Xa] M, 5) = zrue |
momber (X, M, TH),
(YN = yes -» 5 = zat:
TN = no -» checkConsg(Xs M, 511,

B KIL1 clauses for 4-queens problem

The A-queens problein given in section 615 transformed to the following KL1
clauses where unsafe(N1.Y'1, X2, V'2) predicate is represented by the guard
goals in the second cf8 clanse,

- module mgtp. = public dof1,of6.

del8) :- true | mgtp_i:do([1.[{1.[017}1.00,00,
Clple.1d,ple.2y ,p0L, 20 .p01,40], [p{2.1) ,p(2,2),p(2,3) ,pl2,42],
[pl3.10,p03,2),p02,3) ,p(2.40], [p{4,1) ,p (4,2}, pi4,30 ,p(4,431]1 ,5).

cfl ,I,51,5%,04,00):=1={p(X1,¥1)] 1So=[11%1] ,De=0TID1].
c{1,1,5i,50.0i,0e):~I=[piR2. Y2l ,pii1,v12],
E1=h=X2 0= :={Y1-Y2) e (X1-N2-Y1+Y2I e (R1-X2+¥1-7Y2) |
So=[fal=el|51],lo=Da.
othervise.
el 82,850,010 . Da) i =vruefSo=51 Do=Di.

19

