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Komukai-Toshiba-cho 1, Saiwaiku, Kawasaki 210, Japan

ABSTRACT

This paper describes how 10 use the amount of information in a sentence interpretation as a measure of
interpreting input sentences in a natural language understanding system. In this paper, an interpretation of
a sentence is considered to be a proposition, and the amount of information of the interpretation is defined
according to a listener’s model with a knowledge base composed of a literal set and a logical implication
set, both of which are defined within the framework of propositional logic. When a given sentence can be
analyzed syntactically and semantically into more than one interpretation, the most informative interpre-
tation is selected. The theory of selecting the most informative interpretation by the proposed measure s
reasonable in the sense that communication is an act whereby messages are passed on with the least possi-
ble effort. The presented theory for disambiguation is applied 1o a practical procedure for anaphoric ambi-
guity resolution, as an example of the disambiguation problem, which forms pant of a question-answering
system. Furthermore, a conversation experiment was carried out, and it was found that ninety-three per-

cent of referents corresponding to anaphoric expressions could be comectly chosen.

1. Introduction

A number of ambiguities have to be
confronted in understanding natural lan-
guage by machine, including lexical ambi-
guity, structural ambiguity and contextual
ambiguity. Lexical ambiguity mefers to
ambiguity of category, and ambiguity in
identifying the concept of a word. For
example, the concept bank is lexically
ambiguous; the word bank in Stay away
from the bank can mean either the land
along a river or the place in which money
is kept. Structural ambiguity refers to
ambiguity with respect to the surface
structure of a given sentence. I saw a girl
with a telescope is a famous ambiguous
sentence, which can be assigned two sur-
face structures depending on whether with
a telescope modifies girl or saw. Contextu-

* This work was supported by ICOT (Institute
for New Generation Computer Technology), and
was carried out as part of the fifth generation com-
puter project in Japan.

al ambiguity in a sentence arises from its
relationship to the discourse context. A
speaker and a hearer share context and
knowledge, so that the speaker can use
anaphora, such as pronouns, pro-verbs,
definite noun phrases, and ellipses. There-
fore the contextual ambiguity that anapho-
ra causes can be reduced using the con-
text and the knowledge. For example, the
problem of determining the referent for he
in Fred phoned John because he needed
help is of this type. The word he can
semantically refer to either Fred or John.
According to these possibilities the state-
ment he needed help therefore can be
assigned two interpretations. The problem
of resolving all of these ambiguity types
can be viewed as that of a selection of the
most plausible interpretation of an ambigu-
ous sentence in a certain context. At the
same time, this selection needs to be car-
ried out using extra-linguistic knowledge
as well as linguistic knowledge, because it
is obvious that a human resolves these



ambiguities using such knowledge. This
paper concerns disambiguation methods
using extra-linguistic knowledge, and pro-
poses an objective measure, based on
such extra-linguistic knowledge, for the
disambiguation of sentence interpretation
in its discourse context. (In the following
discussion, we simply use the term knowl-
edge for this extra-linguistic knowledge.)

Several means for determining the
most plausible interpretation in natural
language understanding (NLLI) have been
investigated. Hobbs tried to solve the
problem of reference, compound nominals
and metonymy, by assessing the cost of
assuming each condition of an inference
rule to derive the conclusion®). Nishi-
da®!) proposed an NLU mechanism using
an assumption-based truth maintenance
system (ATMSZ)). In this research, each
possibility from the ambiguities corre-
sponds to an assumption, and an assuma-
bility probability, which is defined as a
heuristic measure, is used to control these
assumptions. The accuracy of both theo-
ries depends on the intuitive magnitude of
the cost or probability, but no formal defini-
tions or computation methods for these
measures are given. Thus these measures
cannot be adopted as a general criterion
for the disambiguation. A theory based on
an objective measure for disambiguation
needs to be developed.

To define the measure for disambigua-
tion, a listener’s comprehension model is
constructed as a part of communication
process between a speaker and a hearer.
The comprehension model is based on the
presumption that the speaker might trans-
mit maximum information with minimum
effort. The hearer can comprehend speak-
er's messages according to this presump-
tion. If an amount of information in a sen-
tence interpretation is defined, a machine
hearer can employ this measure for resolv-
ing ambiguities in the comprehension pro-

cess. We consider the presumption, which
the comprehension model is founded on, to
be relevant in natural conversation. For
example Grice's conversational maxim of
quantity also states that a speaker should
make his contribution as informative as is
mquiredﬁ}.

The amount of information in a knowl-
edge representation, which is an expan-
sion of many sorted logic, was discussed
by Ohsuga'!?). The amount of information
associated with a structure of objects for
arguments of a predicate was defined in
his research. This value seems to be a co-
terion appropriate for our use, because the
MLU process can be viewed as a process
of knowledge acquisition through compre-
hending each sentence in its discourse
context. However, a means of practically
calculating the amount of information
including inference rules was not consid-
ered in his research, while the role of
causal relationships between events rep-
resented by inference rules is important in
an NLU process(!®) . Moreover, disam-
biguating sentence interpretations in NLU
needs a quantitative measure of informa-
tion on a sentence interpretation or a
statement. Thus it is necessary to consid-
er a definition of amount of information in a
statement against the background of a
knowledge base with inference rules.

This paper defines the amount of infor-
mation for interpreting a sentence based
on a listener's comprehension model
which includes knowledge about causal
relationships berween event, and adopts it
as the crnterion for disambiguation. In the
following sections, a comprehension model
and a theoretical framework for the
amount of information in a sentence inter-
pretation are described using propositional
logic. This theory of amount of information
is applied to anaphora resolution, which is
a typical disambiguation problem. Finally,
2 conversation experiment is carried out



using a question answering system with a
knowledge processing sub-system.

2. Listener's comprehension model

Figure 1 shows a listener’s compre-
hension model including knowledge*!; the
model consists of two major processes:
sentence analysis and preference judge-
ment. The fimst process chooses interpre-
tation candidates corresponding to a new
input sentence. In the second process, the
most  plausible interpretation is  deter-
mined according to the knowledge base,
and this interpretation is added to the
knowledge base and treated as new
knowledge.
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Figl Lisiener's comprelemion model,

In  geneml, the knowledge base
includes information of the so-called
world, knowledge about the objective ficld,
information of the speaker, etc. In this
paper, we will deal with knowledge about
the objective field, ie., knowledge about
facts and causal relationships in the field.

First, let's consider the listener’s
knowledge in terms of propositional logic.
In the framework of propositional logic, all
propositions are constructed from atomic
propositions and logical connectives.
Negation( = ), conjunction(~), disjunc-
tion(v) and logical implication(—) form
the logical connectives. An atomic proposi-
tion and the negation of an atomic proposi-
tion form a literal, and a proposition which
is created by combining more than two lit-
erals is called a compound proposition.
Note that a literal is not defined as a com-

*1 A listener means a question arswering system,
and a speaker means a human user of the system.

pound proposition in this paper. We
assume that the listener’s knowledge
comprises a set of literals and a set of log-
ical implications, i.e., inference rules. The
set of literals corresponds to knowledge
about facts and events with which the lis-
tener is acquainted through the discourse,
and the set of logical implications corre-
sponds to knowiedge about known causal
relationships. Let's define a set of all
atomic propositions to provide a formal
definition of the listener's knowledge.
Only these atomic propositions can be
used to form propositions in the listener's
knowledge.

Definition 2.1, A set of all atomic
propositions £1 is defined as follows,
Q={wp|1=n<N}. (1) (0

All propositions in listener’s knowledge
are constructed from atomic propositions
in £ wusing logical connectives, and are
classified as a set of literals and a set of
logical implications. It should be noted
that all the atomic propositions @, in Q
need to be used to construct the set of
propositions in the listener's knowledge.

Definition 2.2, The listener's
knowledge HK consists of D and K (HK =
D v K). Here, D is the set of literals,
where any element nt; in D is either W=,
or Tj=, for an element wy in . And K is
the set of logical implications, where any
atomic proposition used in logical implica-
tions x; in K belongs to £, O

Each proposition in HK is consistent;
an interpretation (an assignment of truth
value to all atomic propositions) for the
proposition exists. In other words, each
proposition in HK holds true for the listen-
er who knows HK, and therefore the truth
value of the conjunction of propositions in
HK is true for him.

It can be said, without loss of generali-
ty, that every logical implication in K is an



implication such that the left-hand side is
a conjunction of literals, and the right-
hand side is a single literal, because the
following theorem is provable.

Theorem 2.1 For any D and K, the
sets D and K can be translated into logi-
cally equivalent sets D1 and KIl. DI is a
sct of literals, and K1 is a set of logical
implications, where the lefi-hand side of
any logical implication in KI is a conjunc-
tion of literals, and the right-hand side is a
single literal.

(The proofs of all theorems are given in
the Appendix.) U

In the subsequent discussion, we assume
that every logical implication in K is in a
form such that the left-hand side is a con-
junction of literals, and the right-hand side
is a single literal. The contents of D and K
can be written as follows,

D = {njl 1=1sM}, 2
K ={xjl 1< j<]}. (3)

Next, let's describe the comprehen-
sion process based on the knowledge
defined above. A sentence including
ambiguous factors can be broken down
into several possible interpretations. [In
this paper, the interpretation of a sentence
is dealt with as a proposition. Here, let’s
denote the possible interpretation as V.
When v is added to the listener’s knowl-
edge, some new propositions are deriv-
able from v and the listener's knowledge
(D and K), and a new literal set D’ is con-
structed.

Definition 2.3, Let v be a new input
proposition. After v becomes known to the
listener, the new set of literals comes to
be known to him. This set is denoted by
D’. Then D’ is defined as follows,
D'=D{r’jl(x’j€L2 or Tie)
and v, D, Kn'i}, (4)

where v, D, K} n"; means the literal =’

can be derved from v, D, K. O

Example 2.1 Suppose that D and
K are given as follows,

D={my,m2,73} ={ (0 04,86}
K={x1,X2} ={ 03A004— 05, ©OAD;—03}.

When v=@; is a new proposition corre-
sponding to an input sentence, the new
proposition set D' will be {w,07,03,04,

We}- U

3. Amount of information in an interpre-
tation

This section gives the formal definition
of amount of information in a sentence
interpretation on the basis of the compre-
hension model within  the framework
described in section 2.

3.1 Definition of amount of information in
an interpretation

When a proposition corresponding to
an input sentence is added to the lsten-
er's knowledge, the proposition alters the
possible states of the listener’s knowl-
edge. Figure 2 shows the states of the lis-
tener's knowledge before and after he
hears a statement (“The button was
pushed”). Before he heard the statement,
he did not know whether the button was
pushed or not; therefore there were two
even possibilities of the situation in his
knowledge state. On the other hand, after
he had heard the statement, the possibili-
ty that the button was not pushed was
discarded; only one possibility remains.
Therefore, the function of an input sen-
tence can be described as the reduction of
the possible states of a listener's knowl-
edge.
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To formalize this process, let's consid-
er the possible combinations of all atomic
propositions with truth values. The possi-
ble combinations are denoted by the
sequence of all atomic propositions in £2
with truth values, which are enclosed in <
and >. For instance, if all atomic proposi-
tions other than @; are true, and @) is
false, then the combination can be writien
by « @], w2, @3, ..., Oy > The state of
the listener’s knowledge is defined as fol-
lows.;

Definition 3.1. The state of the lis-
tener’s knowledge can be expressed by
the set of all possible combinations of an
alomic propositions with truth valves con-
sistent with D and K*2. The state of the
listener’s knowledge is denoted by

S(D,K). (In the subsequent discussion,
the subscrpt £ in Sg(DK) will be omit-
ted to simplify the description, because 1
is invariant throughout the discussion of
amount of information.) L]

Example 3.1, Let's  consider a
case where D=0 and K=¢. Since all possi-
ble combinations regarding affirmation or
negation in terms of all atomic proposi-
tions are consistent with D and K, the
state 5(¢,9) exists as follows.

S(0.9)={< w1, w, ©3, ..., ON >,
= Els w2, mﬁg T WN -y
< wp, @7, w3, ..., ON >,

{{JTlf_zvﬁ: .'-,'-u_f\f:’}‘ D

*1 As for a given proposition, when the conjunc-
tion of all elements in the literal set D and the
proposition is tru¢ under a certain assignment of
truth values to all atomic propositions, we say
that the proposition is consistent with D. Also,
when the conjunction of all elements in the infer
ence set K and the proposition is true under a cer-
tain assignment of truth wvalues to all atomic
propositions, we say that the proposition is consis-
tent with K.

Here, we regard the truth value of a
conjunction of literals contained within an
element in S(D,K) as that of the element.
In general, each element in S(DK) is
mutually exclusive, 1.e., if a cerain ele-
ment is true, then the other elements can-
not be true. At the same time, it is not
possible to identify a specific element in
S(D,K) as true, i.e., it is not known which
element holds true. Therefore, the state
S(D,K) can be viewed as a sample space
in information theory!!3). If a sample
space can be partitioned in a finite number
of mutually exclusive elements, whose
probabilities p; are assumed to be known,
then the measure of uncertainty or entropy
associated with the space is given by

1

- Z pilogpi,

i=1
where I is the number of elements of the
space. In genemal, because each element in
the state S(D,K) can be expected to occur
in equal probability, we make the following
assumption.

Assumption 3.1. The prior probability
of every possible state in §(D,K) is con-
stant, and all are equal to each other.

pi = IS(D,K)[L, for all i,

where |S(D,K)| means the number of ele-
ments in S(D,K). O

Using Assumption 3.1, the entropy of
S(D,K) can be obtained, and the entropy
of the listener’s knowledge can be defined
as the entropy of S(D,K).

Definition 3.2. The entropy of the
listener's knowledge, E(D,K), is defined
as the entropy of S(D,K).

IS(DK)|
E(DK) =- X [S(D,K)! logz IS(D,K)!
n=1
= log2 IS(DK), (5)



When a new proposition v is given, and
when D is replaced by D’ obtained from
(4), the amount of information in the new
proposition v is provided by I{v,D,K}.

varDrK}"_’E{DrK] - E(D",K)
= loga (IS(D,K)| / IS(D",K) [).
(6) O

This equation indicates that the amount of
information in a proposition is calculated
by the number of elements in the state of
the listener’s knowledge before and after
the proposition is added.

In the case of knowledge without infer-
ence rules, Ohsuga discussed a similar
derivation for the amount of information in
a proposition by quantitative consideration
of knowledge representation!2). Here, the
derivation of amount of information as
described in his work is described briefly
according to our notation.

Example 3.2. Because his theory
does not contain inference rules, K=¢ in
our notation. For the case D=9, it is clear
that E(,$)=N, since |S(¢,8)]=2N. For
instance, suppose that a new proposition
added to the proposition set D (=9) is ©y.
Then, D'={w)}. Becauwse S({wn},$) con-
sists of only one possible combination of
all atomic propositions with truth values
consistent with @, clearly |S({w;},$) is
half of [S(¢,6)l. Thus, [S({w},9)=2N1,
and I{{tm}.dN=1. Also, as to other
propositions v such that v=w, or v=0, for
wpell, it is clear that if véD and K=9,
then A= and D'=Du{v}. Therefore
IS(D'$)| is half of |S{(D$)]. As a result,
the amount of information in a proposition
v, I(v,D,$), is equal to 1. ]

3.2 Computation of amount of information
in the case of knowledge with inference
rules
(a) General case

Let's discuss the case of knowledge
with inference rules. In general, some

inference rules are dependent on each oth-
er; i.e., we can suppose that there are sets
of inference rules which share common
propositions. First, inference rules are
classified into equivalence classes, each of
which consists of inference rules sharing
common atomic propositions. Second, all
combinations of atomic propositions with
truth values in each equivalence class are
considered to constitute the entropy of the
listener's knowledge.

For the purpose of the classification of
inference rules, a relation R for rules in K
and an equivalence relation R’ are intro-
duced.

Notation 3.1, For each ¥j and Xj in
K, ¥i R ¥j, if and only if an atomic proposi-
tion wp exists, which both ¥; and ¥j con-
tain as components. [

Then let’s define the equivalence relation
R" based on E.

Notation 3.2. The equivalence
relation on elements in K which satisfies
the following two conditions is denoted by
R".
(i) Foralliand j, if x; R Xj then ¥; R" Xj
(ii) Foralli,jand k, if xj R* Xj A Xj R® g
then x; B* xg ]

An equivalence relation on a set cam
divide the set into several sets which do
not have any element in common. Thus,
using the relation R°, Lemma 3.1 is stated.

Lemma 3.1. Equivalence classes
M=K ThnTk=¢forh=k
exist, and each element in K can be
assigned as a member of one of these Ih
{1<h<H, where H is the total number of
the classes) by the relation R". O

I'n is the set of inference rules which are
connected directly or indirectly with each
other, and the intersection of i and T is
empty for any i and j (i # j). Therefore,
when a combination of atomic propositions
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is considered, relationships between infer-
ence rules belonging to other classes do
not have to be taken into account. Corre-
sponding to T'h, atomic propositions Ah
can be defined as subsets of Q; Ah is the
set of atomic propositions which appear in
inference rules in Th. Figure 3 shows this
relation between Ih and Ah. Let's consid-
er all combinations of atomic propositions
in Ah with truth values in a similar manner
as the notion of 5(D,K) for K,

Notation 3.3, Let C(D,JH) be a
set of all combinations of atomic proposi-
tions in Ah with truth values, which are
consistent with D and I'h, where Ah is a
set of atomic propositions which appear in
Ih. Ll

Thus, Theorem 3.1 is proved.

Theorem 3.1 If a proposition v
relates to an inference rule*3 in I'h, the
amount of information in v can be calculat-
ed by combinations of all atomic proposi-
tions in Ah with truth values, regardless of
the other classes.

*3 When cither v or v exists in the set of atomic
propositions which are the components of some
inference rule Kj in K, we say that the proposition
v is related to the inference rule Xj.

I(v,.D,K) = logz ( |C(D,IR)] / |C(D",Im)]),
(v is related to xj in T'h and veD),
(7)

where I', given by (4), is the set of liter-
als derived from v, D and K. |

The amount of information in any
proposition v can be calculated in accor-
dance with the above theorem, and is giv-
en by

I{v,D,K)
logz ( |C(D,I'm)| / |C(D",Tw)| )
=1 (vis related to xj in Th and ve D),
1 (v is not related to any K;j
in K and ve D),
0 (veD). (8)

To illustrate the calculation
let’s consider an example:

process,

Example 3.3. Consider the follow-
ing case:

{1={a,b,c,def,ghpaqr},

D= {f},

K = {K1, k2, K3, K4}
= {anb—c, cad—e, fag—h, g-3q},
V=g

In this example, because k] and 2 have ¢,
and k3 and x4 have g in common, respec-
tively, K can be divided into 'l and Iz
Then 171, I'2, Al and A2 are given as fol-
lows,

Il = {xy, x3},
Iz = {x3, x4},
={a,b,c,d, e},
A2 ={f, g, h, q},
(Propositions "r* and "p" do not belong
to either Al or Az2).

Since the new proposition, the negation of
"¢", is equal to the right-hand side of x3,
"e" relates to k7 in I'l. Thus, the combina-
tions with truth values in terms of proposi-
tions in Al corresponding to T'I should be
taken into account, regardless of A2 and
I'2. The matrix depicted in Figure 4 shows



these combinations; there are 32 combina-
tions in the matrix.

As a first step, combinations not con-
sistent with either k] or ¥z are removed,
and these are marked with " x" in Figure 4,
after which 24 combinations remain. In
this case, because no elements in D are
contained in Al, the 24 combinations are
consistent with D.

Secondly, combinations not consistent
with the proposition v=¢ are removed from
these 24 combinations, and they are
marked with "V " in Figure 4.

The terms now remaining without
marks form combinations consistent with
I't and D', and it is easy to see that
IC(D',T1)=10.  In  comsequence, the
amount of information in "e" 15 obtained;
1(e,D,K)=log2(24/10)=1.26.

(b) Special case (where individual infer-
ence rules do not share common proposi-
tions)

In the general case, it is rtequired to
consider all true combinations of literals
which are directly or indirectly linked to an
input proposition. Therefore, to calculate
the amount of information in the proposi-
tion a large amount of memory or CPU
time is needed. For a practical calculation
procedure, let's consider a special case
where no other inference rules have atom-
ic propositions in common. If the inference
rule set K satisfies the following condition,
then it is not necessary to consider the
truth value combinations of all the atomic

propositions.

Assumption 3.2 For each xj and xj in
K, where i#j, there is no common proposi-
tion which is shared by both x; and xj. [J

On the basis of Assumption 3.2, the
amount of information in a proposition V
depends only on the inference mle K;
which v relates to, and |C(D,I'h)] in Theo-
rem 3.1 can be simplified, where Ij = {xj}
by the subscript h of I'h corresponding to

the subscript j of K;.

Theorem 3.2, If v is related to Kj in
Ij, then |C(D,Ij)| on the basis of Assump-
tion 3.2 is given as follows,

|C(D,j)I=2m; - Kj -oy(D), (9)

where mj is the number of literals in Xj, kj

is the number of literals (in %) whose
truth vaiues are determined in D, and
oj(D) is a function which gives 1. when the
negation of xj is consistent with D, other-
wise 0. L

As a result, (8) is simplified as follows,

Theorem 3.3. If vis related to xj,
then the amount of information in v on the
basis of Assumption 3.2 is given as fol-
lows,
I{v,D,K)
log2{ (2MjKi-oy(DY)
1 (2mjklgy(D")}
=t (v is related to some Kj and veéD),
l (v is not related to
any ¥j and ve D),
(10) |

Consider the follow-

0 (veD).

Example 3.5.
ing case:

D= {a}l
K = {anbac—d, enf—g},
v=>b

Since ¥j = anbac—d, the negation of x;j is
Kj = anbacad. Each parameter can be cal-
culated; mj=4, kj=1. Both oj(D) and
Gj(D’) are 1, since Kj is consistent with D
and D°. In consequence, l{v,D)K)
=loga(7/3)=1.22. UJ

In this section, the amount of informa-
tion in a proposition has been defined on
the basis of knowledge including the infer-
ence rules; its magnitude depends on the
possible combinations of truth values of
atomic propositions. In a special case
where a proposition is linked to proposi-



tions by an inference rule defined in
Assumption 3.2, the amount of information
in the proposition is calculated by a simple
operation on the few proposition sets
which the added proposition relates to.

We can apply this theory on amount of
information to disambiguate the interpreta-
tion of a given natural language sentence,
because the proposition comesponds 1o
one of the possible interpretations of a
sentence accepted by the NLU system.
Therefore, amount of information as
defined by (8) can be viewed as a means
of assigning an amount of information to a
sentence interpretation.

Equation (8) states that if an interpre-
tation is linked with more facts or events
which have been introduced during the dis-
course, and if more guesses are derived
from the known facts and events, then
IC(D".I'm)| decreases. As a result, the
amount of information is larger. Thus, we
can conclude that the selection of a inter-
pretation maximizing the amount of infor-
mation corresponds to the use of inference
rules in knowledge for ambiguity resolu-
tion.

However, the use of the amount of
information given by (8) as a measure for
disambiguating sentence interpretations in
a practical NLU system may not be advan-
tageous, because large amounts of memo-
ry and CPU time are required to calculate
it using (8). For a practical calculation pro-
cedure, we have considered a special case
in which individual inference rules do not
share common propositions. Equation (10)
gives a pood enough approximation of the
amount of information in a given proposi-
tion in the general case, unless inference
rules share many commen propositions. In
the following section, we apply this equa-
tion to disambiguating interpretations in
an NLU system.

d. Application to natural language under-
standing

We will describe an application of the
theory in disambiguating interpretations in
a practical NLU system. In section 3, it
was shown that the amount of information
in a sentence interpretation based on a
comprehension model including knowledge
can be used to resolve ambiguity in its dis-
course context. By selecting an interpreta-
tion with the largest amount of informa-
tion, the interpretation having the
strongest link with the discourse context
can be determined.

We will deal with the anaphora resolu-
tion problem as a typical example of a dis-
ambiguation problem, because this prob-
lem is basic and important in natural lan-
guage understanding, and because an
anaphoric expression used in some dis-
Course contexts gives rise to contextual
ambiguity. Anaphora is an intersentential
device which connects a superficial
expression with an object or event in the
discourse, such as by the use of pronouns,
pro-verbs, certain definite noun phrases,
or ellipses. The problem of anaphora reso-
lution is that of determining the referent of
an anaphoric expression. When more than
two referent candidates satisfying the
semantic restrictions of an anaphoric
expression exist, it is necessary to decide
which candidate is the most plausible. The
formalization for amount of information
described in the previous sections is
applied to the problem of resolving
anaphoric ambiguity by regarding the prob-
lem of anaphora resolution as one of sen-
tence interpretation.

4.1 Problem

Figure 5 shows an example sentence
in a consultation dialogue on the operation
of a video cassette recorder (VCR]“SJ.
Consider the anaphoric expression "it" in
this example. The referent candidate
"VCR" is preferable in a consultation on



VCR opemtion to other candidates
"cassette-tape” or  "playback-button”,
though all of these candidates satisfy the
semantic restriction of "work", too. This
preference comes from the fact that the lis-
tener can be supposed to have the follow-
ing knowledge, if he has used a VCR.

Ifa VCR is on,
and someone inscris a cassette tape
into the VCR,
and pushes the playback button,
then the VCR will work.

This causal relationship embodied in the
listener's knowledge is needed in order to
select the most plausible candidate,
because this ambiguity cannot be solved
by using syntactic and/or semantic restric-
tions alone. The theory presented in the
previous sections supports the use of this
causal relationship: selecting the informa-
tive interpretation based on the listener's
knowledge leads to its use.

Though | issened & taps koo e YR
und pamhed the playback bsms, W' sl workisg

Figd An ple of & o a dileps aboul YOR eporiioa
4.2 Procedure
To manage the problem described

above, a practical procedure is presented,
the procedure consists of three major
steps: anaphora detection; referent candi-
date extraction; and preference judgement.
In the preference judgement step the pro-
cedure chooses the appropriate referent
for an anaphora in the input sentence
through selecting the most informative
interpretation of the sentence.

Every input sentence in Japanese,
which is written in kanji and kana, is
transformed into a dependence structure of
case-frames representing an  interpreta-
tion. After the input sentence is analyzed
morphologically into a sequence of bunsel-
su.&z“a}, the case-frames are constructed
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from the dependencies of nearest bunsefsu
pairs that satisfy semantic restrictions,
where any cross-serial dependency is
inhibited. For each case-frame, the follow-
ing procedure is carried out.

Anaphora detection

As the first step in anaphora resolu-
tion, the procedure detects anaphoric
expressions, such as pronouns, definite
nouns, omitted obligatory cases of the
predicate in the case-frame being pro-

cessed, and nouns themselves®™. These
extracted expressions are managed as
tentative instance schemata. [

Referent candidate extraction

For every anaphoric expression, the
procedure is to search for referent candi-
dates corresponding to the expression.
Instance schemata which belong to the
same class as the expression, those
which belong to a sub-class, and those
which belong to a class linked to the
expression’s by a has-pant relationship,
are extracted as candidates. On the other
hand, if an anaphoric expression refers to
some event, the procedure searches for
preceding events in the conversation his-
tory. After extracting referent candidates,
the procedure constructs a structural rep-
resentation for the case-frame being pro-
cessed by binding the referent candidates
to the verb of the case-frame. This repre-
sentation includes a list of interpretation
candidates for the sentence, and in general
there is a number of these candidates. [

Preference judgement

When there is more than one interpre-
tation candidates in the preceding process-
es, the following procedure is followed.
The procedure is to choose the most infor-
mative interpretation; preceding sentences

*4 A noun in a Japanesz sentence can refer 1o an
object or an event in the discourse.



in the conversation history are inspected
in order to link the interpretation candidate
being processed with some preceding sen-
tences by if-then rules in the system’s
knowledge base. Here the group of if-then
rules corresponds to the set of inference
rules K, and the group of preceding sen-
tences 1in conversation history corre-
sponds to the set of literals D in our theo-
ry. An interpretation candidate which max-
imizes the amount of information
calculated by Equation (10) is selected as
the most plausible one. (]

After the procedure selects the interpreta-
tion candidates for all case-frames, it
accepts the next sentence. Figure 6
shows a process example for the sen-
tence: "VCR no saisei bolan wo oshita ga
ugokanai”, (in English it means "though [
push the VCR playback button, it’s not
working"). The second clause is analyzed
into interpretation candidates v, and v,,
and the calculated amount of information of

lama._tcoiescs

<Origiml sereeaces : ¥ FraREHr L R
<ln Rumas lsusnoe @ Bidep no  saised boldn - [T g

< Meantngs M apste :

. VYCR of plavbschbanen Olyjerd push Pog b work
Though | pushed the VCR plapback buston, U b st workieg.®

Dau alice e | cleseCEPLoMa A9 4 LA K" B proceged

¢ .
wimaunes e | verni000, playback-bense? 1001 werl |

=hislgzy or lienl sa D

D = [eventipunh, yes, [agen mel), {ohjec playtack-bhunnndl 01 HI
Brcew for_the nd cline CHE 80"

Bybf e (il i ol workd
wreferem  candedaleg

Tor *ir™s werd | DK Playback-bowesd | 001
P oA Giand ek
mrpr:u.nin e st

vy & wvendwork, ¥y T ewend|wark,
s ] [ebjecwved 1000 ) o obfest, sbayhs ek-butlol ] D01 11}

K, ¢ evemlimen yoa [{okpectrape) Agab VORID o~
e s e o bjecs, pilay ba k- oo )
= __eveoi{woryes [ [eber VOR

campen of infermatioms r '

Wy DKL = leggittvlagon ¢ 2+ agnm) Kv, DX} = 1.00
= lagy{(+13-1]] = | 58

(8{0) = 1, @07 = 1, IF « Dw v}

!

<result of ohe
+ wvest{work mof{ohjeo, vonl 1 000)])
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Fig6 Aa cawph of the procedurs for doambipation of anaphorie
refEronoes.
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vy and V; is 1.58 and 1.00, respectively.
Therefore the proposition vy is selected as
the preferable interpretation for that
clause, and at the same time, the referent
for it is determined to be the VCR.

The procedure has been incorporated
as a part of an experimental question-
answering system, whose current task is
guidance in VCR operation(!5), The sys-
tem uses a knowledge representation sys-
tem®), which represents an object and an
event as a schema in a similar way as
units in KRL( and causal relationships
between events by if-then rules. This Q/A
system has been developed on PSI-1I*5,
and has 1000 words in its dictionary, and
100 event schemata, 200 object schemata,
and 30 rules in its knowledge base. It can
be said that the number of elements in the
inference rule set K of our theory is 30,
because the above if-then rules corre-
spond to the elements in K. On the other
hand, the number of propositions con-
structed from event schemata and object
schemata cannot be counted because of
the large number of combinations, but this
15 no problem, since we do not have to pay
attention to the number of atomic proposi-
tions in set £ to caleulate the amount of
information in a given proposition.

4.3 An Experiment

A conversation experiment has been
carried out using the experimental Q/A
system with the procedure for anaphora
resolution described above. This expen-
ment was aimed at an evaluation of the
theory presented here through the anapho-
ra resolution procedure, not at an evalua-
tion of the total Q/A system. Here, the fol-
lowing restricted conversation experiment

*5 PSI-Il is a computer system developed by the
Institute for New Generation Computer Technolo-

EY-



was carried out. Nine pairs of sentences,
such as those shown in Figure 7, were
given to four persons, and sentences
which could follow these pairs were col-
lected from them.

lher ErFoMIrETRLS.

Show e bow i playteck @ mpe®
S CF Ay b P=TRECFIEARTREMERF *ERLT TR,
“Pemse lnest ihe ikpe jmes the VR, sod pak e playback bubon®

(a) As example of plves dislegues

ErEELR A AR kL E SRR,
"I 1 pah e butivs before | imen i whst will appeaT

fbd As caimple of p callecisd synigscy which can foflew (2l

Fig.T An ciemple of gives disloguo wad collcctcd senecaces.

Several of these sentences couldn't be
processed correctly because of the use of
non-registered words, so any sentences
that the system was unable to analyze
syntactically were removed; the number of
sentences remaining was 113, and they
were used in this experiment (there were
174 clauses in these sentences). Afier
given dialogues, these sentences were
input into the system. There were 204
anaphoric expressions in the collected
sentences, and 190 referents were found
correctly. For example the following dia-
logue was processed correctly.

Svitem

Bideo-kasetio-leipuy wo bideo ni
video-cassette-tape  Object VCR Goal insert Past ?
Did you insert the Video cassette tape into the VCR?

jre magita ka.

Liser

[dwe) fre  ta ga, [bga) dete kire simau.
insert Past but [it)
[ inserted it, but it came out of the VCR.

¢came out

O

The video-cassette-tape is plausible
for the ellipsis ¢ga in [$ga] dete kite
simau, though ¢ga could refer to both the
picture on the screen and the VCR within
a syntactic and semantic amalysis.

The procedure produced more than one
interpretation candidate 47 times, and it
failed to select the correct candidate 6 of
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those times. These emors were due to
inadequacy in the candidate extraction
step. For example, the procedure failed to
find correct objects, because they were too
far from anaphoric expressions to be found
as candidates; the number of objects
which the procedure searched for was lim-
ited to 10 preceding objects, because of
the processing time. On the other hand, all
interpretations related to an if-then rule
were selected correctly, and this occurred
32 times. As a result, 91 percent of inter-
pretations were chosen correctly in total
(93 percent of referents were determined
correctly).

4.4 Related Work on Anaphora Resolution

Several works on anaphora resolution
from various points of view have been pre-
sented (e.g., Ref. (14) and (17)). They fall
into three broad categones:

» approaches using general heuristics to
find referents,

« approaches using syntactic and seman-
tic restrictions to eliminate

« approaches using the inference method
to infer cognitive entitics or to verify
coherency with the context.

Our approach can be categorized as an the
inference approach, however it uses
semantic restrictions, too.

Many studies demonstrate that a theo-
ry for anaphora resolution must accommo-
date the role not only of syntactic and
semantic restrictions but also of inferential
knowledge. In one of these studies, a for-
ward chaining method of inferences includ-
ing a "demon mechanism" provides enti-
ties as referents for anaphoric expres-
sions, where the entities are not lexical
elements in the text!®. The role of infer-
ences, however, is not limited to this func-
tion: inferences are needed to solve
anaphoric ambiguity. Hobbs tred to solve
anaphoric ambiguity by using coherence
relations between sentence pairs®; in his



study, anmaphoric expressions are inter-
preted as having the function of binding
the sentence pairs. The relationships are
categorized into contrasts, parallels, and
elaborations, and they are recognized by
using inference rules.

There are also several studies using
some kind of focusing mechanisms (e.g.,
Ref. (4), (7), (14) and (8)). In a typical
approach, Sidner proposed a bootstrapping
procedure using a focusing mechanism; a
focus serves as a primary referent as long
as it leads the context to a coherent one.
In her approach, the inference function sim-
ply verifies the consistency of the focused
objects within the context.

These works using some inference
functions do not present any objective
quantitative measure for selecting the
most  plausible  referent.  They cannot
answer the question of why a panicular
inference rule is objectively appropnate for
linking a sentence with its context. The
formal theory presented in this paper
gives a theoretical background for the use
of inference functions in anaphora resolu-
tion. The sentence interpretation linked to
its context by an inference rule contains
more information than other interpreta-
tions mot linked to its context.

5. Conclusion

The amount of information in a sen-
tence interpretation, used as a measure
for disambiguation in a natural language
understanding system, is described. It is
defined on the basis of a listener’s com-
prehension model including knowledge
about causality relations between events
as well as propositions. A theory for calcu-
lating the amount of information in 2 possi-
ble interpretation is described. Further
more, this measure is applied to a proce-
dure for anaphora disambiguation, which
forms part of a question-answering sys-
tem. Finally, a conversation experiment
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was carried out using this system. Ninety-
three percent of referents were determined
correctly. Even though many sentences
could not be used in the experiment, the
effectiveness of the defined measure was
confirmed; the error rate on interpretation
decisions was reduced by around half, and
is expected to be reduced still further.

This paper presents the fist work
based on formal definitions of the listen-
er's knowledpe and gives a quantitative
measure for resolving ambiguities in natu-
ral language, especially anaphoric ambigui-
ties. There are several works using infer-
ence methods for dealing with anaphoras,
and the work of Hobbs used an inference
method to resolve some anaphoric ambigu-
ities'®). These works are similar to ours
from the viewpoint of their use of inference
methods; however they do not provide any
formal guantitative definition in terms of
the use of this inferential knowledge; they
simply used inference methods. Our work
presents a theoretical background for the
use of inference methods in anaphora reso-
lution.

The theory has been developed within
the framework of propositional logic.
Propositional logic is adequate to disam-
biguate interpretations in such simple Q/A
system as do not deal with quantifiers;
and the result of the experiment proves
this. Propositional logic is, however, too
simple to deal with natural language com-
pletely, because it neglects linguistic ele-
ments such as the mood, aspect, or tense
of a verb. Furthermore, the structure of the
real knowledge of a listener might not be
flat unlike the set of propositions defined
in this paper. In further study, we intend to
expand the framework in these areas.

Appendix.

Theorem 2.1,
Proof, To prove this theorem, we
use the notion that the conjunction of



propositions in HK (= D v K) is true. If
any logical implication exists in K, it can
be represented by a conjunction, whose
conjuncts are literals or disjunctions of lit-
erals, because amy compound proposition
can be transformed to a conjunctive normal
form. Thus, the conjunction of propositions
in HK is transformed into a conjunctive
normal form. Each conjuncts of the con-
junctive form can be separated into other
elements in K1 or D1 respectively, i.e., lit-
erals belong to DI, and disjunctions
belong to Kl. Furthermore any disjunction
can be rewritten as a logically equivalent
logical implication, and it is clear that the
left-hand side of the logical implication is
a conjunction of literals, and the right-
hand side is a single literal. O

Lemma 3.1.

Proof. It is clear that the relation
R' over K is an equivalence relation,
because R’ is reflective, symmetric and
transitive from Notation 3.1 and 3.2
Therefore, K is grouped into equivalence

classes by the equivalence relation
R U
Theorem 3.1.

Proof. No two proposition sets Ai

and Aj for i#j, share any common proposi-
tion by definition. Also, let the number of
conjunctive combinations of those which
don't belong to any Ai be Co (Co=2Ng-L,
where NO is the number of propositions
which don’t belong to any Ai, and L is the
number of atomic propositions, other than
those propositions whose truth values are
determined m D already.) Then, the num-
ber of elements in S(D,K) is obtained as
the product of the elements in combina-
tions C(D,I'n);

H
IS(D,K)| = Co x IT |C(D,Ti)].
i=1

Only C(D,Im) with respect to I'h which

(A1)
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the input proposition v relates to is vari-

ant, before and after v is added o D.

Thus, substituting (A.1) into (6) gives (7).
L1

Theorem 3.2.

Proof. Let ¥j and Y’j be sets of

literals commesponding to a inference rule Kj

(A.2)
(A.3)

Wi={Pji Dj2 Ptk 1P jki} »
T i={Pj1Pj2. R (k1) Pk )

where Kj=Pjl APj2A-APj(kj-1) 2 Pjkj-
DA purtj) is the set of all literals in D,
and also related to xj, because ‘Pt is
the set of all literals in terms of atomic
propositions in kj. Thus,
IDACFH DI ki) is the number of liter-
als (in xj) whose truth values are deter-
mined in D. The number of all combina-
tions of atomic propositions with truth val-
ues in K is 2Mj, therefore the number of
combinations consistent with D is

2mj - ki Of these combinations, only the
combination  <pj1.,Pjz,-Pjkj-1)Pjkj> I8
not consistent with Kj, 50 the total number
of the combinations is reduced by one,
when DH(Wj¥')) contains the possibili-

ty of {pjl.PjZ,...,pj{kj_”,Flj_ﬁ::, i.e., when
DAY . DA )Y

means that the negation of xj is consistent
with D. Therefore, [C(D,I)[=2mjK;-]
when the negation of xj is consistent with

D, otherwise |C(D,Tj)|=2m;j-k;, O
Theorem 3.3.
Proof. By substituting (9) into
(8), (10} is obtained. O
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