ICOT Technical Report: TR-601

TR-ni

Quixote @34 7 = 7 bk k

BRI Sl HAm W G
W b

Movember, Y0

@ 1990, ICOT

Mita Kokusai Rldg, 21F (03)3456-319]1 ~ 5

'G DT 4-28 Mita |-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

QuixoTe OF 7 ¥ = 7 il

A =EE, P B
PES T () 848 27 APER
faH —iE
(BF) FTHEA 2 v E = — 5 BRI

ATV VERE (AT TAT T AT) RHEE - A T2 7 MERT - & -
2 (DOOD) A& LF+ 7 V=7 MERL 27 ATEEARE 22 LT . AFTH, 5K
ATV PV T ARG TERSN L. ThiFEHET I oFEELER L. BE ICOT
FROMOE LT WL HEFEESE (2 DO0OD) Qurrers TOF 7 ¥ = 2 FHRRIKEICHE
AEMTD, Qurrore T, #7 Y x 7 FERRHEGIGRE (BAE) & LCEHE h TEER
CES A HE RS 5, . Quzrore KBV EFT V=7 FIERHIMEIC B L BB EEIc D

T HHlMmT o,

Object Identity in Quzxore

Yukihiro MORITA, Hiromi HANIUDA
Systems Laboratory, Oki Electric Industry Co., Ltd
4-14-12, Shibaura, Minato-ku, Tokyo 108, JAPAN

e-mail: morita@okilab.oki.co.jp, haniuda@akilab.oki.co.jp

Kazumasa Yokota
Institute for New Generation Computer Technology (1C0T)
21F., Mita-Kokusai Bldg., 1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN
e-mail: kyokota@icot.or jp

Object identity plays a key role in object-oriented systems, including deductive and object-
oriented databases (DOODs). We revisit various discussions about it, propose some criteria
to represent object identity, and focus mainly on the characteristics in Qurxore, which is
a knowledge representation language developed by ICOT and can be considered as’ one of
DOOD languages. In Qurrore, object identifiers are written in the form of extended term
and constitute a lattice based on the subsumption relation. We also discuss some {ealures

related to object identity of QurxoTe.

1 Introduction

Why do we need new generation databases? Why
should we extend to conventional databases such
as relational, hierarchical, and network databases?
The teason is that conventional ones have not
only difficulties to cope with various applica-
tions such as engineering databases and knowledge
bases but also make users take a burden such as
impedance mismateh, and computational and se
mantic responsibility. In order to overcome such
difficulties, many approaches have been proposed:
deductive databases, object-oriented databases,
and semantic data models. Common fealures or
main trends among them are towards integration
of database, programming, and knowledge repre-

sentation languages.

Among the approaches, we take an approach
for deductive and object-oriented databases
(DOODs), which seems to be more flexible and
comprehensive than others. That is not a fixed
concept of databases or a data model but a frame-

work for extensions to conventional ones. [11] clas-
sifies extensions to deductive databases as [ollows:

1) Logical Extensions
2} Data Modeling { Encapsulary) Extensions

(a) Introduction of Object ldentity
(b) Introduction of Complex Data Structure

{c) Encapsulation of Data and Procedures
3) Computational {Paradigmatic) Extensions

(a) Object-Orientation Paradigm

(b} Constraint Logic Programming

Paradigm

We can extend par each item and combine them
for a new database. In our sense, DOODs are
databases along the above framework.

Object-orientation concepts have been ambigu-
ously used in various contexts, although they are
cousidered. to be useful in many applications of

databases. In object-oriented programminy lan-
guages, the active aspects are emphasized from
a computational point of view, while in object-
vriented databases, the passive aspecls are empha-
sized from a data modeling point of view. Further-
more, other concepts such as object identity, en-
capsulation, and inheritance are not also used uni-
formly even in database society. Under the present
situation, many efforts are devoted to the formal-
ization, while most of object-oriented svstems are
developed very practically.

In the above framework, we persist in their
formalization for both active and passive aspectls
of objects as extensions to deductive databases,
that is, in iogic programming paradigm. In the
sense, object-orientation concepts should be made
clearer. Among various features of the concepts
in DOODs, the concept of object identity is one
of the most important over passive and active oh-
jects. Besides object identification. from a data
modeling point of view, object identity works
for construction of complex data structure and
property inheritance, while, in a compulational
point of view, an object works autonomously and
communicates by message passing through object
identity with other objects. In this paper, we
mainly focus on the concept and features of object
identity in a knowledge representation language
QUIXOTE.

We proposed a DOOD language Juan in [12],
which is integrated with a knowledge represeanta-
tion language QUINT and now called QUIVOTE.
In Section 2, we revisit various discussions on ob-
ject identity and show several criteria of object
identity for DOODs. In Section 3, we represent au
object identifier (oid) formally in the form of ex-
tended terms, and compared il with olher works.
In Section 4, we describe various features in the
context of QUVIVOTE.

2 Discussion about Object Iden-
tity

Object 1dentity is one. of the most important
issues of object-oriented programming langnages
and also object-oriented database languages. For
an object itself, idenmtity is the property of the
object that distinguishes it from all others in a
system. On the other hand, from a user poinl of
view, it is the property with which users can find
a specific object from a pool of objects. There
are several papers [7, 8§, 3, 12] that discuss object
identity in abject-ariented systems. However some
of the papers miss the second point of view for ob-
Ject identity. In this section, we revisit them and
discuss how to represent object identity.

2.1 For Whom Is Object Tdentity

Khoshafian and Copeland [7] disenssed object
identity in general purpose programming lau-
guages and database languages, They classify de-
grees of support of object identity of languages
in a two-dimensional space: the representation di-
mension and the temporal dimension. In the tem-
poral dimension, object identity is classified as fal-

lows:

1) temporal data

e.g.,

{a) within a program or transaction (
Smalitalk-80, Pascal, Prolog)

2) persistent data

(a) between iransactions (e.g., RM/T,
UNIX shell)

(b) between structural reorganizations (e.g.,
OPAL)

In the representation dimension, there are three
classes;

1) data value (e.g., identifying employees by so-
cial securily number)

Pascal, Prolos,

2) user-supplied name (e.g.,

UNIX shell}

d) system built-in (e.g., Smalltalk-80, RALJT,
OPAL)

According te [7], an succeeding item in each di-
mension snpports mare strongly the notion of ab-

ject identity than tle preceding ones.

As for the implementation of abject identity,
[7] discusses two concepts of dala independence
and location independence, and concludes that the
most powerful technique is through surrogates as
identifier.

However, in [7], object identity is discussed from
a viewpoint of Leliaviors ol objects in a system
but not from a viewpoint of user's manipulation of
objects. Considering how to support both of these
properiies with an identifier, we classify attributes
of an object into two categories, that is, attributes
which partially take a role of identity and ones
which are independent of identity.

We explain tlis classification with an example.
Suppose there is an object corresponding to a per-
son who is teen-age, or more exactly a type of
objects each of which is a teen-aged individual.
Whal kind of an cid should we give to such an
object? Suppose that an attribute of the object
indicating “tecn-age” s age — feens. Since the
attribute plays an essential role for identification,

we construct the oid as

personage — teens].

In many papers, object identity is discussed to
be independent of the attributes {or the state)
of the object. [7] points out four prablems for
identifior keys which are attributes for identifi-
cation. However, these discussions does not take
bath properties of ideatity into consideration. Sur-
rogates in [7] could not be used to find a specific
object with some attributes of the object. Sev-
eral papers[2, 3, 6] pointed out that ‘pure’ object-
based languages are inconvenient, because there is
a case that an ofd is nol so important for some
object. For example consider the following]6):

i R

eiffel_tower

tuple(name = “Eiffel Tower",
admission fee = 25 FI,
address = eiffeladdress)

eiffel address
tuple(city = paris,

street = “champ de mars")}
paris -

tuple(name = “Paris”,

country = “I'rance”

population = 2.6)
where, eiffel tower, eiffel address, and paris are
oids. Howewer it 15 convenient to treat eif-
fel_.address not as an object but as a pure value,
since it is immutable and is not shared by other
ohbjects.

2.2 Beyond Conventional Object Iden-
tity

Ullman [§] also discussed value-oriented systems
and ohject-oriented systems. He listed advan-
tages and disadvantages of each system and con-
cluded: “Value-oriented systems will win simply
becanse they offer the user arbitrary access to
data, with access expressed declaratively™. How-
ever, he assumed that “declarative programming
is hard to integrate with ohject-oriented systems".
He misses requirements of new applications for
object-oriented systems and many efforts for for-
malization of object-oriented systems, although
most of the efforts have been done after [8]. In
QUIXOTE, abject-oriented and value-oriented fea-
tures are integrated into an object term as an
identifier.

Beeri [3] took another standpoint: “0O-ids are
supposed to implement the ideas that each ob-
ject has an identity, different from that of any
other object, that does not change throughout
its lifetime, We claim this is unnecessary. O-ids
are implementation concepts”. [3] denies to de-
ify object identity which has been discussed ab-
stractively, and consider it as an implementation
element. Alternatively, he selects names and refar-
ences in order to refer to objects. That means a

schema including such a name space that contains
the names of the relations and the attributes in
the database world. Although “How do we refer
to objects?™ was ronsidered in [3], it is still in-
suflicient. In QUIYOTSan identifier is regarded as
a “name” in the same sense of [3], but not as an

implementation element.

Iiifer and Lausen [1] proposed F-logic, in which
oliject-orientation concepts are embedded in logic
programuming. They define id-ferms for oids and
labels, which are based on a first order predicate
wotation. Kifer et al [5] revised a syntax of labels
to take any number of arguments as overloading of
the predicate, but not one of an oid. Oids become
to be defined explicitly, but there remain some
disadvantazes of a first order predicate notation:
fixed number of arguments, fixed location of argu-
ments, et al. QWIVOTEadopts object terms in the
form of extended term representation to represent
oids and labels uniformly.

Pure object-based languages have another in-
conveiient from a database point of view. Most of
them employ system built-in oids, where the only
way to et an oid is to create an object or to
get from creator of the object. Consider a query
for retrieval of monuments in Paris which is rep-
resented as an object in a system, when we have
some information about Paris. How can we get the
oid of Paris for the query? Some mechanism is
needed to get an oid easily. As mentioned above,
in QUIXOTEwWe can construct an oid with a name
in the sense of [3] with attributes, which play an
essential role in the identification.

2.3 Crileria

Yokota [12] discussed the following criteria for oids
from a DOOD point of view:

1} Rules should support a mechanism for dy-
namically generating the oid of intentionally
defined object.

2} Object s]iaring needs a ‘global’ oid referred
from the related ohjects, especially in a dis-

tributed environment

3) A persistent object also needs an oid, which
should be possible to be recalled when the
ahject is activated in memory again.

4) An oid should be given even wlhen we have
only partial information about some object,
because we cannol expect an ohject has a
fixed number of attributes and fixed structure
as the identification information.

Naw we consider object structure which is es-
sential to identifv the object. For example, Fig-
ure 1| shows a graph with a cycle as a structural
object. As we mentioned above that an oid could
include some attributes of the object to identify
the object, we could construct the oid for the ob-
ject, which reflects the structure.

So, we inherit above four criteria and add an-
other one:

5} We should prepare rich constructors for repre-
senting oids even with recursive structure

3 Representation of Object

Identifiers

Mentioned in the previous section, we construct
an oid freely, as the representation of object iden-

tily.

3.1 Individual Object Term

First assume a set € of basic objects, which has
partial ordering = and constitutes a lattice (U for
a join operation and N for a meet operation), and
a set WV oof wvariables. An individual olject term i3

recursively defined as {ollows:

1} A basic object o (€ @) is an individual object
term.

2) A variable X is an individual ohject term.

4) If @ is a basic object, o), -+, 04 are individual
object terms, and [, --.ln are labels, then
olly 8y oy, -1, 8, 0,] is an individual object

term, where §; for 1 <1 <nis —, —, or =,

4) I o iz an individual object term but not a
variable, and X is a variable, then X8o is an

individual object term.

an individual object term in the form of X@o
i5 called an anneiated vartable, which is used for
construction of cvclic structure. For example, con-
sider X @ol = X]. If we unfold it step by step,
we get ofl = o[l = o[l = of---]]]] with infinite strue-
ture, Such structure ﬂ.'t-.quentl}' Appears in many
applications: a person’s parent is a person, whose
parent is a person, whose pareni is a persom,

whose «« o,

The operators —, —, and = correspond to or-
dering among object lerms (see the details in Sec-
tion 4). That is, we can translate an object term
into the constraint form:
dll—e'] & = XXV, Y=o} & oll=X|i{XCTo'}
all—e'] & ofI=X][{N IV, V7 =0') & ofl=X]|{N 0"}
sl = o'l & all= XN Z0')
Now we allow the constraint form in the defi-
nition of object terms and extend the representa-

tion:

3 I o is an individual ohject term, fy,-«-, 0,
are labels, and X, ---, X, are variables, then
olly = Xy, b = Xll{er, - em)} s an in-
dividual object termi, where ¢, for 1 <1 < m
is X; C o5, Xi doj, or X; = oj for any indi-
vidual object term o;.

Mote that an anuotated variable also can be writ-
ten in the form of the constraint form. For exam-

ple, X@a[l — X] can be written as X|{X = ol =
Y]V C XL

3.2 Object Term in the Context of
Object-Orientation

Oids are represented uniformly in such a way and
play such a key role in the context of object-
orientation.

(

N

(s
N

O

©

\Z/

Figure 1: A Graph with a Circle

As shown in the copnstruction of object terms,
each object term is treated not as object-based,

but as value-based. For example,
johnlhave = pen[maker = @], like = pen]
iz a different oid [rom
johnlhave = pen[maker =a), like = pen[maker =al],

although there is a subsumption ordering among
them [see Section 4],

We attach properties and methods to such an
oid. Each property is represented in the triple
of a label. an operator, and an object, and can
be considered as a kind of methods, becanse a
lubel and an object term in an attribute can be
considered to correspond to a message identifier
with messages and the return value, respectively.
An oid and methods are written in a head part of
a rule and the corresponding implementations of
methods can be written in the body of the same

Tle:
oid [[method,, - - - method,]
<« implementalion, - implemenialionm

A label represented by extended term can be re-
garded as a kind of method. For example, we can
represent a method for a class human that return
set of common friend with other person as follow-
ing:
X/|eommon_friendwith = Y] - {Z}]

X C personf[[riend — {Z}],

V' C person/|[friend — {Z}].
A set of rules with the same oid corresponds to an
object, and a method could have multiple imple-
mentalions in rules of an ol ject.

Furthermore, the oid also corresponds to a type,
a class, or an instance. In an object-oriented sys-
tem, a fype summarizes the common features of a

set of types [1]. By introducing some ordering be-
tween oids, such common features can be attached
to the upper oid. The notion of a class contains
twoand an object warehouse [1]. As for the former,
our oid can create instances by binding variables
in the oid, which correspends to the operation
new. Instantiated objects are located under the
original object by natural subsumption ordering
among oids. [n the sense, oids alse containg the

concepte of an object warehouse.

3.3 Semantics and the Extensions

An oid takes a set of labeled graphs as the se
mantics and the correspondence is guaranteed by
Solution Lemma of ZFC™ JAFA set theory [9). In-
versely, the Solution Lemma allows more exten-
sions of oids. Here we list some of them under
consideration:

1} Introduction of Set Constructor:

if op,+++,0p are individual objects, then

{o1,- -, on} is a set object,

2) Combination of Set and Tuple Constructors:

o[l — {oy,---. <.} 1" — &)

1) Introduction of Element-of Relation:
I[‘-"[!IIE {I:J|,' o ,0..”.

Thus, an ebject term is represented in various
ways. For example, a graph in Figure 1 is written

by using a sel construclor in two ways as lollows:

plfr=a,
to=X@p[fr=0b,
to=p[fr=e,
to={X p{fr=d,
to=mnil}]]].

- —

plfr=a,
to=p{fr=0,
to=YG@p(fr=e,
to=p[fr=0,
to={Y,plfr=d,
to=nil})]

The expressions have the same semantics as shown
in [10].

4 Extended Term in QUTAXOTE

In thiz section, we dizgcuss several characteristics
of extended terms as an oid in a DOOD language
QUTIYOTE.

4.1 Ordering among Object Terms

These is a partial ordering among basic objects
(). For example, human = animal, which means
that kuman is an animal.

We defline & partial ordering C extended terms.
In this paper, we give an informal definition by
example. See [9) about the formal definition.

e g T b il a and b are basic object such that
a<h
sofl=ajColl=blifalCd

o ofly =a,l; =b]C olly = a]

™ .ﬂ-[h _]L',II:JT][:O[h =JYJ2=}’]

where, XA, Y are variables,

Then we can define an equivalence relation =

between extended terms. !

0o = oL oz Aoy Jom

An equivalent extended term represents same
object. That object term o),0p describe
the same object if o = o3 For example,
eating_eventagt = john,obj = apple] means same

object as eating_event[obj = apple,agt = john].

is,

"The user-defined extended term ordering is not consid-
ered here,

4.2 Inheritance and Exception

As mentioned in the previous section, an object
term (oid) can have properties, an abject term
with which is called an attribute term. For exam-
ple, if a human named “john” is 24 age, we can

represent it as:
human[name = “John"|{|age = 24)

Here, a term on the righthand of °/" represents
properties of the oid that represented by a term
on the lefthand of /. In QUIAr0TE, label and
label walue are also represented in the form of
extended term.

QUIANOTE inherits & property inheritance mech-
anism from Juan. Properties are inherited upward
and downward along the ordering of object terms.
If there are several praperties under a same label,
these values are joined or merged according to the
operator. That is, if obf C class:

classf[l — p] = obj/ll — p
obifll +— p] = class/[l « 9]

By such a mechanism, multiple inheritance is also
possible. For example,

if john C human and human/{name = string|
then john/[name — name).
That is, il john is human and human'’s name
is string then john's name is (an instance of)
string. Attributes specified in an object term
are also considered as properties of the object,
and inherited. However, such attributes cannot be
changed because this is a essential for the object.
In this way, we can represent exception. Consider
the following example:
bird/| flying — yes)
penguin Cbird{flying — nol
super penguin C penguin|flying — yes)
Note that
bird[|flying — no| C bird, and
penguin|flying — yes| C penguin,
according to natural ordering among extended

terms.

the mechanism,

According to inheritance
bird|flying — ne] inherits flying — yes from
bird. However, it cannot change the property
flying — no, because the property is essential
for the object. Then penguin inherits only the
property flying — no and super_penguin inherits

Sflying — yes.

4.3 DModule

QUILOTE has a concept of modules, which makes
rule inheritance possible. The module can be
regarded as a world in Juan, a situation in
QMINT, or a time. Same object term over dif-
ferent modules can be a same object. But these
objects can have different states or properties. For
example, it 15 possible that an object ‘john’ has
a value 24 for his age in a module and has 25 in
other module.

Fach module has a module identifier, the syn-
tax of which is same as an object identifier. The
partial ordering among module identifiers is also
defined as following two ways:

1) Natural ordering among module identities
2) User-defined ordering

Let me o or mean a module m has a rule . Under

the ordering, rules are inherited as follows:

if my C mo then

r3r(my ur=sr e Amg it
where my,my are module jdentifiers and ry,rq are
rules. In this case, the existence itsell of a object,
all properties of ¢ in ma, and rules about ¢ in m;
are merged with ones in model m,.

For example, consider following:
if my = john/[have = pen|,
ms :: john/[want = pen), and
mry T mig,
then john has a pen in module m3, too.

Figure 2 shows an example of module that de-
scribe an ‘update’ scheme . w_mod[larget = M|

*This example does not necessarily mean semantics of

defines the parametric module. That is, the rule
in this module defined a update rule for & mod-
ule Af. In other words, the target for the rule
in the module depends on the parameter AL
Consider an update of a module mod[id = 1]
(say m;), by update the rule in a module
u mod[id = add_age(t = laro|,target = my| {say
wy). Then the result of the update is a module
that is represented by mod[id = update{target =
my, upanoede = u)] (say mg). Since the first rule
of the example represent a ordering of module
identifiers, module my contains rules and facts
that is in module m; but not in delltarget =
my, up-mod = wy). In uy, there appear other mod-
ule math that has {perhaps) rules about arith-
metic operation on integer. We can use rules of
this module in this way, or using partial order-
ing among madules. We can modularize knowl-
edge in this way. Furthermore, @UIXYOTEhas also
an exception mechanism in rule inheritance among
modules {see [10]).

5 Concluding Remarks

We discussed a notion of object identity and oids
in QUIAOTE, Object identity is one of the most
important issues of object-oriented programming
languages and also object-oriented database lan-
guages. There are two viewpoints of the object
identity: viewpoint of an object itsell and view-
point of a user. On the first point of view, identity
is the property of the abject and distinguishes it
from all others in a system. On the second one,
identity is the property, with which users can find
a specific object from a pool of objects. However,
many works miss the second point of view of the
object identity, and we believe that the point is
important for databasse. QUILOTE uses extended
term representation (an object term) as oids, each
of which can include some attributes of the object.
So user can obtain a necessary oid easily.

An object term itsell has a characteristic of
value-oriented representation, while an attribute

epdate in @HTAXOTE,

— H —

rod[id = updateltarget = Time, up.mod = U]] 2
T@mod|id = Time]/deljtarget = T,up_mod = U/@up_modid = X, larget = T].

delflarget = M, up-mod = IV _mod) =

Fuacl & umod|target = M} : changes/[should refract — Fuact).
mod[id = npdate(target = Time, up-mod = umed]] =
Fact = uw.mod ; changes/|should_assert — Fact].

u_mod|id = add_age[t = taro| target = M] =

changes/[should_assert — larolage = X|) <= M : taro/[age = ¥,

w.mod|id = add_nge[t = taro],target = M] =

math : Y C integer fjadd[to = 1] = X].

changes/[should _retract — tarofage = V]] & M : tavo/[age = Y].

Figure 2: Example of Module Rules

term has a characteristic of object-oriented one
based on the oid. That is, in the sense, the oid
in QUIXLOTE integrates value-otiented and object-
oriented concepts.

We also describe how extended term represen-
tation as as oid plays an important role in sev-
eral features: representation of partial information,
inleritance with exception, and massage passing.
QuIAroTE uses uniformly extended terin represen-
tation as an identifier not only for an oid but also
for a label, a value, and a module identifier. Ex-
tended term representation makes it possible to
represent parametric ones, that is, a kind of ab-
stract data type.

In [7}, vpdate is one of the most important
notions to discuss object identity. However, this
paper does not discuss update, since update se-
mantics of QUILOTE is one of the future works.

Acknowledgments

The authors would like to thank members of
OuTNoTE meeting and members of ETR-5WG
for valuable comments and suggestions,

References

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K.
Dittrich, D. Maier, and 5. Zdonik: The

Object-Oriented Database Systemr Manifesto,
Deductive and Object-Oriented Databases, Wy
oto, 1990,

[2] 5. Abiteboul and P.C. Kanellakis: Object
Identily as a Query Language Primitive, 5I0-
M, 1988,

[3] C. Beeri: Formal Models for Ohject Oriented
Databases, Deductive and Object-Oriented
Databasges, Fyoto, 1959,

[4] M. Kifer and G. Lausen: F-Logic: A Higher-
Order Languages for Reasoning about Ob-
SIGMGD,

jects, Inheritance, and Scheme,

1980,

[5] M. Kifer, G. Lausen, and J. Wu: Logical
Foundations for Object-Criented and Frame-
Based Languages", Technical Neport 80/14§
(rewised), June, 1980.

6] C. Lecluse and P. Richard, “The O, database
programming Language”, In VLDE'ED Au-
gust, 1955,

[7] 5. N. Khoshafian and G. P. Copeland: Object
Identity, OOFPSLA 86, September, 1956,

[8] J.D. Ullman: Database Theory: Past and [u-
ture, PODS, 1987.

[9] H. Yasukawa and K. Yokota: Labeled Graphs
as a Semantics of Objects, SIGDBS & SIGAI
of IF5J, Nov., 1990.

— 4 —

[10] H. Yasukawa and K. Yokota: An Overview
of of a Knowledge Representation Language
QuIYOTEdraft, 1000,

[11] K. Yokota and 5. Nishio: Towards Inte-
gration of Deductive Databases and Object-
Oriented Databases: A Limited Survey, Ad-
vanced Database Syetem Symposium, Kyoto,
19460,

[12] K. Yokota: The Outline of a Deductive and

Object Oriented Database Language Juan,
SIGDBS of TPSJ, Julv, 1990,

