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Labeled Graphs as Semantics of Objects
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The purposes of the present paper is to propose a new approach to representing complex
objects which are used as object identity in the context of object-orientation, and give a
declarative part of its semantics on the domain of labeled graphs.

QUIXOTE [8] is a knowledge representation language based on the complex objects pro-
posed here, and provides knowledge representation and inference services, including represen-
tation of partial information, merging (unification) of partial information, inheritance of
properties, and so on.

Our methodology is ZFC~/ATFA, a hyperset theory proposed by P. Aczel [1] which brings

to bear all of the familiar set-theoretic technigue to deal with circular phenomena.



1 Introduction

Complex data structure is used for various data and
inowledge representation in many application: complex
objects in a database area, feature structure in nalu-
ral language processing, (recursive) record structure in
programming languages, and frames and taxonomies in
artificial intelligence. Even if different terms are used in
those areas, it has been known that there are many sim-
ilarities among them: partial or extended term represen-
tation of objects instead of a first order predicate based
one, a subsumplion relation among them, an inheritance
mechanism based on the relation, and identification of
an object. There have been many works focusing on
them, where boundaries among database, programming,
and knowledge representation languages, and among lan-
guages for various applications become to be disappear-
ing gradually.

We have proposed a knowledge representation lan-
guage, called QUIXOTE, ancestors of which are Juan for
deductive and object-oriented databases and QUINT for
natural language processing applications, and is designed
along the above line. In QUZIXOTE, an object consists of
the identifier and the properties, each attribute of which
is 2 triple of a label, an operator, and a value. We con-
struct it uniformly in the form of complex ohjects, pos-
sibly containing circular structure. Our complex objects
correspond to ones in a datebase area, and are considered
also as extended feature structure in a natural language
area. An ohject identifier corresponds alse to concept de-
scription. A subsumption relation is defined among them
and wsed for property inheritance. Furthermore, a2 con-
cept of a maodule, the identifiet .15 also in the form of
complex objects, is introduced and wsed for classification
of objects and rule inheritance.

One of the distinguished features of QUINOTE is the
semantics, which is based on ZFC™/AFA, a hyperset the-
ory proposed by . Aczel [1]. ln this paper, we focus
mainly on the semantics, the domain of which are a set
of labeled graphs in the sense of ZFC™ fAFA for treat-
ing circular structure, In Section 2, we informally explain
objects in QuIAOTE Then, we define a labeled graph
in Section 3, subsumption relation over labeled graphs
in Section 4, and discuss about solvability of constraints
over them in Section 5. Concerning on the discussions
in Section 5, Barwise[2] and Mukai[5],[4] show} important
results on constraints over hypersets. Actually, the part
on constraints over labeled graphs in the present paper
much owes to Mukai's work. As for the context, the re-
lated results are explained in Appendix A. Furthernore,
we explain property inheritance among objects in Section
6, and & concept of a module and rule inheritance among

modules in Section 7.

2 Objects of QUIAOTE

In this section, ob;er.t.s in QUIAXOTE are bricfly ex
plained.

Suppose we have a finite set B0 of primitive objects
and a lattice BO" = (B0,=,T,L1). For any a,b € B0,
a = b means that b subsumes a, that is, s isa b T and L

be the supremum and infimum of B0, respectively, Also,
lot @il and all b be the infimum and the supremum of
a and b, respectively. Elements of BO™ are called basic

objects.

An  example of the lattice 15 BHO® =
({animal, mammal, human, dog}, =<, T, L) where the fol.
lowing holds:

mammal < animal
human < mammal
dog =< mammal

Also suppose that a finite set L of (atomic) la-
bels. The objects in QUIAOTE (called ground object
terms) are defined as follows:

Let o be a basic object, {y,fo,... be labels, 0y, 00.... be
object terms, respectively.

» Every basic objecl is an objecl.

e A term olly = oy, J3 = 07,...] is an objecl term il it
contains ooly one velue specification for each label.

» A term is an object only if it can be shown to be an
object by the above definition.

For an object term ofl; = oy, [ = o1,...), we say that o be
the head and ¢; be the [-value of that object term. A
head can be omitted only when it is T,

Let FO = {&unlﬂn,ﬁllf,lﬂ,inf, mnlz,_j’em.:fe}, 0 =
mi 30 = int, and L = {age,sez}. Then, the following
terms are object terms in QUIAOTE:

human,
humanlage = 20, sex = male],

[age = 20].

Contrary, the following terms are not abject terms:

human(age = 20|[sex = male],
human|age = 20, age = 30].

An object Lterm is uniquely pictured by a graph such
that each node has a basic object as its value, and each
arc is associated with a label.

For example, the object term hurnanfage = 20] is
pictured by the graph mnﬁ:stmg of the pair of the set
{ri,nz} of nodes and the set {n & n;} where the value
m | and ng | of the nodes nyand ny are human and 20,
respectively,

It is possible to have object terms containing variables
ranging over ground ohject terms as follows:

humanjage = X.ser =Y.

Notice that X[age = 20] is not an object term, since
variables are not ranging over basic objects.

Let x be a collection of variables, and 7 be a collection
of ground object terms, T[x] be a collection of object
terms possibly containing variables.

.



The subsumption relation is a bipary relation over
7 = T (written T). Though the precise definition of sub-
sumption relation is given in Section 4, intuitive under-
standing of C-relation will sulice at this point. Intu-
itively, oy L oo (we say oy subsumes o) holds if oy has
more arcé than o; and the value of a node of oy is larger
than the value of the corresponding node of o with re-
spect to =-ordering.

For example, the ohject term enimal subsumes
humanjage = 20, sex = male], since the latter has more
ares than the former, and the value {animal) of the root
node of the former is larger than the value (human) of
the root node of the latter, that is, hwmnan = animal
holds. Similarly, humanlage = 20) C animalfage = ini]
holds, but hAumanfage = 20] and hurmanfsezr = male] can
pot he compared with respect to C. Moreover, the object
term T be the largest among all the object terms.

The eongruence relation (written =) is defined as fol-
lows:

def
mEgp=saCafale

As & collection of object terms is partially ordered by C,
= is just an equality. But, in QUIAOTE, a basic object
sometimes be defined in terms of an object term as:

2_aged = [age = 20].

This makes & be only an equivalence relation. Thus, we
are actually working on the quotient T/ =, on which C is
partial order on T/ 2.

Let u, v be object terms. An atomic constraint iz a
literal if it is in the ene of the following forms:

ull v

u=uw.

Without loss of generality, we can assume that al least u
er v be a basic object or a variable. A constraint is a set
of atomic constraints. A constraint is understood as the
conjunction of its elements, that is, the conjunction of
atomic constreints in it. Thus, our constraint language is
a sublanguage of a quantifier-free first order language in
which only conjunction is allowed as logical connectives.

By using constraints, it is possible to extend objects ta
contain variables ranging over some subsel of 7. For ex-

ample, the followings are the object terms in QUIAXOTE
I

humaﬂlu f_fﬂia.t:'m = ,YF r {Jl.’ C company ]-..
humanlhobby = X| | {tennis © X},
human[age = X} | {X = 20},

Motice that the last one is just same as humanfoge = 20|.
Sometimes, we need to have a sell-referential object such
as “a person who employs himself”. Such an object can
be defined by using a constraint as follows:

X | {X = person[employee = X]}

'The hobby-value of the second object may seem to be m set.
Actually, in QUIAOTE, sets are introduced, but it is bevond the
scope of this paper. The details of the treatment of ohject terms
ineluding sets will be shown in [8]. For the moment, assume we
have special objects like tennis.and ski or ball gomes.

The following s the list of syntax-sugaring in

SUIAXOTE:
oll = o...]] ofl = X] | {X = o[...]}
ofl = o']...]| dl=X] [ {xXCe.. ]}

off = X]|{X 2]...]}.

=Y {¥ =X X=d. ]}
ol = ¥] | {¥ £ X, X =o...]},
ol =1 {¥ 2 X. X=o[...]}

oft o= ... ]
off = XGa'l... )]
olf — X, .}
off — NisT ...]|

rt et

For example, the object term representing “a person
whao emplovs himsell™ can be written in QUIAOTE as
X@pﬁrsp:;[gmpfoyee = ,'-'L':' is allowed, and called an an-
notated variable,

Due to the existence of self-referential object terms, we
must deal with circularity in general. That is the reason
why we adopt Aczel’s hyperset theory as the semantic
domain of QUIAOTE, which brings all of the familiar
set-theoretic techniques to deal with cireular phenomens.

Our conception of objects is to see object terms as
identifiers for objects [object identifiers). For example,
humanfage = 20,2¢x = male] is a term uniquely denot-
ing the concept of *20-aged male human”, but does nol
mean that a human is 20 vears old and male. The term
[object) humanjage = 20, sex = male] possibly has labels
other than age and ser, such as name and eccupation,
but such labels are not essential for defining the object
according to our conception of ohjects. For example, the
following description {called an attribute term) can he
used to represent the fact that “20-aged male human™ i3
married {by default) in QUIAXOTE:

humanfage = 20, sex = male]/[married = yes|,

The lefthand side of “/" is an object term and the right-
hand side is attribution of the object term which speci.
fies the attributes of the object term.

Az we are working on the domain T{y] of object terms
containing variables and constraints over them. Thus,
in QUIADTE, object identity is defined in terms of
the equivalence relation on 7[x]. \What is needed is
to solve constraints or at least to check the solvability
of constraints. Barwise[2] shows an impertant result on
solvability of constraints over hvpersets in lerms of the
existence of Simulation Pair, that is. a set aof equi\r-
alences and subsumiptions ameng hypersets. in the case
that each variable is instantiated. Mukai[3].[4] extends
the Barwise's result to the case of constraints containing
disjunctions and negations, and also shows that a sub-
class af Aczel's hvperset theory satisfies the critevia of
CLP-schema proposed by Jaffar and Lassez(3).

In Section 3, the solvability condition of our constraint
language is discussed based on the Mukai's result on a
canstraint language over hypersets,

3 Labeled Graphs

[n this section, a subclass of the domain of hypersets is
defined in order to give the domain for interpretation of
object terms,

_3_



First of all, we will give a subclass @ of the domein
of Aczel's hvperset. An element of § is called a laheled
graph, since it is a set-theoretical encoding of a graph
each of whose arcs is associated with a label® The collec.
tion of {ground) labeled graphs is the largest collection
such that every (7 € G be the pair (a,b) where a € BO"
and b be ap empty set or a {finitc) function with a subset
of L as a domain and a subset of § as 2 codomain.

Il is easy to see that mapping from ground object
terms to ground labeled graphs is bijective, i.e., the corre-
spcmd-:nc;c between T and 15 one-to-one. For L‘X.H.Inl.l-l.f_'.
the object terms huwman, humanfage = 20, 56z = male),
and [age = 20] correspond to the foilowing labeled
graphs, respectively:

{human, §)

(human, {{age, {20, B)}, (2ex, (male, D)) })

(T, {{age, (20,8))}).
For ihe sake of simplicity, let T be the interpretation
function which takes an object term and returns the eor-
responding ground labeled graph.

G iz a subclass of the demain Vi of Aczel's hy-
persets with atoms. As in the case of object terms,
it is possible to have the domain Glyg] of labeled
graphs containing variables. Labeled graphs are set-
theoretical constructs in  the sense of Aczel's hy-
persets, and  unigquely  defined  as the solution of a
system of equatiens. This 15 what Aczel's Solu-
tion Lemma says. For example, the labeled graph

{human, {{age, {(20,8)}), (sez, {{male,8)})}) is the solu-
tion of the variable = for the fol]wing system of £

tions:

= {hurnmt. {;r] 1 :'.]-”

zy = (age, {z3})

xy = (2ez; {24})

3 = (20,0)

I4= (male, D).
Te be more precise, an assignment [ iz to be defined
as a function from a subset of y; to a subset of &
An assignment [ with a set X © y; of variables as its

domein is the selution of the the system of equations
ri=aglr; e X) il forany 5; € X

flzi) = flaz)
holds.
The two important points of Selution Lemma are:
(1) existence of the solution,

{2} uniqueness of the solution.

Consider, for example, the interpretation {labeled graph)
of the object tarm X @human|[employee = X, It is given
by the following system of equations:

I = I:Flur.l'uzl.n1 {1;}]

z; = (employee, 7).

TAczelll] unes the term “label” in different meaning. On his
use, “label” is mesociated with each node of & graph, and corre
sponds to the value of a node in our treatment.

According to the Aczel’s lemma. the soluticn of r
uniquely exists. call it £, 1) = a hyperset which sat-
isfies the following condition:

1 = (human, Hﬁmpfr:nyr:ﬁ,ﬂljl}:l.

4 Subsumption Helation over Labeled Graphs

First, a binary relation Tg is defined to be the largest
relation satisfving the following conditions:

If {ay, b ) Cp [az.b:) where ay,ay are basic objects and
by, by are functions {rom a subset of atomic labels onto a
subset of G, then

" 0y s

o for any pair (1, g3) € by, there exists a pair (o) € &
such thal g, Cg g3

For example, the following holds:

(human, {{age, [{20,0)}), (zex. {{male, 8]} 1})
¢ {human, B),

(kuman, {{age, {(20,0)}), (sex. {{male, )} )})
‘;Ii |:T, ffag‘e. {[jﬂl E:]'}]}]

Furthermore, as in the caze of {1; above, we get the inter-
pretation Oy of the object term X@human|[employee =
Xy name — “John"! as:

1y = (hnman, {{emplogee, 020, (reme, {{“Jaka®, 0)11}).

It is not easy to see that 0: Cp ) helds in usual set the-
ory. But, it holds in Aczel's hypersel theory. Intuitively
speaking, sets including Iy and £y are coinductively de-
fined in Aczel's hyvperset theory, which means that if we
compare {1y and {12 then it suffices to unfald only one
time and compare them without £y and €13, Thus, we can
conclude that £y Ty f holds by comparing the following
two laheled Eraphﬁ:

{human, {(employee, _)}}, and
{hunmr}‘ {feﬂlpfo_!,rf'ﬂ,,.]., (name, {f'Jﬂ-ﬁﬂ".. ﬂ}} }I}r

where . is supposed to be a special atom.

Matice that g- be unique if it exists in the second
condition above, since Iy is a function. It is casy to check
that ©p is a pre-order. Furthermeore, C; is a partial
order, 1.e., both g, ¢ g; and g3 Cg gy hold then ¢, = gz,
without censidering any additional equational theory on
G.? For the present purpose, we assume that C; be a
partial order. Thus, =g defined below is the tqua.litjl' on
G:

def
n¥g = alinnabeo
The subsumption relation C over object terms is defined
in terms of Eg as:

o Co; ' I(o)Cg I(o).

FThat means we may add eguality axioms in sueh a way that
woman = human(ses = female]. But, it is not clear whether we
could have this kind of eguationsl theories over the domain of
hyperseis, sinee the basic principle of Aczel's hyperset theory i
that every hvperset has & unigue picture. This principle scems to
be violated by adding an equational theory.




In general, a definition of an object term 15 associated
with a constraint as shewn in Section 2. Corelation be-
tween object terms is interpreted as Cg-relation between
solutions of a comstraint, for example, an object term
human(age = ¥ | {¥ T int} is defined as the solution of
X in the following set of equations and subsumption:

X =; (human, {X,])
Xy =g (age, {¥]})

Xy =g (int, 1)

Y Cg X

The problem is to have condilions on sofvahbility of con-
strainis such as Lthe above. Section 3 shows the condition.
Next, the meet and the join operations over G are
introduced. For any pair of two labeled graphs (say, &)
and (), it is possible to have the following description,
where 0 £ i, 7, k, oy and o; are basic abjects, I, I}, and {f
are labels, and =, £}, i, and y] are all labeled graphs:

& (o0, {{l 20 )y oo ) (B 2y b (82501
oy = .

{‘:"'1: {{rhyl | !“:'1 FE:II “;ri L ]'1 veay “:;Fi”}-

The meet and the join of two labeled graphs &) and &5
above are defined recursively as follows™:

meet (written &y | &3)

G 1G: £ (erMoa, {{h (21 Lyn)) - (i (mi L)),
”:_1 :1 }1 R 1{{:}2-;.:"

(i) (v Y
join (written (5 T G3)
Gi1G: E (oyUon {(hlz Tyndhe- U (= Twi)})

The follewing hoids:

GlG = 6
G 1Gy B GalGy

*To make this definition presice, it should be noticed that there
might be more than one definilional equatiens for cne object,
pince we have sellreferential steuctueer such as 1, abewve. In such
ease, the meet of two labeled graphs could not be defined by one
(definitional) equatien. Consider the following two labeled graphs:

X = (human, {(employes, {11
Y 2 (human, {[erployee, {[_r'ofm.ﬂ:l}]}]-

To gel the meet X | ¥, we must define it as the following system
of equations:

XlY=g & | &,
2y =g (human, {{employee, {Z2})}}),
23 2g X | (john,0) =g ((human N john), {(employee, {X]}}).

In this case, X | 22 ®; Frand 5, | &2 = 3 hold apparently.
Thus, we get

X | ¥ ¢ ((human N john), {(employee, {X 1 ¥])}).
If & =g {john, {(employee, {Z]))], then we have
X | 2 #g ((human N jokn), {{employee, {X | Z]}}).

This equation has & wnigue soluticn.

I

IE Gll-
&,
¢ G2l
19 GI T G?

5y | {ra
G, 16,
G 7 Ga

G,

e
T

I

It seems to be the easy consequence of Lhe above proposi-
tions that:

Proposition 1

G]LG'I‘ = =-7='f{GJ.|G?]3
Gy Ty e STLP{'GLG:}.

since Cg is a partial order on G,

5 Selvability of Constraints over Labeled Graphs

Barwise[2] shows the selvability conditions on 2 set of
hyperset-equations and hypersel-subsumplions over para-
metric hypersets {hypersets containing variables). In that
paper, Barwise defines the notion of Simulation Fair
which is consists of a pair of bisimulation relation and
simulation relation with the same field, and show that a
set of hyperset-equations and hyperset-subsumptions over
a sel of parametiic hypersets has a solution iff a simula-
tion pair satisfying obvious conditions exists for the same
set.

This means that if we have two relations which sat
1sfy the conditions on simulation pair, we could define a
constraint by means of the two relalions, and moreover
we could check the sclvability of the constraint ever the
domain of hypersels.

To get the conditions on solvability of our constraints,
we must show that our constraint relation 2, and Cg
satisfies the conditions on the definitions of bisimulation
relation and simulation relation.

First of all, notice that the domain & of labeled graphs
are different from the ones in [2] in two wayvs:

(1) our domain is a subclass of the domain of hypersets,
i.e.. a domain of labeled graphs,

{2} our class of atoms (basic ohjects) is partially or
dered,

The first point causes no problem, The second point may
seemis to cause difficult problems. But, we have no vari-
ahles over basic objects, i.e., variables are ranging over
labeled graphs. and we suppose a fived alzebraic struc-
ture on basic objects, Thus, we only need the comparison
on two basic objects whicl can be deterministically un-
derstood by seeing the fived damain of basic objects.

Furthermore, Barwise’s result presupposes that each
variable in a constraint is instentiated, that is, for each
variable z, enly one equation = = u® is in the constraint
where u is a hyperset or an atom. In general, some
variables mught be uninstantiated. For such a case, we
must make sure the way to extend a constraint without
changing the solution space of the constraint,

Bpoxo wowhere v it & Iaheled graph for our case.



Mukai[3], [4] extends the Barwise's result and shows
that constraints over a hereditary finite set is satisfaction-
complete and solution-compact, which suggests that a
subclass of an AFA-universe can be used as a domain
for CLP(X). That is also true for our domain of labeled
graphs,

In the following, we will show two results on the solv-
ability of the constraints over labeled graphs. One is on
the solvability conditions of a constraint similar to the
one in |2, The apprearch is to give obvious set of con-
straint rules on =; and Ty and show that they satisfy
the defining condition of bisimulation and simulation re-
lation under the set of constraint rules. The other is on
the extensionability of a given constraint so that each
variable becomes instantiated.

These two results are given by Mukai's work[5] dizectly.
Thus, we only show the results here with some addilional
comments. For details, see [7] {in preparation).

First of all, we will give & definition of our constraints
and their solutions, stimilar to the one in [3] .

An atomic econstraint is an eguation u =g v o7 a
subsumption v Cp v, where u,v are elements of G[x] U y.

A constraint is a set of atomic constraints. A con-
straint is conjunction of the atomic constraints in it.

Satisfiability relation (=) is defined as usual, fe., a
binary relation between an assignment f and & constraint
c (written f | ) with obvious clauses.

An aszsignment f iz a solution of a constraint ¢ if

fEe

To extend = given constraint, we use a set of rules
on constraints {call it constraint rules). The constraint
rules contains usual rules on equality [for =) and usual
rules on partial order (for Cz). Besides those, we have
the following rules:

o If (ay,b) =g (a3, 8;) then gy = a; and for each
({,m) € by there exists (I, g92) € bo such that g = g2,

o if (a1,5) Cg (a2, b1) then a; = a3 and for each
({,g2) € by there exists {1, g;) such that g, T g,

e if s Cpwand  Cg = then =z Cg (y | 2},
« if yCpxand s Cp xthen (v 7 5) T =

The first rule states the property (defining condition)
of =g, the second rule states the property of Cg, the
third and the fourth rules introduce the infimum and the
supremum of two labeled graphs inte a constraint. For |
is the infimum of two labeled graphs, (z | y) means that
the variable z such that : C; 2,2 Cg y lor the case where
T or vy is a variable.

Notice that the correspondence between (f,g,) and
{f, ga) is unigue if it exists.

By applying the constraint rules to a given constraint,
a constraint (a set of atomic constraints) closed under the
constraint rules is obtained. Call it a closure of a given
constraint.

From the definition of constraint rules shown above,
2. satisfies the defining condition of bisimulation relation

and the converse of Cp satisfies the defiring condition
on simulation relation. and thev constitutes & simulation
pair, while the treatment of atoms (basic objects) is dif-
ferent.

The appendis A shows the definition of bisimulation
relation, simulation relation, and simulation pair. For
simpiicity, the domain for their definition is changed to
the domain Gly] Uy

As we noticed, basic ohjects are atoms m our domain
and partially ordered, while in [2] a coliection of atoms
15 deserete. But, we bave no variable ranging over atoms
(basic objects). 5o, the difference of the treatment of
aloms causes no problem o understanding (Cg, =5) as
simulation pair®,

The following 15 the restatement of the Unification
Lemma of Mukail3] for our constraints:

Propoesition 2 [of. Mukaif5]) the following two clauses
are eguivalent,

1) a constraint ¢ has a normal closure,

{2}« constraint ¢ has a solulion in .

This proposition shows that our constraints over § is
decidable.

In general, the closure of a given constraint might net
be pnormal. But, it 5 guaranteed thal any closure has a
normal closure as it extension (See [3] and [7]) with a
precedure to extend a closure.

Unification over object terms is given as the problem
of checking the solvability of a constraint over §. For the
purpose of defining unification of two ehject terms, the
following restriction is posed on the solution:

Definition 1 (Condition on Unification)
Unification succeeds only if o normal closure of a con-
stranl contains wo labeled graph g such that g C (L, 8).

Following is the example of 2 constraint which cor-
responds to the wunification of the two object lerms
X and Y suech that X C human{numc = .-"I.'.] and
Y C animallname = Npage = 20] | {N; E string},
WI'.IE]'E‘ .I;IIIFII.IIPE j ﬂ!!iﬂ'!.ﬂ::

XY=y
XN Cg (human. {fnmrle, {\-,}j”

N Cg(T.0)

Y Cg¢ {animal, {(name, { N3} ) (age. {2} ]
Ny Ce (etring, B)

£ =g (20,8).

It seems to he convenient 1o use Aczel's notion of a labeled
syatem to ghow that the trestment of atoms causes po problem.
In & labeled system, each node (corresponding to a variable in a
svstem of equations) has a unique set calied Iabel of it. Be careful
that the word “label”™ &5 wsed & different way we used, [t is
possible to suppose one-to-one mapping from & set of basic abjects
to a sel ol jabels.
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Starting from this constraint, the following equations and
subsumptions are obtained by applying the rules on con-
straints and closure extension procedure,

A Cg (human, {{numd{;"‘h-} ), [age, {2}]‘]‘]
NN
N L N
X 2 (haman, {(name{N}), (age. {E£}1]})
N, & (T,0)

=, [string, §)
N =g (string, ).

This result show that the original constraint is solvable,
since all the variables in the original constraint becomes
instantiated, This alse show that the assignment f in the
following iz a possible solution of the constraint:

f(X) = (human, {(name, {(string, )}), (age, {{20,8)}) })
f(¥) = {huwman, {{name, {{string, 01} ), (age, {(20, ®mhh
f(Z) =(20,0)

F(N;) = (string, )

FIN) = (string, ).

The solvability of constrainis is essenbial i our notion
of object identity and inheritance of attributes. In the
next section, we will show how consiraints are related to
mheritance of attributes.

& Inheritance of Attributes

In this section, inheritance of the attributes among ob-
ject terms is explained in terms of the general rule for
inheritance and constraints.

First of all, we define an attribute term, intuitively

explained in Section 2. Lel o,0p,...,04 be object terms
and Iy,.... 0 be labels. An attribute term is defined as
follows:

oflly opy oy, - Ln opa ],

where op; (1 €1 € n) is =, &, or = Each !, op; o; is
ealled an attribute (specification} of . Each attribute can
be written in the form of a constraint as object terms in
Section 2 and furthermore constraints of an object term
can be gathered into a set of constraint of an attribute

term by renaming variables appropriately.

For example, consider the following:
ofl = XJH{X C o'}l = X, = Y]{X = o, ¥V T e}
By renaming X n the attribution to Z, we can get
olt = X}/l = 2, = V(X C . Z % 0, ¥ Dou).

Mext, it should be noticed that the treatment of labels
are diflerent in object terms and attribution.

Consider, lor example, the following description u-lm:h
specifies the attribution of an object term:
ofl = z|f{ly = 2,1z — 23,0y = 23]

As shown above, o[l = z] is an object term and inter-
preted as a labeled graph, that is, labels are used as the

name of the ares in a labeled graph. To the contrary,
in aitribution, labels are interpreted as unary functions
over G[y]. The attribution in the above description are
interpreted as the following constraint:

hi{e. {(1,2)})) g =
x5 g b{(e, {{L,2)}))
{1“0 “ 1‘]-}}] =g T3.

To refer to the value of an attribute, say !, in the
above, a term ofl = z)dy is used, and called a dotted
term. The interpretation of the dotted term ofl = £].0, is

Li{e. {(1,.2) 1))

For the labels which are not explicitly specified, we
assume that their values exists but not be constrained.
Let §; be a label, The value of the attribute I of the
above example is constrained as:

!,.l::[_ﬂ, {l:{ I:I]']:I l:'F {T,@]-

Thus, in QUIXOTE, every label is interpreted as a
function defined for each object term.

It is malural to assume that attribution is inherited
among object terms with respect to C-ordering. For ex-
ample, consider the following example;

swallow C bird,
berd/|can fly — yes].

Since, swallew 15 bird and bird has the attribution
[canfly = pes], swallow should have the same attri
bution by defanlt,

General rule for inheritance of attnbutes among ob-
jects 1s:

Definition 2 (Rule for inheritance)

By this rule. the following helds:
if &, C @, then

» if 0y has the attribution [{ = &']. then oy also has the
same attribution,

s if oy has the attribution [I + o']. then oy also has the
same attribution.
Notice that the both held for the attribution [l = ¢ by
definition.
Furthermeore, it is possible to introduce the notion of
exceptions on inheritance of attribution by assuming
the additional rule for inhentance.

The rule for exception is stated as follows:

Definition 3 (Rule for exception)
The specification of labels in an object lerm is overridden
against the ativibution of the object term.

T —



For example, consider the attribution of the object term
lnrdjcan fly — no] with respect to the following defini-
tion:

bird (|can fly — yes].

By the rule for inheritance, bird[ean fly — nol inhesits
the attribution [canfly = yes]. But, drdleanfly — no)
has the specification on the label canfly in it. Thus,
bird[ean fly — no| has the attribution [can fly — ne] by
the rule for exception,

Ar a copseguence of the rule for exception, the follow-
ing holds:

ol 0p1 21, -1 ln 0pn Tal/llt 0Pt 21,2 1o OB 2l

where op; € {—,—, =}l < i< n).

Taking inlo accounts of inheritance and exceptions, the
attribution of an object term o having the specifications
of labels §, = xy, ..., {, = =, is defined as follows:

[_{G,UC;L]{T;}E{E,....:,.}}U{D.!. = z1:---.-‘5'-‘ll1 gl‘_},

where O, be the set of constraints corresponding to the
attribution of the object term o which o itself has, oy
be the set of coustraints corresponding to the attribution
of the cbject term o inherited from the object lerms
which are larger than o, C7 be the set of constraints
corresponding to the attribution of the object term o
inherited from the object terms which are smaller than o.
Alsa, OV {f,.... 1.} is the constraint which is the result
of removing the atomic constraints corresponding to the
I, ...l attributes from .

Sometimes, the attribution of an object term might
have po solution. In such a case, the definition of the
object term is said to be inconsistent. For example,
consider the fn]lnwing:

bird[can fly = yes]
penguin f[ean fly = no
penguin C berd,

Here, as peanguin inherits an attribute [eanfly — ypes|
from bdird, penguin has a constraint [canfly C pes ]
;r;,p] = [cuﬂ,ffy — _l_]1 which i-5 inconsistent.

T Modules

In QUIXOTE, special kind of object terms called niod-
ule identifiers are introduced to modularize a set of
ohject terms.

The deseription of the form
m a]|C

is called a (unit) rule, where m is a module identifier
and ¢ ig an attribute term, and C is a consteaint. This
unit rule says that « is in m. Correspending to the unit
rule 5 :: &, the proposition m : o is defined as:

(m:e)is true if mo e

lo QUIVOTE a (now-unit) rule is also available:

Mg ||C

TH NS C= My Ty, st T

where ™o, .. itt, are rmmodule dentifiers,  and
¢, Ty, .. .. T are attribute terms, and  is a constraint.

Thiz rule save that i my o (1 £ 4 = n) ae all true,
then o is in re (e 0 @ is true), This rule alse says that
this rule 33 a0 m (this rule s accessible from m ouly).

General rule for inheritance of rules among modules is:

mCwm ' mafi=m =t

For the purpose of the present paper. we restricl atten-
tion b stnil roles, and the relationship between modules

and inheritance of attribution.
Thus, for example, if
ry ok = humanfname = “John™].
my o joknfjoge — 20).
mty o Jofoef [age — 30).
iy T oy

my Comg.

then joln is 20 vears eld or 30 years old depending on
whether it is in mg or my, while 135 name is “John® in
both m; and m;. Note that the existence of an object
term is plobal over the concept of modules, while the at-
tribution of object terms is local and is inherited through
subsumption relation between module identifiers. Tf we
specify my; C my and my C my, my hes the constraind
[age — 20 | 30] = [age =~ L], that is, john becomes to
have inconsistent definition.

As a module identifier is defined as an object trem,
an module can be parameterized, ie., abstraction. For
example, consider the following:

mll = X john[age — X].

The variable X" rould be instantiated into some integer
during processing.
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A Bisimulation and Simulation

Here, we will give a definition of bisimulation relation
end simulation pair of [2]. For simplicity, we use the
domain of labeled graph instead of the one of hypersets.

Definition 4 A bisimulation relation ==} is an egufp-
alence relation ~ on some subclass of Gly| U BO" U
salesfing the following condition,

If (ay, By) ~ (g, ba), then

i) ay = as,

{8) for every {{,g;) € by, there is a (1,9:) € by such that
g o~ g1,

and if  ~ u where z is a variable, then
(8] there is some labeled graph u such that x ~ u.

For the condition (2), symmetric condition follows, since
~ ig an equivalence relation.

It is casy to see that =g satisfies the conditions (1) and
{2) for ground labeled graphs.

Next, we will give a definition of simulation pair, also
in the way suitable for some subelass Gly] U BGO" U y.

Definition 5 A simulation pairf=<,~) iz a pair of rela-
fions 4, ~ wilh the same feld which salizfies the follow-
s

{1) =~ i5 a bisimulation relation.

(2] = iz a stmulation relation:

If (ay, b)) = (ag, by} where (@, b)), (63,8} ere two
labeled graphs, then

¢ O = ay,

s for all (Lgi) € b, there iz 2 (Lga) € b such
that gy = gz.

{3} =~ is a congruence relafion with rezpect to =, Thal is,

o oy impliesu < v,

oo, u e, and b~ o fmply ut <"

—_ ] =



