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Abstract

One of the most popular ways to conceive parallel algorithms, is to tailor a version having high inheritent parallelism
on one processor, and to speed it up on several processors. ‘Thus the published speedup are aften impressive, but the
raw speed performances turn oul to be low, and highly efficient sequential algorithms are sometimes outperforming
the parallel algerithms,

In arming to avold such disappointments, we started this study by looking for the most efficient sequential algorithm
o perform Constraial Satisfaction Problems in finite space. The algorithins responding to this eriteria are Forward
Cleckimy. We deseribe their principle, and focus of the way we transformed the sequential algorithins into their paral-
lel versions. This report describes the four Parallel Forward Checking Problem Solvers we implemented, two or them
make one-solution search by using specnlative A ND-perallelism, the two olhers do exhaustive search in the frame of
OR-parallchem. A user guide explains all their parameters and the way to conceive an application using themn, The
important. mechanisms are taken apart, the limitations and crror messages are explained.

As the main purpose of this study is to provide efficiency on a parallel computer, results are demonstrated on well
known problems: the queens, the zebra, scheduling and mazes. ‘I'hey have been run on the Multi-PST#], full results
are reported: speedup, raw speed and reductions. The load balancing between the processors is studied to explain the
speedups. Super-linear speedup have been reached as well in speculative AND-parallchsm as is OR-parallelism.
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Introduction

Constraint Satisfaction Problems CSP s an accurate tool to perform efficient search in large search spaces. Many pa-
pers describe the theory of CSP's[12] and outline efficient methods to solve them[11]. Implementations lead sometimes
to bitter disappointments[13], especially in the parallel environment. Thus we chose a simple but reliable problem
solving method, reported by serious papers(s, 4]: namely Forward Checking. We implemented at first efficient sequen-
tial versions of these Prablem Solver, then we extended the study to the parallel environment. The parallelism of cur
algorithms is expressed by constraints thus sequential and parallel implementations keep the same mechanisms.

The first part of this report has been divided into three chapters: the first of them explaining the principle of the
Parallel Furward Checking, it shows the implementation techniques we used to achieve efficiency and gives a user guide
explaining how to realize an application using the Parallel Forwerd Checking.

The second chapter focus on applications and performanees. Several applications are shown: the queen problem, the
zebea problem, scheduling and mazes are solved with exhaustive search as well as with unigue solotion search. All
performance measures were obtained on the Multi-PSI1.

The third chapter studies point by point the results and draws conclusions from this work, giving some advises to
fulure users of this programs.

The second part of this report will describe a new load balance technique for exhaustive solution search, give the
related results, and open the source code of both, Preblem Selver and applications.
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Chapt

Parallel Forward Checking Problem

Solvers

The principle of forward checking is one of the most efficient procedure for solving CSF's, section 1.1 outlines its
principles. They are extended to the parallel environment in section 1.2, in an original manner so to obtain Parallel
Forward Checking, Our methodology of parallelism gives a warranty of efficiency, the parallel algorithms run at least
as fast as the optimal sequential algorithm. As these notions are quite abstract so far, we ilustrate our discourse
with the archetypal example of the queen problem in section L3 lu section 1.4, some insights of the implementation
techniques are drawn so Lo faver a deep understanding of those problem solvers, showing their limitation, force and
weakness!, Finally, we give in section 1.5 the user guide of the Parallel Forward Checking Problem Solvers.

1.1 Principle of forward checking

1.1.1 Definitions

We intreduce the definition of & CSP problem, and the definition of the two kinds of constraints used,

Constraint Satisfaction Problem CST

A constraint satisfaction problem C5F can be defined as follows: given a set of variables z,, ..., 2. and associated
with each value of variable z; a domain 0 of values”. Furthermore, on some snbsets of the variables constraints are

given, limiting possible value tuples for those variables. A solution of the CSP is a n-tuple of values {a;,....a,) €
fhp = Dy o= w10 which simultaneously satisfies all given constraints.

Static constraint

The static constraints SC are used during the initialization of the domains of each variable. These constraints reduce
the domain of value of the variables, before the start of the search algorithm, They may be formalized as follows:

SOz, Dy = oo Dy e o D=0y e ooty w By Dy w000 Dy
with z, € 0y and [I%| = ||
As we will see later, these static constraints are used in two ways, to define some problems (see section 1.3) and to
introduce parallelism {see section 1.2).

Dynamic constraint

The dynamic constramts DC used in OST are functions linking an instance of a variable z; to other variables, and
reducing their domain of values. The dynamic consiminis are used hy the core of the CSF to propagate constraints

linking two variables. This is:

DClzy, a5, Dy x ...x Dix ... x Dp)=Dh x ... Di_yw Do Dy Dy
with z; # z;, 2 € Dy, 25 € Dj and |Dj| 2 (D]
Thus, propagating a constraint reduces the domain of the non-determinacy Dy, since D} is smaller than L.

! The section 1.4 may be omitied i s first lecture of this report,
. ?The indexes of the variables are in there range of 1...0 in the seclions 1.1 1.2 1.3, to ease the notations, but in sections 1.4 1.5 the

variables are encoded in 0. .. [n — 1), a8 in the programs



1.1.2 Simple forward checking SFCH

The algorithin starts by defining the domains of non-determinacy Dy in line 1. The initialization applies the static
cemstraints SC to these initial domains of value. Then, simple forward checking is to take in turn each of the variables
and to propagate their dynamic constraints DC to all the non-determined variables If the domain of a variable in Dir
is empty, then no solution is available, as shown in line 9; both 1 and j loops are left, and SFCH backiracks Lo find
another solution. Otherwise, the checked instance #; is added to the determined set S and the domain of the checked
variable D), is removed from the domain of non-determinacy Ly, respectively in lines 10 11

This loop is repeated for all variables. Finally, a solution of the CSP problem is stored in the 5 set of delermined
values. The skeleton of simple forward checking is shown in Table 1.1. This principle may be used is the frame of

1 DT = Dix...ﬁﬂﬂ

2 fori = 1...n

3 = SC{zi, Dr)

4 2=

] fori = 1...m

6 = 'DI

7 forj = 1...n

5 Dy = DO(xi, x5, Dy)
9 when |Dp| = 0, exit{5 = @)
1o 5 = 5 U {z}

11 Dy = Dhpy x .oox Oy

Tahle 1.1: Outline of SFCH

depth first search in aiming to find a solution of the CSP, or to find all the solutions. To do so, the line 6 has to ke
more precise and to give exactly the choice of the instance of the z; element. Some material added to allow backtracks
and the merge of the results have not been described for sakes of simplicity.

The main advantage of SFCUH is ats simplicity, it consists in a loop, checking in Lurn the variables from | to n, regardless
to their domain of values given by the constraints.

1.1.3 Generalized forward checking GFCH

Instead of using the constraints in a fixed order, it seems interesting to reorder them dynamically, to check at first the
most constrained variable z;. Thus, if there is no solution for the CSP, the algorithm will detect this impossibility as
goou as possible, avoiding several backtracks,

In comparison to SFCH, GFCH adds some more work to perform; after the constraint propagation of each variable,
GFCH has to sorl the non-deterministic variables in £} according to the size of their domains (see line ). The one
having the smallest domain will be checked first. The structure shown in Table 1.2 is similar to the one of SFCH

[y =
fari =
Dy
sS=0
for DI = min"H}TH}”
r € D
foro # i
Dr = DC(zi, za, Dr)
when |Dy| = 0, exit(5 = @)
8= 85U {xn}
Dy = B

x.ow Iy
.

D,
1.
= 'Sc[=1: ' -DT}

'—‘EE'I:'\IIC‘}"-"J?LWM'-'

—

Table 1.2: Cutline of GFCH



Theoretically, GFCH should be more efficient than SFCH because it leads more efficiently to the solutions. However
the implementations face an additional work to perform in line 5, namely defining the size of the domains and sorting
them. It is hard to predict which of SFCH of GFCH will be the most efficient, since it depends on the natere of the
constraints we deal with, the siee of the search spaces, the branching factor of the problem ete.

1.1.4 TUnique solution search SFCH1 GFCHI1 versus exhaustive search SFCH GFCH

Until now, we did not differentiate unique salution search algorithms from exhanstive solution search ones, since the
outlines presented in Tables 1.1 and 1.2 are valid for both because they represent only the innermost search loop
looking for a single solution.

We implemented four algorithms:
The unique solution search algorithms SFCHI and GFCHI, repeat this loop until 2 solution is fourd, conversely the
exhaustive search algorithms SFCH and GFCH cxplore the whole scarch space and collect alb the results,

From now on. the meaning of SFCH and GFCH means exhaustive search according to respectively Simple and General-
ized Forward Checking, SFCHL and GFCHI arc the names of the unique solution scarch algorithms using respectively
the same principles.

1.2 Forward checking in parallel

The art of paralle]l programming consists i finding a good load balanee between processors without dramatic increase
of inter-processor communmications. This remains the key of the success, especially on the Mulii-PSI

Forward checking, as we described it earlier, is basically a sequential method; one variable is checked after the other,
even worse, in GFCH and GFCHI there is an ideal order to do so. Nevertheless, our definition of CSPs makes refer-
ence to finite domains, thus parallelism is found in another dimension that the principle of the algorithm, namely the
search space, 'lI'o put forward checking m parallel, is simply to split the search space inte subspaces, one for cach of
Lhe processors

T'his operation 15 quite natural and easy to express in form of stafic constrainds SC. It is to add new constraints to
Lhee imitial domains of the variables, so that each of the processors will perform the search in a different subspace, the
union of those subspaces heing the complete search space. Back to the Tables 11 and 1.2, Parallel Forward Checking
is to give the following SO relation:

SClzy, Dy x ...x Da)=Dy % ...x Dy

with 3 (ﬁn.m) = Dyx.. . %Dy

Fo biml

Let us emphasize the simplicity of this 5t.ai.il:pload balance methoed, reguiring no overwork nor communication between
processurs, The elliciency of Lhis load balancing relies on the ability Lo split the search space into homogeneous parts.
Even when running on one processor, our Parallel Forward Checking remains a very efficient algorithm, in contrast to
many other parsllel algorithms, where pruned search in parallel implies sometimes overwork to be done[l].

Lust but not leasi, the parallel algorithm is totally cornpalible with tlie sequential one, as a consequence every theoretie
deduction holds in the parallel environment: ales in a more down-to-earth mind, the additional software written to
transform the sequential algorithms into parallel ones 13 of very small size thanks to the usge of FLIB's[2] facilities.

Nevertheless, this parallel algorithm has restrictions. When used in a highly constraint domain, there may be only
one solution Lo the CSP problem. In such a case there 15 a low, or no parallelism in the problem, since the forward
checking leads very efliciently to the solution. The parallel implementation cannot do it in a better way, whatever its
principle.

Another drawback is that static load balancing cannot give any warranty for & smart load balancing, Even with equal
siged search spaces of each processor, the work to perform may be different siice soine search spaces may exhibit a
higher solution density than others. Splitting the search spaces remaing a challenge.

1.2.1 OR-Parallelism for exhaustive search, SFCH and GFCH

Fach of the Processors searches solutions of the CSP in a subspace of the search Epace, the solution of the pmh]em
is the union of the salutions found by all the processors, thus exhaustive solution search is done in the frame of



OR-Parablelism.

1.2.2 Speculative AND-Parallelism for unique solution search, SFCH1 and GFCHI1

Here too, each of the processors searches solutions of the CSP in a subspace of the search space. As soon as one of the
processor finds a solution of the problem, it sends a message to ihe other fellows, to stop their scarchies. The principle
of parallelism we adopted for unique solution search is the speculative AND- Parallelsm,

1.3 Tllustrative example: the queen problem

After Lhese abstract sections explaining the principles of the Parallel Forward Checking, it seems good to [ollow an
example and illustrate our talk The problem of the queens, which consists to place n queens on an n = n board, so
that no one is attacked by another; is well suited to illustrate the Parallel Forward Checking. The constraints and the
parallel features we introduced are easy (o represent in the queen problem, since the variables of the queen problems
are the columns, and their domain of values are the lines. As o copsequence, the board represenlation is the most

explicit and natural

1.3.1 Simple forward checking SFCH, and SFCHI1

To make things more explicit, we follow the 5 queens example, the reader will generalize with no diffieulty. There are
5 variahles, one for each column. At the begin of the algorithm, the domain of non-determinacy of cach variable is set
to all the possible line values, Dy = [1,2.3,4, 5%, and S = 0. Then, m line & of Table 1.1, an instance of &y is chogen,
gay 1. lmmediately, all the inconsistent valucs of £+ . 25 are removed from their possible set, by the DC constraints,
Indeed, z, and the diagonals arc remwved from the Dy domam, and z; = 1 is added to 5. Therefore, at this tune, the
situation is shown in Fignre 1.1, In the next step, the values 1 and 2 will not be considered [or xy since they are not

Figure 1.1° Five-queens problem after 1 choice

mcluded o Dy

D:J'-‘Ugrﬂﬂaﬁnqy D:l
Dy = [3,4,5] = [2.4.5] % 12,3,5 = (2,3, 4]
“I'he next step chooses for example, the value 3 for 25, thus the non-deterministic domain Dy becomes, in Figure 1.2:

DT: ”3% D.;H'L}j

Dy = (5] = [2] = [2,4]
Now #3 and 14 have domains reduced to singletons. By checking and propagating their constraints, the zg domain 1s
as well reduced to a singleton, The problem of the five queens, is solved with 2 elwices and without backtrack.

1.3.2 Generalized forward checking GFCII GFCH1

To explain the generalized forward checking, we have to take a bigger size example, the eight queens. Consider now
the problem after 3 choices, in Fignre 1.3. The domain Dy is reduced to a singleton, thus generalized forward checking
will test it at first, because it is the most constraint variable. This allows Lo propagate the constraints without making

it



Figure 1.3 Eight-gqueens problem after 3 choices

a choice. It reduces significantly the number of backtracks to be performed. Nevertheless, one has to notice that
forward checking has to update the domain of each non-determined variable to find the most constraint of them.

1.3.3 Forward checking in parallel

As stated earlier, two kinds of parallelism are used, OR-Parallelism to perform exhaustive search in SFCH and GFCH;
and speculative AND-Parallelism to make unigue solution ssarch in SFCHI and GFCH1. Nevertheless, the load bal-
ancing used in both searches is the same, we explain it below.

Parallel implementations keep the principle of the sequential ones. The initialization only changes, by addition of
stalte consirainis SC (see 1.2). As the Multi-PS] has a number of processors in power of two, we made a simple load
balancing, working enly for the powers of two processars. The idea s quite elementary. One domain of values 1s split

inte two equal parts, For example:

0Dy =01,2,345678. . n
is split mnto:
Dett = [1,3,5,7...(n—1)] D" =(2,4,6,8...n
Processing the queens with 2 processors is to split one of the column {which iz represented by the domain of a vari-
able) in two equal paris. So making forward checking on 2 processors, is to run exactly the same algorithm on each
processor, each of them starting with some additional constraints, see Figure 1.4.

In the same manner, processing the queens with 4 processors is to split two columns rather then one. The same

10
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Figure 1.4 Load halance for 2 processors

example is done by 4 processors in Figure 1.5

i "
Frocessory _U"]"'H = pgren H 0;  processory : DS99 w l}':."td H D;
i=3

=1

0 "
Processary DI"*" al _!'_:l';“:'E H L’. processum N D'Ih#n b4 D;ren ]_I Ui
i=3 i=3

T 1

-

Figure 1.5 Load balance for 4 processors

And 5o on, to split the problem on more processors, more columns are used, This simple load balancing is only working
for the powers of 2, but this is exactly what is required by the Multi-PS1.

1.4 Implementation

1.4.1 Architecture of the modules

The different, programs we wrote, are each in a module, having the name of the program, namely sfeh, sfchl, gfch,
gichi. All these modules access Lo sOmMe COLMON utilities in the module feh. These soltwares have been built on top

of the FLIB]Z] library. They run as well on PDSS, PS1 and Multi-PSL

The Problem Solvers, SFCIL, SFCHL, GFCH, GFCHI, access to the module containing the application, and evaluate
the predicate constraints/2. The name of this module is the second parameter given to the problem solver.

11



1.4.2 Techniques to reach efficiency

By its principle, Forward Cheecking is to apply constraints to the non-determinaey domains Dy, In other words, this
is to make the intersection between the non-determinacy domain Dy and the domain allowed by the consiraint. Thus,
to be efficient, we have to find an encoding allowing fast interscetions between domains.

One of the most popular technique to do so, is to encode the two domains into words, and to make the logical and
between these words. We adopted this bit-encoding, which turns out to be several degree of magnitude faster than
the naive encoding, however, we introduce by this way a limitation, since the bit-words are 32 bits long, this program
15 limited to treat domains of value restricted to 32 elements.

Writing and debugging programs dealing with bit-encoding is not particularly delightful. To avoid this pain to the
user, we defined the format of the application dependent constraints as a list of constraints (see section 1.5). As a
consequence the user may write the application dependent predicate constraints in a naive way, generating Lhe lists
of constraints. These constraints are then compiled mio eflicient bit encoding by the problem solver. This operation
is done once, during the initialization, hence it affects little the performances of the problem solver, provided a large
search space,

1.4.3 SFCH and SFCH1: basic implementation

These program implementations transcribe with fidelity the outline shown in Lable 1.1. The domains of the variables
are encoded into bit-words, thus it is easy to perform the intersections of domains, as well as to check if the domains
are empty. The solution of a hash-coding Lable has been adopted, so to check is the domain of non-determinacy Dir
contains a unigue clement. In this case there is no more non-determinacy, on this variable, and the algorithm continues
its work with the remainiug elements of Dy,

1.4.4 GFCH and GFCHI1: basic implementation

These program transcribe ws well with fidelity the outline shown in Table 1.2. The domains of the variables are
encoded into bit-words, thus it is easy to perform the intersections of domains, as well as io cheek if the domains are
empty. But the main difference with the Simple Foruurd Checking, is that the Generalized Forward Checking has to
compute the size of the variables domains, so to find the smallest of themn, which determines the arder to check the
variables. The bit-encoding of the domains makes this operation difficull, so after each application of a constrainl to
a domain of a variable, we have 1o count the number of possibilities contained in this new domain, this is to count
the number of hits of 4 word. This operation, called Domain — Size conversion has to be highly efficient, since it
appears in the innermosl loop of the algorithm.

Domain — Size conversion, naive approach

The naive approach to count the bits of a word, is to proceed by bit-shift operation, counting all the bites, the one
after the other. As we see in Table 1.3, the complexity of this operation

naivebit.sum(Domain, DomSZ, Res}:-
DemSE > 1,
NDomain := Domain >»> 1,
Rloc := 1 /\ Domainl|
Res:= RlLoc + Resl,
naive bit_sum{NDomain, ~(DomSZ-1), Resl).
naive_bit_sum(Domain, 1, Res):- truel
Hes=Domain,

Table 1.3: Naive Domain — Size conversion
is linear in the length of the words, DomSZ. It seems very incfficient to use this method in one of the innermost

loops of the algorithm, and maybe the whole efficiency gained by bit-encoding will be doomed by this [Domain —
Size conversion.
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Domain — Size conversion, efficient approach

The mest efficient way to make this conversion, is to store it into a table, thos conversion s reduced to the time
of access to this table. The main problem of this solution s the size of this conversion table being in 2¢9"¥%  As
DomSZ is up to 32, we have to imagine another solution since we cannot store a table of 2 elemenis.

Namain — Yize conversion, implementation

W implemented a compromise solution between the two previous ones. We store & lable containing the COMVErsion
of slices of words, in the length of 22722 bites. This table contams 954852 slements. Then, the domain words are
decoded by checking their W slices, like in Table 1.4, where Table is the table of the slices conversion, DGNB is the
wumber if bites of the slices, and BMask is the mask having ite DGNH lower bites set to 1.

bit_sum{Table, Domain, DemSZ, BMask, DGNE, Ras):-
DomSZ > DGNE,
NDemain := Domain >> DGHNE,
Index := EMask /% Domain,
vactor.element {Table, Index, Rloc)|
Res:= RLoc + Resl,
bit_sum{Table, NDomain, ~(DomSZ-DGRB), BMask, DGNB, Resl).
bit_sum(Table, Domain, DGNB, ., DGNB, Res):-
vactor.element (Table, Domain, Resl)|Resi=Res.

Table | 4 Implementation Demain — Size ronversion

As a consequence, the user of our programs may adapt the parameter W2 according to hoth, the machines memory-
size, and the required memery to solve a given problem. Of course, the more memory we use, the faster ihe conversion
of the wards.

The first element of a domain

By carrying the same idea as previously, we implemented as well a Tahle recording the first Lit of a word. This
operation is used in the GFCH and GFCH1, when the algorithm chooses a solution, which is an element in the domain
ol the possible ones. The encoding technique takes exactly the same spirit as for the Domatn — Size conversion.
Thus a second table 12 memorized by the program.

1.4.5 The parallelism implementation
Load balancing

The parallel version of SFCH, SFCHI, GFCH, GFCHI use the same static load balancing. It is to split the first
variables into two parts, as shown in section 1.2, This load balancing method is performed automatically by the
program, which gencrates the required static constrainls SC and applies them over the constraints generated by the
applicatiﬂn.

Type of parallelisin

SFCH and GFCH perform the exhaustive search of the sclutions by using OR-parallelism, conversely SFCH1 and
GFCHI search for a unique solution in the frame of speculative AND-parallelism. Hoth types of parallelism have been
implemented by use of FLIBs parallel facilities.

Data spreading

FLIB's list spreading has been chosen to spread the data amongst the processors, since the data transmitted to the
processors is of very small size, it consists only of the parameters given to the Problem Solver. Then, each processor
genetates locally the constraints of the problem, compiles them into bit-encoding, adds the Static Consirainis making
the load balancing between processors, and finally runs the Problem Solving algorithm. The results of this algorithm
are send to the processorg of the Multi-PSL If the parameter ResCont = number, the result send by the processors
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is the number of local solutions; in the case of ResCont = all, the result transmitted by the processors is the list of
the solutions found locally.

Comments on the parallel implementation

Some options have heen taken during the parallel inplementation, let us elarify them:

s Static load balancing is not proved to be accurate, however our parallel implementation running on one processor
pays a negligible overhead compared to the optimal sequential algorithm.

# The parallelism has been designed Lo mintmize the communications between processars, which seems to be the
main bottleneck on the Multi-PS] according to our experience. Thus the gencration and compilation of the
comstrainks ace done sequentially, in redundancy on all processors.

# Since the generation of the constraints is an application dependent program written by the cnd-user, is was
important to ease their nnplementation. Thus we defined constraints as a sequential program, maybe wrilten
in a naive style.

¢ It is supposed that the time to perform the constraint generation is negligible before the time to perform the
search.

1.4.6 Constraint compilation

The constraint compilation is the program in charge to transform the list of constraints, generated by the application
dependent program, inte cfficient encoding used by the core of all the problem solvers. By the way, the constraints
compilation transforms naive encoding into bit encoding.

Internal representation of the constraints

The constraints are represented by a 3 dimensional constraint-table, (vectors in KL1). The first dimension rep-
resents the variables giving the constraints, the second dimension their instances, the third the variable having new
consiraints. Thus the dimension of the table is in Var Vb « DomSZ « VariVh,

The structure of this table is similar to the structure of the constraints given in section 1.5. The following constraint:
[Var;, Inst;, [Var;|DomBRes;]] meaning that if variable Var; is instantiated to Inst;, then variable Var; gets the
constraints expressed by DomHes;, will be stored in the constraint-table at (Var;, Inst;, Vary).

The table initialization

At the begin, all elements of the constraint-table are instantiated to the full domain, represented hy:
((1 << DomSZ)-1}

The constraints

Compiling the consiraints, is to take the Drom Hes; list expressing the constraints and to transform it into a bit-mask,
as shown in Table 1.5,

patternmask(('+'], ., Res):- truel|
Res := 0.
patternmask( [Pos|B], Mask, Res):-
LocMa:= 1 << Pos,
Maski:= LocMa W/ Mask|
pattarn mask(B, Maskl, Res).
patternmask{[], Mask, Res):- trus|
Res := Mask xor (=1).

Table 1.5 DBasic constraint compilation
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The new domain for the variable {Vary, Tnst;, Var;) in constraint-table, is obtained by a logical-and between the
old dumain stored, and the bit-Mask made in Table 1.5

The program performs the conjunction of the copstraints given by application programs.

The distinction we introduced between Static Construints and Pynamic Constrainis does not exist during the compi-
lation: static constraints are stored in the positions (Vary, I, Var;), since this position cannot be taken by dynamic
constraints, according to their definition in section 1.1.

1.5 User guide

This section describes the Parallel Forward Checking Problem Solvers we developed, and explains how to use them. As
the problem solvers have to handle some specific problenes, we show in the next subsection the general framework for
=nch interactions. Then the reader finds more detailed explanation of the programs and their parameters, Lhe manner
to express the ronstraints and eventually the limitations of cur currenl implementation.

1.5.1 General framework for application programs

The Problem Solvers have to interact with an application program. The aim of the application program is bo generate
a list of constraints to be used by the Problem Solvers. To do so. the user has to define a module for its application.
This module calls one or several Problem Solvers and gives them as second parameter, its own module name, see

Table 1.6

1= module my_applicatien.
;- public sfch/4, constraimts/2.

¥ to start the problem solver
sfchiVarNk, DomSZ, ProNb, Hesult):- true|
sfch:run({VarNb, DomSZ}, 'my-application’, 'number’, ProNb, Result).

% generation of the constraints
constraints({VarNb, DemSZ}, Comstraints):- trusl
¥ static comstraints
% dynamic comstraints

Constraints=[J.

Table 1.6 The application program

In aiming to generate the constraints, the problem solver calls the predicate constrainta/2 in the given module. This
predicate is the responsibility of the uscr writing the application programn. The first parameter transmitted to the
constraints predicate, is the vector {VarWb, DomSZ}, respectively describing the number of vaciables and the size of
their domain of values. The second argument of the eonstraints predicate 1s the list of the generated constraints,
describing the application. When the constraints are generated, the Problem Soluer compiles them into a more efficicnt
representation. Then the search algorithm is ready to start its work, as described in section 1.1,

1.5.2 Description of the programs

The wllowing programs share the same parameters, there is jusi an additional parameter for GFCH and GFCHI,
hesides this detail, they are totally compatible, using the same constraints, and formatting the ouipul in the same
manner. So it is quite simple to switch from one prohlem solver to another The parameters are explained in next
section.

SFCH

This program makes the exhaustive scarch of solution by using the principle of Simple Forward Checking with an
OR-Parallelism. The call of SFCH is:
sfch:run({Var¥b, DomSZ), Module, ResCont, Prolb, Result).
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GFCH

This program makes the exhaunstive scarch of solution by using the principle of Generalized Forward Checking with an
ORt-Parallelisin. The call of GFCH is:
gich:run({Vardb, DomSZ, Wi}, Module, ResCont, ProNb, Result).

SFCH1

This program searches for a unique solution by using the principle of Simple Forward Checking with speculative A ND-

Parallelism. The call of SFCH] is:
sfchl:run{{VarNb, DomSZ}, Module, ResCont, ProNb, Result).

GFCH1

This program searches for a unique solution by using the principle of Generalized Forward Checking with speculative
AND-Parallelism. The call of GFOH1 is:
gichi:run({VarNb, DomSZ, WZ), Module, ResCont, Frolb, Result).

1.5.3 The program parameters

The description of the program parameters permits the use of the algorithms, and sets their limitations. If more
explanations are required, they may figure in section 1.4,

VarNb
Wumber of variables. They are encoded from 0. {Varnh - 1)}

DomSZ

Size of the domains of the variables. Limitation: DomSZ 32, becanse the actunl version of the prograius uses hit
encoding. Domains are encoded from [0 ... ( Dom5Z - 1j].

WEZ (only for GFCH and GFCH1)

1o decode efficient]y the domains of the variables, GFCH and GFCH1 store decoding tables. The size of these tables
are in 299 W7 allows to contral the sige of the memory Lo be used. The speed of the algorithms is inversely
propertional to this parameter.

Module

Name of the module containing the constraints/2 predicate, called by the problem solver

RezsCont
Defines the content of the result,

ResCont = "all” the problem solver outputs a list containing all the solutions of the problem. Each solution is
described by a vector, its positions are the variables, and their value the instance. For 6 queens, we obtain:

Result = [{4,2,0,5,3,1},{2,5,1,4,0,3},{3,0,4,1,5,2},{1,3,6,0,2,4}]
ResCont = 'number’ (default parameter) the problem salver outputs a list whose first element is the total number
of the solutions found by all the processors; the second element is the List containing the number of sclutions

found by each single processor. For 6 queens performed in parallel on 2 processors we obtain:

Rasult = [4 [2, 2]]

ProNb
Number of processors. According to the load balapce principle we adopted, ProNb has to be a power of 2.
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Result
Dicfines the format of the result.

Result is a string The definition of the problem, the time and reduction measures and the result of the algorithm
will be written in the file Result. For i queens performed on 2 processors with SFCH, the Result file contains:

[problem solver,SFCH] [problem,queens] [size,{6,6}] [processers, 2] [solutions, [4,[2,2]1]]
[Constraints,1000] [red,4262) [time,1000] [reductions, 55686]

The first measures, called Constraints, red. give respectively the time and the number of reductions performed
to generate the constraints on the processor number 0; the second mneasures time, reductiona give the tofal
time and the total number of reductions performed by the algorithm, including the generation of the constraints.

otherwise the result of the algorithm is unified with the varinble Result,

1.5.4 Expression of the constraints

‘e generation of the constraints describing the application is the responsibility of the user. The problem dependent
constraints are generated by the constrainte/2 predicate in the Module module, as described in Table 1.6 on page 15.
The general form of the constraints variable is a list of basic constraints SC PC expressing the conjunction of its
clements: thus constraints may be generated without regard to their order. Their general form is:

ronstraints { VarNb, DomS2}, Constraints)
with Constraints = [ StaticConst ... DynamicConst . |

Static constraints StateeConst

The static constraints SC are nsed during the initialization of the search algorithms, they reduce the domain of value
of the variables. Their expression may be paraphrased by: the domain of the variable Var, is reduced from Dom FRes
plEments,

There are a maximutn of Var Nk static constraints. Static constraints are defined by:

StaticConst = [Var; 0, [Var; | Do Res]|

Dynamic constraint DynamicConst

The dynamic constrrints DC are functions linking an instance of a variable Var; to other variables, and reducing their
domain of values. They may be paraphrased by: when the variable Var; is instantiated te the value Tnst;, then the
domain of the variables Var; ... Var, are reduced from respectively DemBes; .. DomResg.

The dynamic constraints are uscd by the core of the CSP. As dynamic constraints relate binary relations bet ween vari-
ables, and depend on Lhe instance of the variables, they are limited to a maximum of VarNb® x DemSZ. Dynamic

constraints are defined by:

DynamicConst = [Varg  Insty, [Var; | DomRes;]. .. [Varg | Dom Rese |
with Var, £ Var; ... Vari #Vare

A domain restriction, Domfes

The domain restriction is the list of the instances to be removed from the domain of the variable to which this list is
concatenated. Thus, if one wants to reduce the domain of a variable to an empty set, DomRes contains all the possible
instances DomRes — [0,...(VarNk — 1)]; cenversely, if the domain remamns unchanged, NomRes is the empty list
MomRes = [].

As our Constrainte are interpreted as Lhe conjunction of its elements, it is better to aveid to generate the constraint
having DomRes = [], because they do not change the coustraints, they make just overwork during the compilalion
of the constraints. Nevertheless, they do not affect the performances of the Parallel Forward Checking.

A writing facility has been introduced, to reduce the domain of a variable to the empty set. Instead of generating
DomRes = [0,...(VarNb — 1)], which is sometimes a long list, we may write DomRes = ['47].
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1.5.5 Example of the queen problem

The queen problem exhibits very simple constraints. First of all, there are no static constraints. since all the positions
in the domains a a proori valid. By running the 3 queens problem, the constrainls are the following:

queens:constraints({3, 3}, Comnstraints).

censtraints = [[2,0,[1,0,1],[0,0,23], [2,1,[1,0,1,2],00,1]],02,2,[1,1,2],[0,0,2]],
(1,0,00,0,1],[2,0,11], M1,1,[0,0,1,2],[2,0,1,2]3, [i,2,{0,1,21,[2,1,211,
(o,o0,[2,0,21,[1,0,11, [o,1,0(2,13,[1,0,1,2]], [0,2,[2,0.2),0[1,1,211].

Those constraints may be interpreted as: for zg = 0, then 2, € {2} and zq € {1}, and so on. For each element, Lhe line
and the diagonals starting form this pomt, are removed from the domains of validity of the non-determined elements.

1.5.6 Remarks and limitations

For sakes of efficiency, the variables are encoded in numbers ranging from 0. AVurNE — 1), their domains are repre-
senled by bit-words, form bit 0...( DomSZ — 1). As a consequence, the size of the domains is limited to 31

When running the program in parallel, the program adds the needed static constraints to perform the work in parallel.
Thus the user has just to change the parameter ProNb o run in parallel, keep in mind ProNb is in a power of 2.

The expression of the constrainis is a list, nterpreted as the conjunction of its elements, thus the following expressicns,
of dynamic constraints PC are equivalent:

[2,0,[0,0,1],[0,0,2]] & [2,0,[1,1]],[2,0,[1,0]],[2, 0,[0,0, 2]}
Beware that the list of the results returned by the Parallel Forward Checking do not follow any erder relation mMAapping
the topalogy of the processors, because the results are gatherod with a merge operator.

The time measures reported in the run files give lollowing results: The first measures, called Constraints, red, give
respectively the titne and the number of reductions performed o generate the constraints on the processor number 0.
Since all the processors generate locally the constraints, the number of reductions given by this measures is propor-
tional to the number of processors. The second measures time, reductions give the total time and the total number
of reductions perlormed by the algorithm. This measure waits the end of all the procesanes Lasks,

The overall time and reduction measures are meaningful on all machines, however the partial reault of the constraint
generation may be false by using simulated parallelism instead of real one

1.5.7 Error messages

A modest error handler outputs error messages, to prevent against misuse of the programs. This protects user against
false results. This error handler outputs messages in & clear language and deadlocks the program. Its current version
takes the following cases in account:

PomSEZ 2 32 the domain size is too large to be treated by the program, thus the following message will appear;
Error in the domain size DomSz. (0 < DomSz < 32)

ProNb # 200mething the load balancing has only been foreseen for a power of 2 processors, thus user is warned by:
Error in the processcrs number ProNb. It shonld be a power of 2

Unfortunately, the program may make other crrors, we encountered one during the experimental study:memory shori-
age, when we tried to compute all the solutions (365596) of 14 queens. Since all the solutions are stored, the machine
memory may be upset hefore the end of the computation.
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Chapter 2

Applications, Performances

The Parallel Forward Checking Problem Solvers we described in the preceding Chapler may be applied to a large
family of problems. These problems are finite domain problems which may be expressed under form of constraints.
As Forward Checking is supposed to be one of the most efficient technigue [5, 4]. we have lo give some performance
measures to convinee (or warn) the potential user.

Four applications have been developed in this Chapter. ‘Lhe first of them is the Queens application, described in the
wection 2.2 The section 2.3 describes the Zebra problem, also called the Five Houses Problem. Then we studied in
Section 2.4 one of the most promising application opening to real-world problems: the scheduling problem. In the
Suction 2.5 we studied the problem of the mazes.

Our study started by making a specific algorithm for the exhaustive search of solutions in the Queen Problem. 1t
was interesting Lo eompare the efficiency of this specific queen program o the queen problem solved Ly onr Problem
Solver, presented in Section 2.2, This performance comparison gives an idea of the price paid to generality. These
perfortmance eomparisons to the related work are presented in Section 2.6.

2.1 Note on performance measures

The performances we give in the following have been measured on the programs written in KL1[15] running on the
Multi-PSI/V2[8, 3]

The precision of the measures are approximately of 0.05 scconds; the Multi-PSI has some overheads, and the non-
determinacy of the KL1 ]anguage adds some uncertainties to the measures. We had to find ]:rmHehlE running durim_r,
several seconds at least, to get reliable results, according to the imprecizion of measures.

‘The total time we give for the run of the algorthuns inclides everything, the constraints generation, their compilation
and the problem solver. The measures we give are, the raw speed, the speedup and the number of reductions. The
speedup is caleulated by compariug to the same algorithm running on a single processor. This is a fair speedup
measure, sinee the parallelism overhead can be negligible compared to the precision of the measurements.

When analysing the luad balance of the processors, we use the mumber of solutions found by each of them, This
measure is not Lthe most precise in terms of the elapsed time, but turns out to be very reliable. It gives the sparseness
of the solutinm space.
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2.2 The queen problem

2.2.1 Description of the problem

The Queen Problem consists to place n queens on an n x n board, where no one is attacked by another.

Both kind of experiments, unique and exhanstive solution search, have been carried out on the queen program.

2.2.2 Unique solution search

The queen problem has many solutions, thus it shows strange properties wheu looking for one solution only. ‘T'he
speculative AND-parallelism we introduced for single solution search brings only minar improvement in the parallel
world. We present in the following the results performed for the search of the first solution of 15, 20 and 25 queens.

Raw measures

The Table 2.1 gives the results of SFCH1 and GFCIN on the unique solution for the 15 queen problem. For GFCHI,
we run the program with WZ=2, this means that the domains of the variables are decoded in two words when running
GFCHL. 'I'kis allows to reduee the overhead of constructing the decoding tables, On one processor, SFCHT is almost

program number of processors
1| 2| 4 g] 16

SFCH1
time [s] || 1.2 | .09 | 0.9 | 1.05 | 1.16
speedup Lf 110 ) 133 | 114 | 1.03

Kred a2 95 a7 | 333 [ L]
GFCHI
time [s] || 22 [ 113 | 109 | 1.27 | L&
apeedup 1] 1.85 | 202 [ 1,73 | L38
| Kred TG a7 | 178 | Fs5& | T4

Tahle 2.1: First solution of 15 queens

two times faster than GFCHI. The speedup we obtained are very slow for SFCH1, one third faster in the best case
by using 4 processors. In the parallel world, GFCHI 15 approximately as fast as SFCHT, reaching a top 2.02 speedup.
The number of reductions are about the same for both algorithms.

The search for the first solution of the 20 quecns, in Table 2.2 shows a big performance trade off between SFCH] and
GFCHI, GFCHL i 17 times faster than SFCH1, on one processor, SFCHI shows low spesdup with 2 processors,

program number of processors
| 1] 2| 4] &] s
SFCH1
iime (s] || 48.8 | 44.6 | 171 | 147 | 8.1
apeedup 1 1.1 2.9 3.3 6.0
Kred || 2054 | 4302 | 3903 | 5665 | G066
GFCHI
tifne [s} 2.8 2.6 2.4 25 2.4
speedup 1} 108 [ 117 | 1.12 | 0.97
Kred 117 226 434 B74 | 1748

Table 2.2: First solution of 20 queens

but achieves a 6.0 speedup with 16 processors. GFCH1 has constant time performances. The difference between the
algorithms is explained by their prineiple, GFCHI is basically slower, but leads to the good solution, conversely SFCH1
is faster bul may search in bad areas of the search space. This is the case here, so speculative parallelism brings speedup.

The study for 25 queens, in Table 2.3 gives as well constant times measures. Here again GFCH]1 is faster than SFCH1,
by a ratio of 3. However this trade-off is due to another reason than before, it is due to the size of the search space.
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The run in paralle docs not bring any improvement, the time remains strictly constant. We can notice the evolution

progran number of processors

1] 2] 4] 8] 18

14.3 | 14.4 14.6
1.01 1 .90

SFCH1
time [s]
specdup

144 | 144
1 1

Kred || 897 | 1280 | 2770 | 5620 [ 11286
GFCHL

time [s] 4.4 4.8 4.7 1.3 1.9

speedup 1| 12| 104 | 1.02 1

Fored 214 422 840 | 1667 3208

Table 2.3 First solution of 25 quecns

of the number of reductions, growing proportionally to the number of processors. It shows the good behavieur of the
algorithms, where all processurs work until one solution is detected,

Raw spead, speedup and reductions

With a small search space (10 and 15 queens), SFCHI1 is faster than GFOHL, becanse of its simplicily. Conversely,
with an increased search space, GFCH1 takes advantage over two phenomencns, it focuses better the searches towards
the solution (as seen in 20 queens), and is much faster i large search spaces because of its early pruning especially
(see 25 queens). Some problems seem to be particularly unfavorable to SFCH1, becanse it begins a scarch in a bad
subpart of the search-space. In this cases speculative A ND-parallehsm brings gond, maybe super-lincar speedups. But
is remains speculative, thus in olher case we win nothing.

Speculative AND-parallelisin did not bring great resulis in the queen problem. This was foreseen, since the search
space of the queen problem has many solutions, the speculative work does not find magical solutions. In some cases,
speculative work may bring speedup or slowdown for SFCH1. but GFCHI has approximately constant performances.

2.2.3 Exhaustive solution search

We run the Parallel Forward Checking exhaustive search with &, 10, 12, 13 queens. Thus the OR-parallelism of the
search can be studicd. In the first subsection we give the raw measures with some comments, than we study the load
balancing of the processors.

Later on. in section 2.6 the results of the Parallel Forward Checkimg we present here will be compared 1o the specific
implementations of the queen problem. So we may measure the trade-off duc to the encapsulation of the Problem
Solvers. The conclusions specific to the queen problem, are shown as well in section 2.6,

Raw moasures

Table 2.4 gives the results of the 8 queen problem. These results should be considered wilh care, because the elapsed
time to calculate the 92 solutions is very small compared to the precision of the measures on the Multi-PSL SFCH is

DT " numiber of processors I

1 2 4 & 16
SFCH ||
time [s] [ 0.59 | 0.53 | 047 § .56 .66
speedup 1 1.1 | 125 | L05 | 0.88
Kred 17 23 35 60§ 112
GFCH

time [s] 1.2 | 0.97 | 0.75 | 0.5% | 0.72
speedup 1| 123 | 16| 202 167
Kred 26 14 50 Bl 147

Table 2.4: FCH Application on & gueens {§2 solutions)
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faster than GFCH, but the latter takes a better advantage of the parallelism, especially when dealing with 8 proces-
sors. In terms of reductions, we note a dramatic increase with the number of processors. Thizg is due to our constraint
gencration performed in parallel on all the processors. Speed of the parallel processors eannot be improved to show
great jumps since the generation of the constrainls, which takes (.18 ms is done sequentially on all processors.

More reliable results can be seen by running 10} queens, as reported in Table 2.5. Here the elapsed time are better
suited to the precision of the measures. GFCH is almost 3 times slower than SFCH, on one processor. Again its

Program number of processors

1 2] 4| s8] 18

SFCH
time [s] {| 5.54 | 332 | 193 | p2s | 125
speedup 1] 167 | .87 | 4.32 | 4.44
Kred 194 | 205 | 20§ 279 | 383

GFCH
time [s] || 14.6 | T.66 [ 446 | 288 [ 267
sjpefup 1 1.9 | 3.34 | 5.07 | 5.47
Fored 314 | 336 | aT0 | 448 | 612

Table 2.5: FUH Application on 10 queens {724 solutions}

speedups are higher than SFCH, altaining more than § with 16 processors. GFCH makes approximately two times
more reductions than SFCH. A graphic representation of this results is drawn in Figure 2.9 on page 35.

The Table 2.6 gives the results of the run of 12 queens. We may begin to trust in these results since the overheads are
negligible compared to the tasks performed. The algorithm works very well on two processors, achieving super-linear

Program number of praccasars
L 1 4 8] 16
[ SFCH | B
time [s] | 127.7 | 61.2 | 326 | 2002 | 138
speedup 1 208 [ 302 632 925
Kred ASROD | 4400 [ 4442 | 4528 | 4719
GFCH
time [s] || 325.2 | 163.1 | 84.1 | 523 | a7
speedup 1 1.99 | 3.86 | 6.21 | B.T6
Kred 626 GGIT | G6E4 | ThOO [ T408

Table 2.6: FUH Application on 12 queens { 14200 solutions)

speedup for SFCH and 1.99 speedup for GFCH. The results on 4 processors are as well impressive. At the very end,
SFCH gets higher speedups than GFCH. Again SFCH is about 2.5 times faster than GFCH. A graphic representation
of this results is drawn in Figure 2.10 on page 36.

Our last experiment on the queens is the 13 queens, reported in Table 2.7. The gap between SFCH and GFCH is
increasing. Here we notice a super-linear speed-up on GFCH dealing with 2 processors. The final speedup obtained
with 16 processors is about 10. We notice as well the evolution of the reductions, which are almost constant, whatever
the number of processors. A graphic representation of this results is drawn in Figure 2.11 on page 37.

Raw spoeed, for single solutions

Having the raw measures, it is interesting to transform them to see the time needed to calculate one solution. We
make the ratio ’%’—’ﬂ;‘ in Table 2.8 for the SFCH. All The measures are expressed in milli-seconds. The

i uumhtu seiuiions . , A o |
solution search on a single processor increases with the number of queens, nevertheless, this increase is inferior to

linear, thanks to the bit encoding.
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program number of procesaors
[l
SFCH -]
time [5] Gan | 386 | 227 | 1174 [ TLZ

epeedup | | L.58 | 3.11 589 Q.64
Mred || 236 | 237 | 237 | 238 | 24
GFCH

timee [g] [F 1940 | ®41 [ 516 anl 182

spesdup 1 {7206 | 576 | 6.44 | 10.66
Mred || 34,5 | 347 | 347 5.5 | 365

Tahle 2.7 FUH Apphication on 13 queens (73712 solutions)

T number af processers .
1| 2] 2] 8] 16

A Queelns T |

time [ms] || 64 [ 58 |51 |61 ] 72
_iﬁ Qur_'r-n:c

time [ms] || 7.6 f 4.6 | 27 [ 18] 1.8

12 Queens ]

time [ms] || 0.0 | 4.3 [ 23 [ 14710

135 Queens

time ms] || 94 | 5.0 30 ] 16 | 1.0

‘Table 2 8 Average time for 1 solution with SFCH

A deeper study of the properiies of the quesn problem follows in section 2.6. The reader will find on page 39 the
equivalent Table 2.22, for the specific queen alponthm.

Load balancing

As said in the introduction to parallelism, the key of the success lies in an ideal load balance, thus it is nocessary Lo
study the results ohtained by the simple manner we introduced. To do so, we stored the mumber of solutions found
by each processor. Even if this is not a proof, it secms to be a good presutupt inn of the work done by a processor.
Kemind that the load balance is the same for SFCH and GGFCH.

The load balance for 2 and 4 processors share the same properties. If the number of queens is even, the load balance
is optimal, see Figure 2.1, As a consequence we obtain excellent results in those cases, and achieved several times
super-linear speedup (in Table 2.6, 2.7, 2.18, 2.20).

B 1igusens load balance
- B 1z2gueens
E 13guooans
o.30 - A 1AquUeans
0.20 —
0. 10 -
0.00 —

1 =z o 4 Proceassors

Figure 2.1: Load balunce for 4 processors
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Unlortunately, when 8 processors are used, the “magic properties” of the load balance are fuding, some processors
have much more work to do then others. The load balance is not catastrophic, but gives some clies towards the
explanation of a proportionally lower efficiency with 8 processors than with 2 or 4. Nevertheless, the load halance is
improved as the number of queens increases, see Figure 2.2. In the same manner. Figure 2.3 shows the load balanece

T1gueens . ioad balance
12queans
13queans
1dquadns

0.200
0175
0.1 50

CEEN

Lol

O 125
0. 100 =

D.O75 -

0.050
0.025
0.000

a1

1 b= e | A 5 =] i -
BracssSors

Figure 2.2: Load balance for 8 Processnrs

of 16 processors. Here ton, we notice a better load balance with an even number of queens. The range of the load
distribution is decreasing as the size of the problem increases. For the even mumber of queens, 8 processors are near
on the optimum load distribution

B i iquesns

0.3 o B 12guouens Ioad balance
4 BE 13gueans
o.10 - FEl 1aqueens

o.o8

0.0
0.0a

.02

o000

[=lp=lalohetotalg |

Figure 2.3: Load balance for 15 processors
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2.3 The zebra problem

2.3.1 Description of the problem

This is a well known problem, due to Lewis Caroll.

Five men with different nationalities live in the five first houses of a street. They practice five distinet professions,
and cach of them has a favorite animal, a beloved drink, all of them being different, The five houses are painted in
Jdifferent colors. The following facts are known:

The English man lives in a red house

The Spaniard owns a dog.

The Japanese is a painter

The ltalian drinks tea

The Norvegian lives in the first house on the left
The owner of the green house drinks coflee

The green house is on the right of the white one
The sculplor breeds snails

The diplomat lives in the yellow house

Milk is drunk in the middle house

The Norvegian's house in next to the blue one
The viclinist drinks fruit juice

The fox is in the house next to that of the doctor
The horse is in the house next to that of the diplomat

The problem is to identify who owns the zebra and who drinks water.

We iiplemented 2 versions of this problem. In the first, Zebrai, the street where this people live is straight, the
solution of the problem is unique. In the second version, Zebra, we consider the case of a circular street, thus the
problem has 21 solutions, the constraints are looaser.

The subsections are organized in the following way, at first we run the program with the straight street. As the
solution is unique, we use the programs searching for single solutions, Then we turn our interest to the eircular street.
This problem requires a little more work to be solved. We may have interesting conclusions on the parallelism, since
both, Speculative AND-parallelism and O R-parallelism are used.

2.3.2 The straight street: Zebral
Raw measures

Table 2.9 reports the results of SFCH1 and GFCHI applied to the Zebra problem. As the problem is well constrained,
it is solved is approximately 0.5 seconds. When running this problem on several processors, by using the speculative
AND-parallelism, we got a good surprise in achieving some speedup. The best results are obtained with 2 processors,
respectively for SFCHI and GFCHI. Even these low speedups were unexpected since most of the papers in parallel
literature pretend that the Zebra problem has no inhercnt parallelism.

2.3.83 The circular street: Zebra

When considering all the folks of the zebra problem inhabiting around a square, some more solutions of the problem
are available because the house 1 and 5 arc neighbors.
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program number of processurs
L 1 2| 4] 8| 1a

SFCH1 ]

time [s] | 0.48 | 0.40 | 052 | 0.58 | 0.94

apeadup 1 B2 | 092§ 082 | 0A1
Kred | 16 | 26| 61| 113 | 232

GFCHI

tiime [s] || 0.67 | 0.50 | 0.59 0.6 | 0.93

speadup I | 134 ) 1.14 | 1.12 | 0.72
Hred 19 32 63 | 118 | miw

Table 2% FOH Application of speculative AND-parallelism to Zebral

HRaw moeasures

As we arc looking for all solutions, we run SFCH and GFCH. They find 21 solution of the problem, Parallelism is done
in Or-parallelism. This problem gets some tiny speedups, less than 2 in the best case. Note the dramatic increase of

program number of processors

V] 2] 4] 8] 16

EFCH
uime [s] || 065 ( 059 | 0,62 | 057 | DTSR
speedup 17227 [ Lan | 1ar | vks
Ered 22 a6 65§ 122 | 234

GFCH
time [s] | 1.16 | 080 | 068 | 0.62 | 0.8]
speedup 1 L3 f 171 | 1.87 | 1.43
Kred 24 44 T3 132 | 200

Table 2.10: FCH Application of OR-parallelism to Zebra (21 solutions)

the numler of reductions, when the number of processors increascs.

2.3.4 Interpretation of the results

Despite the low speedups, these results in parallel environment were unexpected. We were more thinking about soine
slow down in parallel. The choices we made lor the parallel implementation explain these results. As we work in
static load balancing, spreading small data, a negligible overhead is paid to the parallel implementation. On the other
hand, this requires each processor o generate locally the constraints of the problem. This constraint generation takes
approximately (.25 seconds and 8600 reductions. So this explains the increase of the reductions performed in the
parallel environment, but as well it sets the maximum parallelism of the zebra problem to a speedup factor of 2.7 for
SI'CIT and 4.64 for GFCH, according to Amdahl's law.
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2.4 The scheduling

2.4.1 Description of the problem

Scheduling is an NP-complete problem. Hence in most of the cases the scheduling is to realize a task in a finite time,
it is an excellent application for our problem solvers. If the domisin of search is large, parallel implementation may
attain good speedups.

But more than a toy problem, scheduling is an application peeded in varions fields of sciences, in the industry and
everyday life. Tis application in VLSI is one of the well known examples

Thus, we designed more than just an application program making scheduling on an example. We designed a langnage
to express the scheduling comstraints under form of a graph of temporal dependencies. Qur program is restricted to
hamiltonian graphs. It proceeds as follows:

construction of the predecessor, successor graphs.

construetion of the As Soon As Possible and As Late As Possible scheduling.

Definition of the domains of the variables.

Ceneration of the constraints for the Parallel Forward Checking

in the following we show some scheduling applications. The first of them is extracted from the field of Design
Automation [10, 9], It may be paraphrased by the grammar:

time
1 x 2 b |
2 x5 * 3
3 ®xE ¥ < w8 10
s it }
v X7 3] =11

Figure 2.4: Scheduling used for Design Automation

Iy + I
Ty — Ia
Ty — T4
Ty — I7
Iy -~ Ig
rg — I7
rg — IH
EST a3 ¥

The language we made takes this grammar as starting point of the algorithm. This design example is very small,
having only 11 variables and a critical time of 4 time steps. This example is composed of 3 independent subgraphs.

Then, we treated a more complicated example representing a graph. This example gives an idea of the complexity
of the scheduling problems allowed by our language. This example deals with 18 variables, and may be solved in 9
time steps, but its definition graph has 16 time steps. The reader may easilly construct the grammar describing this
example, by analogy to the preceding one.
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]
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9 x11

Figure 2.5: Scheduling in a graph

2.4.2 Unique solution search

Wihen running unique solution search in sheeduling, results are found in very short time, 0.2 or .3 seconds. Thus de
do not report the results here. Sequential implementation is the fastest, then the search time incresses slightly, mayhe
10%.

2.4.3 Exhaustive solution search
Raw maasiires

When solving the Automatic Data Path for high level design, the results for the critical time are found in 0.3 seconds.
Thus we give looscr constraints, providing a higger search space, some speedup are achived in parallel, see Tahle 2.11.
In 6 time-steps, the algorithmn finds 53775 solutions. SFCH is between 2 and 3 Limes Faster than GFCH. The speedups
are a little bedter for GFOH, approximately 5%.

If we apply our algorithms to solve the scheduling of the graph, we obtain again the solution in 0.5 seconds and 0.6
seconds, respectively for SFCH and GFCH; provided the critical time, 9 time steps. When releasing Lhe constraints
to 11 time steps, more solutions are available, as shown in Table 2.12. GFCH is two times slower than SFCH, in this
example. ‘I'he speedups are very low, attaining approximately a three-fold factor for 16 Processors.

Haw spemd, speedup, reductions

Scheduling does not show impressive speedups. The GFCH is very slow compared to the SFCH, this may be explained
by the search space, containing many variables {18 for the graph) but its depib is just 11 in our case. Another reason
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prOgrGI number of processors
1] 2] 4 B 16
SFC
Lime [g] 285 | 176 | L1B 7.3 N |
apelup 1 16 2.4 3.9 5.6
Hred ap7 | 909 ) 914 | 924 | H4S
GFCH
time [s] || 654 | 36.2 | 241 | 144 ] 10.5
speedup 1 1.4 2.0 4.5 fi.2
Fored || 1640 | 1624 | 1542 | 1541 1551

‘Table 2.11: Al solutions of the automated Desing problem in 6 timme steps{33775 solutions)

PTORFrTnG number of processord
|l 2l e el 16
[ sFCl |
time [8] 27 | Mk | 203 [ 127 0.2
sperdup 1 oo | e | 1y 283
bored 266 i3 s | 1163 | 1501
GFCH '
time [s] | 0.2 | 56.8 | 457 | 26.7 | 186
speedup V| oLDG ) 132 235 &M
Kred || 1388 | 1630 | 1683 | 1860 | 224%

Table 2.12: All solutions of scheduling in 11 time-steps (46926 solutions)

for the efficiency of the SPCH is the nature of the problem. Since it s described by a graph, the constramts are
expressed and used in an eflicient frame, unnecessary branches are pruned early,

Load balaneing

The study of the load balancing, shown in Figure 2.6, explains the poor speedup obtained by the scheduling progratm.
‘I'ne work is shared in an enfair manner between the processors, and the spesdup cannot be higher as long as the load
bulance is not improved. The figure represents the load balance for 2 and 16 processors, on the graph example. For 2
processors, we see that one of thern is really lazy, performing only 9% of the work. With 16 processors, this figure is
slightly better, but the most buzy of the processors makes still one third of the work. There is an obvious correlation
between load balance and the speedup found in Table 212

2.4.4 Interpretation of the results
The scheduling program provides a convenient environment to solve every day problerns, if they may be solved in leas
than 32 time steps. :

SFCI seems to be more efficient than GFCID in scheduling problems, by a factor of two, Since constraints are ex-
pressed under form of & graph, they seem to be well used in SFCH.
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Figure 2.6: Load balance in scheduling

2.5 The maze

Mazes or labyrinths are finite space search problems. However, the labyrinths human beings are used to solve present
quite often high constrants, typically a small search space, but deep backtracks. These mazes challenge human beings
i finding the solution in the shortest time. Hence search spaces are small, machines are not challenged by such mazes,
being rather trivial. However, if the constraints of the mazes get looser. search spaces grow and labyrinths become
interesting search problems for machines (but trivial ones for human being]. This explaing the surprising structures
of labyrinth we use for the henchmarks,

2.5.1 Description of the problem

We defined three different mazes to make our experiments. All of them have a parameter which is the length of
the maze. Their proportions and shapes remain constant, whatever the length paramcter. ‘They are represented in
Figure 2.7. Imagine we control a robot entering Lhese mazes, It moves form the left to the right, the possible moves

maze maze?2 maze3

Figure 2.7: Definilion of the mazes

being the 3 adjacent cases for maze and maze® and the 5 adjacent for mazed, The black cases represent the forbidden
cases in the mage



2.5.2 Unique solution search

Baw measureas

‘Fabe 2.13 represents the resuls for a sole result of maze(31). The results are almost constrant, whatever the problem
wolver or the numher of processors. As all the solutions of the maze are in the same geographic area of the maze,

program number of processors

1] 2 4] 8] 18
SFCHL _I _
timefg) | 30} 28] 30| 29| 32

gpecdup k] 1 1.0d | 0.94
Kred || 212 1 423 | 841 | 1650 | 3295

GFCHL
time [«] || 33| 30| &) 3.3 aT
gpecdup 1 1.b | L0 1§ 0.89

Kred || 215 | 426 | 8R4 | 1709 ] 3425

Table 2.13: Unique solution of maze(31)

speculative AND-parallelism cannot bring interesting speedups, the constraints of the problem lead efficient]ly one
processor towards the solution. The number of reductions is proportional to the number of processors. This shows
apain that communication time may be neglected, tanks Lo static load balanving.

In mazed, the behaviour of SFCH1 and GFCHI are completely different. GFCHI leads officiently to the solution,
but SFCH1 is lost in the maze, looking of all the solutions. The results shown in Table 2.14 show well the difference
between both problem solvers, GFCH1 being T3 times [aster than SFCHI on this problem, with one processor. The
number of reductions performed by the algorithms shows the trade-off. As the number of processors increases, GFCHI

PIFTNFTTIN number of processors
a 1 2] 4 B 16
BELEL B N
time [5] || 28.9 [ 252 | 134 6.4 3.0
rpeedup 11 1158 | 208 | 452 | 9.63
Kred || 1010 | 2007 | 2166 | 1951 | 1621
T GFCHI
time [s] || 038 | 0.40 | 048 | 065 | 10
speedup 1 nes | 0.7e | DR | O0LEE
Kred 10 19 49 | 113 | 267 |

Table 2.14; Unique solution of maze3(13)

gets slower whereas SFCH1 speeds up. There is no good explanation available for the slow down of GFCIL. SFCH!
speeds up becanse of luck, the search spacc being smaller, there are more chances to find the sclution early.

2 &8 Exhaustive solution search

Raw measures

Again, we use maze to perform the exhaustive search. The results in Table 2.15 show the good performance of SFCH,
which is 2.5 times faster than GFUH. The overal speedups by both algorithms is 6. We may notice that GFCH makes
approximatcly 2 times more reductions than $FCH. The price of GFCH's overhead is very high is this case, and leads
to the poor results.

Conversely, when running the problem solvers on maze2(17), (see Table 2.16), GFCII is approximately 1500 times
faster than SFCH. SFCH is trapped in maze2, and searches in the whole search space, but finally, fails to find the
pathes in the wall. GFCH begins with the most constraint variable, this means with the wall, then propagates the
results to the starting point. Thus most of the search space is pruned in the early stages. Very interestingly, we nole
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progrum number of processors

1 2 1] k| 16

SFCH
time [g] | 241 [ 140 | 00| 44 | 413
speedop 1 LT 2.9 4.8 5.8
Kred .6 B8 B2 nHhE | 11.9
GFCH [
time [g] B36 | 352 | 227 | 152 | 106
speedop 1 180 23| 4.2 [
Kred || 155 | 174 | 19.2{ 22 | 273

Table 2.15: Al solutions of maze(31) (444315 solutions)

program nutber of processors
1] 2] 4] s8] s
SFLCH S
time [s] | 1110 | 565 | dwn [ 274 | 173
apeedup 1) 1.8G | 285 | 4.05 6.4
Mred 6.6 | 267 | 36T | 36.8 ‘1
GICH
time [s] | 070 | 0.72 | w83 | 10 | 1.53
speedup 110497 | 0.84 | 0.64 | 0.458
Fored 35 69 138 | 275 552

Table 2.16: All solutions of maze2{17) (18 solutions)

again a slowdow of GFCH when mure processors are used. The results show coherency to the ones of mazed in the
first solution scarch.

Raw spewd, speadup, reductions

The paraliel implementation showed very poor performances. as a consequence of the load balancing. The current
version of the load balancing shares the search spaces between processors by halfing the first variables of the search
space. Obvioualy this leads to bad results when the domains of these variables are small. SFCH is trapped in maze?2,
and searches in the whole search space, from left o right. but finally, fails to find the pathes by crashing into wall.
GFCH begins with the most constraint variable, this means with the wall at the right, then propagates the resulis to
the siarting point. Thus most of the search space is pruned in the early slages.

Labyrinths are convenient illustrations to show the properties of SFOH and GFCH. The lesson we take from these
experiments is that efficiency of the algorithms depends on the nature of the renstrainls expressed by the application.

With simple and regular constraints, STOH is faster, but in some cases it is more inportant to take dynamically
advantage of the available information and to propagate the “best” constraints, then GFCH becomes faster.

The speedups attain a 6 factor for SFCH aud GFCH in masze. we note impressive slowdown for GFCHI and GFCH
when running on mazed and maze? There is no explanation for them for the moment,

Load balancing

We studied the load balance on the maze problem. It is represented in Figure 2.8. The load balance for 2 processors is
near form optimal whereas the one for 16 processors has 2 processors taking approximately one sixth of the work each.
This load balance is nol a desperate case, but sets strong limitations on the speedup with more than two Processors.

2.5.4 Interpretation of the results

The difference of principle between SFCH and GFCH may lead to terrible performance trade-off. GFCOH seems to
be a safe solution to problems, often slower than SFCH, but in reasonable factors, lese than an order of magnitude.
Conversely, SFCH could be seen as a brilliant algorithin, often outperforming GFCH, but sometimes trapped. In such
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[Figure 2.5: Load balance in maze

cases Lhe performances are really terrible.

Omee more we could explain the speedup performances by the load balance of the algorithm  One mystery remians
with the surprising behaviour of the GFCH and GFCH1 in paralle]l on maze and mazed
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2.6 Related work

In this section we present a comparison between the results abtained by the Problem-solvers (reported in section 2.2
and the results of the specialined queen programs. Three specialized queen programs have been implemented, the
QSFCH! (for Queens Simple Forward Checkeng) and iwo versions of the QGFCH (Queens Cenerahzed Forward
Checking). These specialized programs do exhaustive search of the solutions, The difference between the latter ones
is in the size of the stored datn. QUG FCH stores two decoding tables having 2% clements each, n being the number of
queens. As this size is not reasonable, we implemented the other version, _(7F¢ Hh which stores two tables having
2% elements. To perform the decoding of the number, the Q_GFCHA algorithm has to do it in two times by using
bit shifting.

Three subsections follow, the first presents the raw measures of the algorithms, the second gives the evolution of the
speedup and the number of reductions and raw speed according to the number of queens, and the third subsection
studies the load balanciug.

2.6.1 Haw measures

Mast of the papers give the time measures for the B queens problem. We start with the 10 queens becanse the &
queens are done in approximately (0.4 seconds on one processor, the measures facilities provided by the Multi-PP5] are
not precise enough Lo relate the 8-queens problem, and results would be odd.

10 queens
program number of processors

1 2] 4 2f 18

QEFCH
time [2] || 4.85 | 26 1.4 | 0,97 | U.HE
speedup 1§ 186 | 3.34 5 | 563
Kred 183 | 184 | 185 | 192 | 208

QL FCH
time [5] R 24| 19| 120 1.1
speedup Pl 1.94 | 347 3.5 i
Kred || 161 | 166 | 178 | 204 | 271

QG FCHA
time [s] fl 10.2 | 52| 27| 17] 14
speedup 1] 186 | 378 6| 7.29
Kred 206 | 26 | 205 | 208 | 226

Table 2.17: Queen Program: 10 queens (724 solutions)

Table 2.17 gives the raw speed measures in seconds, the speedup and finally the number of reductions, in Kilo or
Mega reductions. The most efficient. program is Q.SFCH, whatever the number of processors. The QUG FOH is
approximately 40% slower, the QGFCHB is two times slower. The speedup of the QG FCHE is better than the ones
from the other programs, see Figure 2.9, The number of reductions of the Q_GFCH is the lowest when running on
one processor, It increases proportionally with the number of processors. This increase is explained by the duplication
of the tables on each of the processors. This remark is also valid for Q_SFCH and Q_.GFCHh. having respectively
10% and 20% more reductions.

12 gqueens

Table 2.18 gives the detailed results of the run. Compared to the previous results, Q.GFCH is gaining some efficiency,
compared to Q.SFCH, but is still slower from 10% approximately. QGFCHA is also improved, as it's principle is
the same as Q_GFCH, but is still far from Q_SFCH, in time performance, see Figure 2.10. The maximum speedup
reached a tenfold factor for 16 processors. Generally speaking, the speedup for 2 and 4 processors are excellent, and
two of them are super linear (they are emphasized by a rectangle). The number of reductions shows small variations
with the number of processors, QGFCH makes 40% less reductions than Q_SFCH while QGFCHR makes 10%
less.

"The sequential version of this program has been written by Takashi Chikayamn
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Figure 2.9: 10 queens {724 solutions)

Progran number of processors
! 1| 2 a4l m] 16
 OSFOH ||
time g || 1155 | 562 | 30.3 | 18K | 124
speedup 1 2,05 | kA1 [ 614 441
Ered || 4361 | 4363 | 4366 | 4375 | 4414 |
QGFCH
time [5] | 135.4 TL.6 [ 331 | 205 13.4
speedup P o189 | 400 | 66| 104
Kred || 3124 | 3180 [ 3112 | 3180 | 3382
QGEFCHR '
time [s] || 2066 | 1106 | 544 M| s
spesdup 1 1u5 | 387 | 6.37 | 10.57
Kred || 4069 | 4142 | 3ug2 | 3037 | 3832

Table 2.18: Queen Program: 12 queens (14200 solutions)

13 queens

The results of the 13 queens are shown in Table 2.19. Q.GFCH is improving its results, but is still slower than
the (}_SFCH, even with 16 processors. Q.GFCHL is very slow on 1 processors, and gets better speedup, but is
still 1.5 times slower with 16 processors. Figure 2.11 shows the resulis The speedup are quite bad for 2 and 4
processors, if compared to the ones of 12 queens. As we show it later, this comes from the load balancing: the domain
of values are split into 2, so the load balance works well for even number, and less for odd ones. Nevertheless, the
speedup with 16 processors seems not to be affected by these considerations, and reaches a top of 10.7. The number of
ceductions of Q_SFCH is increasing with the number of processors, conversely the number of reductions of Q GFCH
and Q_GFC Hh are decreasing with the number of processors. This new tendency may be explained hy a better use
of the constraints by the Q.GFCH, the initial problem on each processor gets higher constraints in parallel, thus
Q.GFCH turns out to be more efficient.

14 queens

The run of the 14 queens are given in Table 2.20. For the first time, Q_GFCH becomes more efficient than QSFCH,
this with 16 processors only. But the difference is too small to be significant, since measures are relying on the non-
determinacy of KL1. Speedups also become inleresting, reaching 11.8. Again, notice the super linear speedup for 2
and 4 processors, where the algorithm is respectively 2.03 and 4.21 times faster than with one processor. Figure 2.12
represcnts the raw time performance of the algorithms. The trends or the reductions get more abvious, in the best
case, Q_GFCH makes just 60% of the reductions of Q_SFCH, but they need the same time. The reductions of
Q.GFCH are more complicated than the ones from QS5 F C'H, furthermore, QG FCH carries bulky data.
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time in s
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Figure 2100 12 quesns { 14200 solutions)

program number of processors
| 1] 2] t | 8 16
QS FOH
time [ 616 a2 166 107 5
spesdup 1 1.86 3.3 576 .48
Hred || 23641 | 23643 | 23646 | 21658 | 23713
QLFCH
1ime [k T8 404 7 116 67
apeedinp 1 1.7& an 6,14 10.72
Foredd 16424 | 16408 | 153865 | 15773 | 16135
O_CFCHR
time |s] 1120 632 113 179 498
speedup ] 1.749 335 631§ 11.52
Kred || 21544 | 21448 | 20595 | 20202 | 20129

Table 2 1% Queen Program: 13 queens (73712 solutions)

1% and 16 quoons

The 15 and 16 queens problems have been run on 16 processors only, to compare QuSFCH and QGFCH. Unfortu-
nately, we cannot see the speedup in this case. The results are summarized in Table 2.21. This confirms the tendency
we noted earlier, (J.GFCH is getting faster with larger scarch spaces. 'The number of reductions gives au image of
the trade-off between both programs. Surprisingly the difference belween both programs is stable, about 15% is speed
and T0% in reductions.

2.6.2 Raw speed, speedup and reductions

It 15 interesting to analyze the results in 2 perpendicular plan, to see the evolutions of the performances varying with
the number of queens.

Raw speed, for single solutions

Having the raw measures, it is interesting to trausforin them to see the time needed to caleulate one solution. We make
the ralio ﬁﬁfm; in Table 2.22. We consided always the best solution hetween Q_SFCH and Q_CFCH. All
The measures are expressed in milli-seconds. The ones with a « have been recorded with Q_GFOCH. In the seguential
version, the time to find a solution increases with the size of the problem, Iu the parallel world this does not held, and
the time decreases as the size of the problem increases. The parallelism gains efficiency with the size of the problems.

The speedups

The speedup for 2 and 4 processors are near on the ideal one, then the speedup are fadding, according to the load
balancing studied in section 2.2. ‘'he Figure 2.1 in page 23, Figure 2.2 in page 24, Figure 2.3 in page 24, give direct
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Figure 2.11: 13 queens (73712 solutions)

progrom number of proceasors
- 1| 2 4 & 16
QSFUH ] ]
timne [5] ARTG 1806 041 &A1 ME
speedup i [ 200 | %80 | .67 | 10.56
Mred 146 136 136 144 136
Qi FCH |
time [5] || 4066 | 2005 966 | 365 344
specdup Py o203 | 421 7.0 | 11.82
M 93 91 af 87 85
QU FPCHA
time [s] || 6284 | 3102 | 1489 | 36K 526
speedup 10 203 432 .24 ] 1095
Mired 20 [ 114 1121 111 104

Table 2.20: Queen Program: 14 queens { 365596 solutions)

explanation of the speedups.

It is worth to note the gnod speedups of the even number of queens, compared to the odd ones. Especially 11 queens
shows terrible resulte. Our load balance is well suited to search spaces in cven size, because the sub domains used for
the parallel processing are of equal size. This problem fades with large search spaces,

The evolution of the number of reductions, is very important to predict the performances of the algorithms and their
trends. Figure 2.13 gives this evolutions, function of the number of queens. As the number of reductions increases
exponentially, we represented it with logarithm seale. The kkqueens algorithm represcnted in the figure, is one of
the classical queen program described in [14], we give it to sel a reference point for the forward checking. With the
angmentation of the number of queens, the Q.G FC H makes less rednctions than Q_SFCH, almost half as much for 15
and 16 queens, but the time performance are just 10% better. Figure 2.13 gives the number of reductions when using
16 processors. The Figure 2.14 gives the evolution of the time performance with the number of queens. Conversely to
Figure 2.13, Q_SFCH shows better performances than Q.GFCHh, despite a higher number of reductions. Notice as
well the effect of the bad load balance with 11 processars, leading Lo catastrophic results for Q.GFCHA,

2.6.3 Interpretation of the results

The previous sections detailed the results of the algorithm. The performances are the ones expected when we wrote
the program. Quite surprisingly, we got several times super linear speedup, despite the fact our sequential algorithm
is optimal {or almost].

An easy explanation of this phenomenon, is to notice that the size of the search spaces on several processors are in
the inverted proportion of their number. Ag a consequence, each processor uses less memory, requires less garbage
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Figure 2.12: 14 queens (3655096 solutions)

progrem I gueens 16 guecns
solutions 2279184 14772512

QSFCH  ume[s) || 2215 13727
Lime [Ilrn.l,] 36" 55" | 3 h 48" 47"

Mred g1 2526

OGFCH time [s] 1908 L1542
time [hms] 4Rt A kT o

Mred 445 122

Table 2.21: Queen Program: 15 and 16 queens with 16 processors

collections, and the cache memory of the processor turns out to be more efficient. If the load balance of the prOcessors
is ideal, simall super-linear speedups may be explained in this manner.

Super-linear performances of the QLGFCH, making the 14 queens problems in 4.21 times faster than with one
processor, needs additional explanations. We noticed the decrease of the number of reductions petformed by the
program, when the number of processors increased (cf. Table 2.20). Our principle of parallelism introduced more
constraints on each of the processors, thus the generalized forward checking with first fail principle we used, will detect
sooner the impossibilities in the parallel world thap in the sequential one, so an increasing number of reductions are
saved when the number of processors increases. Notice that this phenomenon appears with 14 queens and more. Tt
secms that reductions to perform the duplication of all tables on each of the processors are not to be under estimated
before 13 queens. With 14 and more queens this work may be negligible, compared to the forward checking itself.
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1 2 1 A 16
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Table 292 Average time for 1 solution with the best of QSFCH and QGFCH
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Chapter 3
Conclusions

Four different problem solver have been deseribed and implemented, namely SFCH1, GFCHL, SFCH, GFCH. The Two
first ones perform unique solution search in the frame of speculative AND-parallelism, the last ones make exhaustive
search in the frame of OR-parallelism.

The methodology we introduced for the load balancing is very simple, it is to split the search space on several proces-
sors by giving a different initialization to each of them. This inilialization is expressed under forw of static constraints.

This is a static load balancing

In the following, we make a short resume of the main characteristics of the algorithms, we give some hints and eriticize
themn so to introduce the future developments to be done. We will see in turn the expression of the constraints,
compare the principles of SFCH and GFCH, look at the types of parallelism, and eventually give the performances.

3.1 The Constraint Language

The Problem Solvers we presented may be used for any finile domain CSP problem. The problem dependent con-
straints are generated outside of the Problem Solver. The latter generates those constraints, compiles them into
efficient Lil-cncoding and starts the searches,

In aiming to use one of the Problem Solver, one needs only to write the constraint generation, which is of course problem
dependent. Our constraint language, enters the constraint instances, under a rather naive form. The constraint
gencration program may be written in a naive manner for both reasons, the constraint generation is often a negligible
task compared to the search task, these constraints are compiled into bit-encoding by the Problem Selvers,

3.2 Simple versus Generalized Forward Checking

Through the whole study we made some competition between the SFCH and GFCH. Most of the papers we were
reading in the field of CSP claim the superiority of the GFCH over SFCH. On one hand, GFCH shows a nice and
clever principle, on the other hand SFCH exhibits a great simplicity and permits efficient implementations. Thus,
comparing SFCH and GFCH, is an illustration of the dilemma between implementation and theory. As this question
is beyend the scope of our study, we show some resulis of the algorithms.

It is difficult to predict the relative performances of SFCH and GFCH, 2 case by case study iz required. The problem
solver are homogeneous in their interfaces, Lhus we report the choice of the problem solver to the user, and suggest an

experimental approach.

3.2.1 Unique solution search

SFCHI and GFCH1 perform unique solution search. The parallelism they use is specnlative AND-paralielism. The
data are spread to a list of processors, each of them generates locally the constraints, and begins the search in a
subspace of the search space. As soon as one of them finds a solution, it sends a stop signal to all other processors,
and its resuit is returned
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3.2.2 Exhaustive solution search

SFCH and GFCH perform exhaustive solution search. The parallelism they use is OH-parallelism. The data are spread
to a list of processors, each of themn generates locally the constraints, and begins the search in a subspace of the search
space. The results of the processors are merged to give the solulion of the algorithm,

3.3 Parallel Forward Checking

The philosophy of parallelism we used, is to reduce as much as possible the communications in the machine, Thus we
use a very coarse grain parallelism. This has a major advantage, the overbead of data-spreading may be negligible,
thus the performances of cur parallel program running on ene processor are the same as those of the oplimal sequential
algorithm.

3.3.1 Types of parallelism

We implemented two types of parallelism, speculative AND-parilelism and OR-parallehism. Even by using several
kinds of parallelism, we kept the same load balancing principle. Because we needed to reduce as much as possible
the communications in the machine, each of the processor generates locally, and in redundancy, the constraints of the
problem. As this is done scquentially, it affects the overall performances of the parallel implementation {Amdahl’s
law). This choice has however two major reasons, the first is that it eases the task of writing the constraint generation
[l‘!ﬂne for each application), the second is that the constraint generation 15 i most of the cases negligible before the
other tasks.

3.3.2 Load balance

A very simple static load balancing method has been used I splits the wark between the processors by splilting the
domain of some variables.

When making 8 unique solution search using the speculative AND-parallelise, this load balancing method is almost
ideal, its overhead is small and splits the domain of search into several a priori equal sub-domains.

However, the study of the load balancing showed very clearly the limitation of this method. when used to perform the
exhaustive solution search. The obtained speedup reach a maximum of 10 with 16 processors. This is the bottleneck
of the study; if we want to improve performances we have to focus our attention on load balancing. The correlations
between specdup and load balancing have been highlighted by our measures.

3.4 Performances

The performance of the Parallel Problem Solver has been demonstrated on four applications for both, unique and
exhaustive solution search. Some properties of these algorithms could be observed.

3.4.1 Unique solution search

queens For Liny search spaces {until 15 queens) SFCH1 takes advantage of its simplicity and is between 2 and 3 times
faster than GFCHL. Conversely, GFCHI is much fastest for large search spaces, and may be 1000 times faster
than SFCHI.

#ebra As the zebra is solved in a very short time (048 seconds), both algorithms show similar performances.

maze According to the shape of the maze, we found comparable resulis between SFCHI and GFCHI, or several
degree of magnitude difference in the advantage of GFCH1

Sometimes SFOH1 takes advantage of speculative AND-parallelism, achieving an excellent *** speedup with 16 pro-
cessors on the 30 queen problem. Bui as said by its name, this parallelism does not insure any speedup in the general
case. Quite often we got no speedup (but no slowdown), but speedups are not limited by ihe ideal linear case, as
proven by the 30 queens.

GFCHI gets no, or very low speedup in parallel, its principle leads it anyway efficiently to the solution, Thus speculative
search is or minor impact.
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3.4.2 Exhaustive solution search

queens SFCH turns out to be the fastest, outperforming GFCH by a factor of 2 or 3. The speedups are up to 10 with
16 processors. The scarch of the 724 solutions of the 10 gueens is perfarmed in 5.54 seconds on one processor,
and 1.25 seconds on 16 processors.

gebra The solution of the zebra problem is found in 48 seconds on ane processar, the Lup speed is obtained with 2
processors, in 0.4 seconds. SFCH and GFCH exhibit very similar performances.

scheduling In scheduling problem, SFCH turns out to be more efficient than GFCH, a factor of 2 or J was noted in
our examples. The speedups obtained in scheduling are very poor, reaching only a factor of 3 with 16 Processors,

maze By studying several mazes, we could illustrate the force of SFCH and GFCH. In some cases SFCH is 3 times
faster than GFCH, whereas in other examples GFCH is 1500 times faster than SFCI. The speedups attain § in
the mazes

In most of the examples we showed, SFCH outperforms GFCH by a factor of 2 or 3. In some tricky cases GFCIH is
winning by several orders of magnitude. SFCH is fast because very simple, whereas GFCH gains efficiency on large
search spaces,

This trade-off between both algorithms partly due to the implementation language, as we could show it during the
comparison to related work

3.4.3 Related work

We compared the performances of our Froblem Solver SFCH and GFCI to specialized programs solving the queen
problem, Q SFCH and Q.GFCH), nsing the same principles. The specialized programs show very closed performances,
LU-GFCH outperforins Q_SFCH with more than 14 queens.  The SFCH problem solver has performances close io
Q-SFCH whereas GFCH is two times slower than Q_GFCH. This slow down is due tosoine inefficiencies in KL1 (see
section J.5)

When comparing to other studies in Paraliel Logic Programming our algorithms perform quite well, often faster in raw
specd, but with less speedup than other algorithms, Tet us cmphasize that we wanted to make efficient algorithms,
even when running on one processor. Thus it becomes very difficult to achicve as well linear speedups,

3.5 ESP version

The Parallel Ferward Checking Problem Solver have been translated into ESP by Satoshi Terasaki. The performances
in ESF are better than in KL1 on one processor. SFCH and SFCH1 gain 10% in speed whereas GFCH and GFOH]
gain approximately 505,

Speed improvements are not due to simplification of the program, (the parallelism has been removed), but come
rather from the ESP compiler, and ESP’s stack mechanism, The performances of SFCH and GFCH are close, even
for exhaustive search.

3.6 Future Improvements

Besides interesting ideas of improvements, we can still improve the existing code. The current KL 1 compiler seems
quite archaic is some ways, and we passed several days to find some way to overcome unexpected inefficiencies.

We dare think thal using code generation, could speedup the algorithms, especially GFCH and GFCH1 by a factor
of 2. In fact, if this programs would be in LISP code, 1 would use the macro facilities to generate the most efficient
code performing the bit_som and first_bit operations. Thus we would reach the same performances as the specific
queen program, even with the Problem Solver,

3.6.1 Unique solution search

The SFCHI unigue solution search algorithm, may be improved by introducing some Monfe-carle methods. Sinee
there is no accurate order to propagate the constraints of the variables, it is certainly interesting to implement a
random cheice of this order; so that each of the processor will propagate the constraints in its own manner. Thus we
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inerease the chances to find an accurate constraint propagation by using the frame of the speculative AND- parallelism.

This improvement is very easy to do, but requires extensive experimental studies so to obtain statistically sound
results,

2.6.2 Exhaustive solution search

During the whole study we could notice the limitation coming from the static load balance we used, It is important
to improve this load balance; but we have to be careful in doing so. Let us remind the high price of communication
in the Multi PSI. As we want to aveid big overheads due to communications, we will conceive a kind of Nof foo bad
load balanre, carrying an approximate work out, in the coarse granularily level we used during this study,

Ome could see some similarities between this new load balance and the method called Kubu- Wake developed at Fujitsu
Laboratories[6, 7]. 1t is to make an evaluation of the work to be performed on the processors, and then spread it, In
the frame of our work, it seemns important to apply this method in a coarse grain environment, as well in the dimension
of the data as the time dimension. Our policy of programming the Multi-PS] remain= unchanged: minimizing the
communications in the parallel world.
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