ICOT Technical Report: TR-593

IKR-593

Making Dependency-Directed Search

Hierarchical

by
K. Inoue & Y. Ohta

seprember, 199D

€ 1990, 1COT

Mina BKokusal Bldg. 21F (03)3456-3191 =5

IG DT 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Making Dependency-Directed Search
Hierarchical

Katsumi Inouc and Yoshihiko Ohta

ICOT Rescarch Center
Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F
1-4-28 Mita., Minato-ku, Tokyo 108. Japan
phone; +81-3-456-2514

email: {inoue.chta}@icot.jp

August 31, 1990

Abstract

This paper concerns search algorithis [or combinatorial problems including con-
straiut satisfaction problems (CSPs). When good ordering heuristics are not avail-
able for a USP, dependency-directed search is desirable for computing all solutions
in multiple contexts to avoid redundant comnputation. However, previous works on
dependency-directed secarch fail lo model or capture the ineremental construction
of hierarchical structure with various levels of complex and/ar large-scale problem
solving. Our idea is based on AND/OR tree search underlying the assumption-
based truth maintenance system (ATMS). In the ATMS, a context is characterized
by a combination of choices {assumptions), without information of hierarchy. In
AND/OR tree search procedures, a context can be characterized by a partial solu-
tion tree and thus reflects a tree structure. We show the connection between these
two approaches. A proposed search algorithm called HDDS improves the search
efficiency and the expressive power more than previous methods.

Keywords: Dependency-Directed Search, ATMS, Constraint Satisfaction

1 Introduction

When problems require making lots of choices, decisions or assumptions from items of alter-
native knowledge, dependency-directed search (DDS) [Stallman and Sussman, 1977] is a good
way Lo avoid redundant computation and to prevent rediscovering failures. DDS also plays
an important role in problem solving with the assumption-based truth maintenance sysiem
(ATMS) [de Kleer, 1986a). one of whose tasks is to maintain consistency of multiple con-
texts of dynamically constructed knowledge bases. By exploiting DDS in problem solving
with the ATMS, we can characterize an mtelligent scarch procedure for obtaining all solu-
tions of non-deterministic problems as a generic interface which can give a guide for prob-
lem solving between the ATMS and a domain dependent problem solver [de Kleer, 1986h:
de Kleer and Williams, 1986; Tnoue, 1985b). However, DDS has the following prohlems of
efficiency and expressive power, which are dependent on Ea.r:h other.

Problem of Efficiency: Ohne of theoretical goals of DDS is to minimize the area of the scarch
space that must be explored to obtain consistent solutions. Unfortunately, this goal kas not been
fully achieved. The difficulty partially comes from the computational complexity of finding the
maximal consistent sets of assumptions in the ATMS, which is at leasi as hard as an NP-
complete problem; the bound for the number of assumplion sets to be examined is impractically
large even for a moderate number of assumptions [Provan, 1987], This is a significant Bmitation,
which simple heuristics of weak methods cannot improve upon without partitioning the problem
and knowledge bases. Some information of the problem structure such as hierarchy should be
utilized in zearch.

Problem of Expressive Power: When large-scale and/or complex problems are handled,
assumptions must be considered al various levels of problem salving. For example, design
problems can be regarded as complicated tasks that contain synthesis tasks as well as analysis
and simulation tasks. In design process, first, the structures of the design objects are determined,
then the attribute parameters of these structures are refined. Fach design decision can be
regarded as an assumplion, but we are not interested in all combinations of assumptions because
many decisions depend on decisions made earlier. Therefore, decisions should be represented in
a hierarchy. However, the ATMS identifies a context only by a set of assumptions and cannot
utilize a structure ol assumptions in such different levels.

This paper focuses on the search for multiple contexis with hierarchy. The exact search
procedure realizing DDS called 1005, which is an improved version of the GSEARCH algorithm
[[noue, 1988a] and can handle hierarchy better, will be shown in section 4. HDDS i improves the
search efficiency and the expressive power more than previously proposed algorithms of DDS
with the ATMS.

2 Dependency-Directed Search

2.1 ATMS and Interpretation Construction

In the ATMS [de Kleer, 1986a], every datum is expressed as a proposition, and a proposition
representing a choice between alternatives is called an assumption. A domain-dependent problem
solver transmits information of dependencies between propositions, which are represented by
propositional formulas (called justifications), to the ATMS. A set of assumptions is called an
cnvironment, and the set of propositions followed hy an environment and a set of justifications
is called a conterf. When a context is inconsistent, its characterizing environment is called
nogood. Tor two environments, E and E', we say E is more general than E' (and E' is less
general than E) il E C E'. Note that if an environment £ is nogood, every environment which
i5 less general than E is nogood. The ATMS maintains a global, concurrent representation of all
contexts by lubeliug cach proposition with all its most general consistent environments whose
contexts contain the proposition. This ATMS technique allows multiple contexts to be compared,
switched, or synthesized as needed. In the ATMS, only an cuvironment identifies a context,
which avoids redundant computation and duplication of conclusions in different contexts.

Search with the ATMS is based on interpretation construction: building the maximal con-
sistent envirouments. During interpretation construction. Lhe earlier the maost general nogoods
are found, 1he more steps concerning ultimately inconsistent environments are reduced. For this
purposce, a problem solver focuses breadth-first on environments with fewer assumptions first
through a specialized interface, or consumer architecture [de Kleer, 1U86h]. A comsumer is a
probleni-solving procedure attached to its environment. When a contradiction occurs in exe-
cuting a consumer, we can immediately notice that the corresponding environment is nogood,
and thus can ignore the execution of consumers of all of its less general environments. It is by
the number of consumers or even by the number of environments whose consumers are execnted
Lthat the efficiency of a search algorithin is evaluated. Now. for a set § of assumplions, let P(5)
be the power set of 5. Let SOL be the set of all consistent solution environments, and N be
the set of all most general nogood environments. Formally, to obtain all consistent solutions,
any search procedure must search at least the environments:

P(5),
5€S0LUNG

that is, environments to be checked for the consistency of each solution and environments to he
pruned of all most general inconsistent environments.

2.2 ADDB Heuristics with Hyperresolution

When only part of the search space should be explored for the purpose of the task, because not
all solutions are required at once, or because efficiency requirements demand it, a backtracking
mechanism can be used for DDS to improve the efficiency of search. A simple method, called
assumption-based dependency-directed backtracking (ADDB) [de Kleer and Williams, 1986, that
incorporates depth-first search into breadth-first search of consumer architecture can reduce the
search by exploiting the following ADDB heuristics and an intelligent backtracker:

1. By introducing explicit statements of exclusive disjunctions (called control disjunctions},
the ATMS need not identifly any of the trivial nogoods which consist of different items in
the same control disjunctions. Without them, the AUMS must make all combinations of
assumptions and then prune vast areas of the search space.

2. ADDB focuses breadth-first on the power set of the current environment, with fewer as-
sumptions first like consumer architecture. This enlarges the effect of pruning search areas
by most general nogoods.

3. ADDB keeps on exploring the current environment depth-first as long as its context i1s
consistent, until a solution environment is obtained. This enables the problem solver
to find a solution as fast as possible and to perform intelligent backtracking with the
problem-solving tasks reduced more than in the simple consumer architecture.

The effect of introducing both the first and the third heuristics of ADDB enables us o uli-
lize an intelligent backtracker, which directly backtracks the choosing point to cause a failure.
[ntelligent backtracking by ADDB 1s done by the following hyperresolution rale:

Prv...v F
nogood E, . where P, € E; and Py, Ei forall 1 <0, <k
nogood \J [Ei—{P}].

1<is k

Intuitively, if all choices in a disjunction failed and no failure depended on a choice, say F, then
by hyperresolution we can ignore other choices for P.

2.3 Problems of Handling Hierarchy

While the idea of ADDD heuristics is very clear and effective for controlling the ATMS, the
ADDB algorithm still has the following big problems for handling hierarchy:

e In ADDB, the current environment must be flatly constructed by a set of assumptions,
rach of which 15 exclusively taken from a control disjunction. Therefore, the task that
some choices are dependent on other contexts but some are not cannot be dealt with by

ADDRB directly.

e Hyperresolution requires enormous tasks and reduces efficiency of the ATMS. Moreover,
for hierarchical tasks, hyperresolution is not available to produce nogoods in intermediale
levels properly.

3 Hierarchical Representation

3.1 Partial Solution Trees

Qur main goal now is to formalize a general search algorithm for multiple contexts so as to
overcome the problems analyzed in the previous section. Our method for controlling search is

via an AND/OI tree, where the roof represents an overall problem to he solved, and ares in it
indicate logical dependencies between nodes representing decomposition processes or relations
of asswuptions. Nodes with children are called nonterminal, and those with no child are called
ferminal. Each poutcerminal node has immediate children either of type AND or of type OIL
A ponterminal wode P with cluldren of type AND is calied an AND node, and each child

corresponds to one of P's conjunctive partial problems:

P J'ﬁ\ P,

F, & Child({)

where Child(P) is the set of all children of P 1. A nonterminal node P with children of type OR
15 called an OF nodes, and its children correspond to the digjunction representing the possibilities
ol P's implementation:

P — "\f P;.

Fy €4 Rald(P)

An example of an AND/OR tree is shown in Figure 1.

Given an AND/OR tree representation of assumptions, we can identify its different solutions,
cach one representing a consistent environment, by a selution free. A solution tree T of an
AND/OR tree (7 is a subtree of (7 with the following two properties: (i) the root of (7 is the
root of 7' and (i} if an ANT) node of (7 35 in T, dhen all of its children are in T, and if an OR
node of (7 is in T, then exactly one of its children iz in 7. A solution tree may be expressed hy
its terminal nodes; for example, in Figure 1, { A, (", F'} 15 a solution iree shown hy the hald line.

AND

@‘5 (F

Figure 1. An AND/OR tree with depth 2.

We assume that the search tree GG should be incrementally constructed, expanded, and
traversed during problem solving. This point is very important for practical problem solving

"We assume here that problem solving is proceeded top-down. In some cases, the meaning of the relation
between a node and its children would be “=" or “—" instead of “—". These distinctions are not essential here.

because not all assumptions and their relations are represented explicitly before any inference
starts. Therefore, we shall nse a representation for an incomplete solution tree that may be
extended, called a partial solution iree (PST). A partial solution tree T' of an AND/OR tree G
is a subtree of ' with the following three properties: (i) the root of (' is the root of T7; (ii) il
any node other than the root of G is in T, then its ancestors are also in T"; and (iii) if an OR
node of G is in 7", then at most one of its children is in T'. Tt is possible to say that a PST
is an intersection of sclutton trees. A PST can be represented by its fip nodes, and thus can
be associated wilh an environment. A P51 is called aefive when it characterizes a consistent
covironment. An example of a P51 is illustrated in Figure 1 by the dotted line, representing
{A, F; .

3.2 Generalized ADDB Heuristics without Hyperresolution

ADDB can be characterized as a search algorithm for an AND /O tree with depth 2 whose root
15 an AND node (such as thal shown in Figure 1), because ADDH focuses only on environments
consisting of assumptions, each of which 1s exclusively chosen from a control disjunction. To
propose a new search algorithm (in the next section), instead of handling a simple list of alter-
natives, hierarchical structures for disjunctions are introduced, and ADDB heuristics given in
section 2.2 are generalized Lo handle AND/OR trees with a depth greater than 3 as follows:

1. Two different PSTs are disjunctive, so that we need not create any environment by merging
ithem. Therefore, none of the consumers of such an environment is executed,

2. When a current PST T is examined, environments in P71} are focused breadth-first.

4. The current PST keeps on being expanded depth-first to obtain a solution tree, as long as
it is active,

An important improvement is made due to the introduction of hierarchy; enormous tasks of hy-
perresolution can be reduced if we can give consumers detecting inconsistencies in intermediate
levels., For example, in Figure 1, when nogood{ A, I'} and negood{ A, I'} are found, ADDB can
derive nogood { A} by hyperresolution so that environment {4, D} is neither examined to cheek
consistency nor executed its consumers, However, this pruning is not useful when we consider
trees with a depth greater than 3 because logical dependencies may be very complex. Instead,
if we can give a consumer detecting inconsistency when exploring an intermediate environment
{A, P5}, we do not need to examine even environments {A, £} and {4, F'}. This kind of con-
sumer is used in practice; for example, let P stand for a variable P1, P for a variable P3, and let
A mean an assignment 0 for P1, “P1=0"; and suppose that the “prohibit_division_by_zero”
consumer can warn of the illegal computation of P3/P1, marking the environment {4, F,} as
a nogood, without computing two possible assignments for P3 which correspond to £ and F.
Note thal this kind of constraint in intermediate levels cannot be handled by ADDB directly.

4 Hierarchical DDS

We now present search procedures for all or some numbers of logically consistent solutions. and
for an optimal solution by an estimate.

4.1 Searching Consistent Contexts

The HDDS context search algorithm maintains three sets: QFPEN, NG and SOL. OPEN is
a set of active PSTs, each of which represents a state of traversal corresponding to a consistent
cnvironment. N(7 is a set of most general nogoods that have been found. The “generality™ of
cuvironments will be redefined to reflect their hierarchical structures. SOL is a set of complete
consistent solution trees. In the LIDDS algorithm, at the beginning, a problem B, to be solved is
placed in QP EN. The basic loop consists of picking one active PST from OPEN, checking its
consistency, execnting its consumers if the test is all right. and then decomposing it or traversing
a search by the EXPAND procedure. If 2 contradiction occurs in a context, the corresponding
environment is added to NG through the NOGOQOD procedure.

Procedure HDDS:
femark. Once a consumer is exceuted, it is discarded and never executed again.

Notations. An active PST in OPEN can be represented by a pair, (P, £}, where I is a node
and E Is a consistent environment to be comnbined with P. The corresponding environment of
{F, £} can be represented by the set £ {F} of tip nodes, which is denoted { £, P}, where the
\) operator concatenates, Hallens, and merges all elements; for example, ({S. T}, A {1, X}) =
{S.T A, X} and (¢) = ¢. Pick(e.A) means to pick the first element a from A and remove
it from A, Push(a,4) means Lo add a to the head of A, Schedule(X) means to produce
and sort the power set P(X) of X scheduled in the bit-vector ascending order; for example,
when X = {A,B,C}, Schedule(X) = {¢, {A}, (B}, {A. B}, {C},{A.C}.{B,C},{A, B,C}}.
Examine(£) executes all consumers attached to F.

1. Let OPEN == {(F,¢)}, N7 := &, and SOL := .
Exccute all consumers attached to the overall environment {}{= ¢) which consists of no
assumption.

2. Halt if a termination condition is satisfied; consistent solutions are given by SOL. A termi-
nation condition is cither of the following: (a) OPEN = ¢ (to get all solutions), or (b)
the number of elements of SOL is equal to the given number of solutions.

3. Pick(S,0OPEN), and let § = (P, T).

4. Generate the next child, P, of P.
(T} := Schedule(T).

5. i fYT) = ¢, then EXPAND(S, P,) and return to 2.
6. Pick(t;,QT)). Ty:=(t;,).

7. Examine(l;;). If an inconsistency is found in executing consumers, then NOGOOLD(S, 1;;)
and return to 2. Otherwise, return to 5. O

Procedure EXPAND(({F, 1), F):
Remark. This procedure performs depth-first search for examining PSTs.

Notations. Exhaust(F) means that all children of P have been examined. Notexhaust (P)
means that there is at least one un-examined child of P. And(F) (0r(F)) means that P is an
AND (OR) node. Terminal(F) (Nenterminal{F)) mcans that P is terminal {nonterminal).
Allexpanded(7) means that all nodes in T have been expanded, that is, every tip node in T is
terminal. Unexpanded(T, [} means that there is at least one nonterminal node in T and returns
the left-most such node f. LMC(P) is the left-most child of P.

Apply one of the following rules according to the status of P, T, and P, then return.

Case 1: Notexhaust(/), And(F)
= Push((P,{T,P.}).OPEN).

Case 2: Notexhaust(F). 0r(FP)
= Push((P.T).0PEN). Push((P,,T),OPEN).

Case 3: Exhaust (/). Nonterminal(FP), And(F)
= Push((LMC(P).{T, P, \LMC(#)), 0 PEN).

Case 4: Exhaust(F), Nonterminal(F,), Or(F)
= Push((F,. T),OPEN).

Case 5: Exhaust(F), Terminal(F;)}, Allexpanded(7")
= Push({ T, F),S0OL).

Case 6: Exhaust (F), Terminal(F,), Unexpanded(T,)
= Push(({f,(T\ I,P.)),OPEN). O

Procedure NOGOOD((F,T),T;):

Definition. A PST, T, 15 a specialization of another PST, T", if for each element, t' € T, there
is an element, ¢ € T, such that t = ¢/ or is a descendant of . In this case, 7" is said to be
more general than T

1. 0r(F), Notexhaust (F) = Push({P,T},OFPEN).
2. If T, is a specialization of any other element in N, then return. Otherwise, add T}; to NG.
3. Delete each element in NG which is a specialization of T} from NG.

4. (Prune) Delete cach active PST in OPEN whose corresponding environment is a special-
ization of T;;, from OFEN. Return. O

Lemma 1 When an active PST, § = (P, T), is picked from OPEN in step 3 of HDDS, T is

consistent.

Proof: (Sketeh) No PST in OFPEN includes any element of NG by step 4 of NO-
GOOD. 5 must be constructed i such a way thal the consistency of T has already
heen checked in steps 5 to 7 of HDDS. O

By Lemma 1, HDDS needs to check only the consistency of every combination of new state
F, with each element of P(T), so that the consistency of neither element of P(T') need he

reexamined.,

Theorem 2 { Admissibility of HDDS5) At the end of HDDS, any solution tree in SOL is con-
sistent, and when all consistent solutions are desired, SO0 halds all of them.

Proof: [Sketch) By using Lemma 1 inductively, the soundness follows from the fact
that any solution is added to SOL in EXPAND {case 5) after its consistency has
heen checked. To prove the completeness, suppose to the contrary that HDDS misses
a solution, say 5. Since every consistent PST is added to OFEN and picked from
it unless 1t becomes contradictory, there exists an environment, 5, which is more
general than S such that 5 is selected from OPEN and is not to be inserted in
QOFLEN again. Then 5" is either found to be inconsistent, or added 1o SOL. Both
cases contradict the supposition. O

HDDS has several advantages as it searches an AND/OR tree constructed with hierarchy
incrementaily. With HDDS, problem solving can proceed efficientlv with compiled knowledge so
that a kind of compilation of a condition on a set of lower-level knowledge can he represented.
This 1s our main solution for the problems of ADDB given in section 2.3. As described in sec-
tion 3.2, in many cases no intelligent backtracker is necessary because upper-level contradictions
can be found through compiled constraints before lower-level contradictions are found.

4.2 Informed Search

When an estinate for assumptions or environments is available, we can expect to improve
the search performance. We can order environments by comparing them with some preference
relation, and an optimal solution can be gained. For this purpose, we may change HDDS
in section 4.1 slightly. The concept of checking consistency may be altered to feasibility, or
possibility for optimality. The selection rule in step 3 of HDDS or the expansion rule in EXPAND
may be altered so that the most preferred environment is selected and expanded. The resulting
procedure performs besi-first search like AOQ* [Nilsson, 1980], or it supports a branch and bound
pracedure [Ibaraki, 1977]. It seems to be rationally efficient for multiple context handling that
best-first search is employed to elicit its advantage of the concurrency.

5 Application to Design

In this section, the working of the HDDS algorithm on constraint satisfaction problems (CSPs)
in parametric dﬂﬂgﬂ 15 llustrated. In CSPs. consistent assignments of values for a set of vari-
ables which satisfy all constraints are to be found. In practice, however, constraint networks

for parametric design problems can not be explicitly given in advance. Moreover, it takes lots
of time and space io execule each consumer invelving an analysis or simulation task. Because
of these properties, various kinds of ordering heuristics or network-based heuristies (for exam-
ple, [Mackworth, 1977; Dechter and Pearl, 1988]) for CSPs are not readily available. Instead,
dependency analysis is useful for this kind of CSP2.

The HDDS procedure can be applied to this type of CSP as follows. The simple CSP can
be characterized as an AND/OR tree with depth 2 (like Figure 1) whose root is an AND node
and whose nodes in level 1 are OR nodes represcuting variables, and terminal nodes represent
domains of their parent nodes. An assumption al a terminal is an assignment of a value to
a variable. An important advantage of HDDS is that hierarchical generate and lest can be
supplied to make the search more cfficient: an assumption in an intermediatc level can represent
compiled knowledge or an abstraction of lower-level parameters, so that PSTs can be pruned
by these constraints. This way of representation is reported to be very uscful for ("SPs in the
independent research of {Mittal and Frayman, 1987]. It should be also noted that HDDS can
he applied to design tasks other than simple CSPs, where the problems need to be selected for
their design models as well as for the values of the variables for those models. A design model
can he expressed by a set of constraints, and can be represented by a hierarchical structure,
helow which its lower-leve] parameters can he attached.

6 Related Work

6.1 Implied-by Strategy

HDDS can be compared with the independent research of the implied-by strategy of ATMoSphere
[Forbus and de Kleer, 1988]. There are some similaritics between HDDS and the implied-by
strategy: (1) assumptions are only created when needed; (2) both use AND/OR tree search
schemes allowing for some infinite domain; and (3) consumers are executed only in the focus
covironment. The differences are: (1) control by ATMoSphera is strongly domain-dependent, so
that the user must specify how to switch contexts by using contradiction consumers or some
scoring mechanism, while HIDDS selects the next context antomatically by a gencric controlling
mechanism: and (2) in ATMoSphere an AQ-node itself represents an environment, while in HDDS
a PST represents an environment, so that HDDS may create fewer nodes than ATMoSphere. Asa
result, if the user cannot specify how to switch contexts, search by ATMoSphere will be inefficient.
As stated in section 5, many problems that require dependency analysis cannot be given good
ordering heuristics.

6.2 SSS*: Best-First AND/OR Tree Search

Although informed search embedded in HDDS was introduced in section 4.2, even the concept
of generalized ADDB heuristics without preference relations described in sections 3.2 and 4.1 is
very close to the notion of pruning trees in conventional search techniques in AL Stockman [1979]
regarded minimax game tree search as AND/OR trec search and proposed a procedure called

*Another claim on the relationship between CSP and ATMS techniques is also given in [de Kleer, 1989].

10

555% and Tharaki [1986] generalized the idea by analvzing the usage of heuristic information
pertaining te nonterminal nodes, such as wpper and lower bounds of the exact values. 555 can
be regarded as a best-first search procedure preferring the P51 whose upper bound of the exact
value, which can be computed as the minimum value in upper bounds of all its tip nodes, is
the highest 1o all active PSTs. Our HDDS is similar in this point. For a node P, let I'p denote
the assumption associaled with P. Then, each PST T in OPEN has its upper bound [/(T), as
follows:
NIy = A Ui(P),
PeTip(T)
where Tip(1) 15 the set of all tip nodes of T, and

Up. if 7z a terminal node and
can be consistently assumed;
Liy(F) = { False, if I’ is contradictory
(terminal or nonterminal);
True, otherwise.

APST 1 s active iff U{1') # False, For two PSTs. Ty and Ty, their upper bounds of Boolean
values are ordered by the subsumption relation:

UiTh) = U(Ty) i =T —=U(T).

5555 strategy corresponds to the ADDB breadth-first heuristics; preferring an active PST
whose upper bound 15 maximal. However. if (mare than) two different maximal Boolean values
cannol be compared {(that is, neither one subsumes the other), HDDS prefers the left-most active
PST. Morcover, S58 generates all children of a node at one time, while HDDS generates them
one by one, 2o that it mayv handle the case where children are infinitely many bul are expected
w be contradictory as a whole.

7 Conclusion

This paper introduced a novel technique to control reasoning with DDS. The resulting scarch
procedure, HDDS, models the incremental construction of hierarchical structure in DDS. The
main characteristics of the proposed method are that reasoning is controlled by an ANT)/OR
tree search mechanism, and that assumptions can be added to environments along their contexts
mcrementally rather than added to every possible environment concurrently in a flat structure.
Informed scarch can be incorporated into this method to make searching more efficient. This
mechanisi can solve complex and hierarchical problems such as design tasks. We are currently
applying HDDS to an extended version of the APRICOT/0 system and its application to legic
design [Ohta and Inoue, 1990).

Acknowledgment

We are grateful to koichi Furukawa of ICOT and Yasuo Nagai of Toshiba for their useful
comments, and to Prof. Toshihide Ibaraki of Kyoto University for discussions on comparison
with conventional search methods.

=11 —

References

[Dechter and Pearl, 1988] Rina Dechier and Judea Pearl. Network-Based Heuristics for Con-
straint Satisfaction Problems. Arfificial Intelligence 34 (1988) 1-358.

[de Kleer, 1986a] Johan de Kieer. An Assumption-based TMS. Artificial Intelligence 28 (1986)
127162,

[de Kleer. 1956h] Johan de Kleer. Problem Solving with the AIMS. Artifivial Intelligence 28
(1U86) 197-224,

ide Kleer, 1989] Johan de Kleer. A Comparison of ATMS and CSP Techniques, Proc. LICAI-SY,
Detroit {1989) 290-296.

lde Kleer and Williams, 1986] Johan de Kleer and Brian C. Williams. Back to Backtracking:
Controlling the ATMS. Proe. A441-86. Philadelphia (1986) 910-917.

[Farbus and de Kleer, 1985] Kenneth 1. Forbus and Johan de Kleer. Focusing the ATMS.
Proe, AAALSE St. Paul (1988) 193-198.

Ibaraki. 1977] Toshihide Ibaraki. The Power of Dominance Relations in Branch and Bound
Algorithms, J. ACM 24 (1977) 264 279,

baraki, 1986] loshihide lbaraki. Generalizalion of Alpha-Beta and $55* Search Procedures,
Avrtificeal Intelligence 29 {1986) 73-117.

noue, 1988a) Katsumi Tnone. Pruning Search Trees in Assumption-based Reasoning. Pro-
ceedings of the Sth International Workshop on Erpert Systems & their Applications, Avignon
{1985) [33-151.

[Inoue, 1988b] Katsumi Inoue. Problem Solving with Hypothetical Reasoning. Proceedings of
the Srd International Conference on Fifth (Generation Computer Systems, Tokyo (1988) 1275
1281.

Mackworth, 1977] Alan K. Mackworth. Consislency in Networks of Relations. Artificial Intel-
ligence 8 (1977) 99-118.

{Mittal and Frayman, 1987] Sanjay Mittal and Felix Frayman. Making Partial Choices in Con-
straint Reasoning Problems. Proc. A4 AL87, Seattle (1987) 631-636.

[Nilsson, 1980] Nils J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, Calif.,
1980,

[Ohta and Inoue, 1990] Yoshihike Ohta and Katsumi lnoue. A Forward-Chaining Multiple Con-
text Ileasoner and Its Application to Logic Design. The 2nd IEEE Internaiional Conference
on lools for Artificial Intelligence, Washington D.C. (1990) tu appear.

[Provan, 1987] Gregory M. Provan. Efficiency Analysis of Multiple-Context TMSs in Scene
Representation. Proe. AAAI-87, Seattle (1987) 173-177.

— 12—

[Stallman and Sussman, 1977] Richard M. Stallman and Gerald J. Sussman. Forward Reasoning
and Dependency-Thrected Backtracking in a System for Computer-Aided Circuit Analysis.
Artificial Intelligence 9 (1977) 135-196.

[Stockman, 1979] G. C. Stockman. A Minimax Algorithm Better Than Alpha-Beta? Artificial
Intelligence 12 (1979) 179196,

13 —

