ICOT Technical Report: TR-590

TR-590

Towards a Methodological Guide for the Design
of Object Oriented Programs

by

Annya Romanczuk

September, 1990

£ 1990, 1ICOT

Mita Kokusai Bldg. 21F {0313456-3191 —5

1C DT 4-28 Mita 1-Chome Telex ICOT 132964

Minato-kue Tokyoe 108 Japan

Institute for New Generation Computer Technology

Towards a Methodological Guide for the Design of Object Oriented
Programs

Annya ROMANCZUK"®

Institute of New Generation Computer Technology (1COT)
August, 1990

Abstract

This report is an abstract of my thesis {5] designed at the University of Lille (FRANCE). This research
proposes to Incorporate the object omented programming approach in a development method for large
svstems, The objective is to define, in a methodological way, & guide-line for the analysis and development
of object orented programs.

The use of this guide lcads to the creation of a model of the real world directly deduced from the original
problem space. It s obvious that the more the solution space fits the real world abstraction, the better we
will reach some of the Seftware Englocering aims: modifiability, efficency, rehability and anderstandabality.
The convergence of the stady on Software Engineering, algebraic requirements definitions, object oriented
lanpnapes and natural lanpnage analysis 18 weed to dempgn the methodologpical guide-line.

This guide-line induces the development of programs in an incremental way, in the sense that we integrate
step by step the specificities of abject oriented programming.

Keywords: Methodological approach, software engineering, programming environment, object oriented
analysis, algebraic requirements definitions, object onented language and object oriented programming.

*Waorks realised with CRIL Pariz and Univ. of Lille I ORIL address: 146, bd de Valmy, 92707 Colombes, FRANCE —
University of Lille address: Hiz, M3, Cité scientifique, 59655 Villeneuve d'Ascy, FRANCE

taddress: 428, Mita l-chome, Minate-ku, Tokyo 108, JAPAN —— Telex (81 3) 456 1618 — Tel (81 3) 458 31 53
—— E-mail: annyva%icot jpfirelay.cenet

Contents

1 Imtroduetion

2 Brief historic

3 First step of the method: Analysis

4.1
4.2

33
1.4

Description of our problem . Ce

Identification of types, objects, and upvrdmn, S e
421 Tdentification of abstract datz types and nh]erw .
3.2.2 Hdentification of operators . | ..

Rewriting the problem descriptions

Updating the clements and the graphic erTF'-E]It.nLan of Lhe sc-l!utlcm space

3.4.1 Updating the abstract types, ..

3.4.2 Updating the objects .

3.4 Updating the operators .

3.44 The graphic representation of the pmblem &oiuhnn space

4 Second step of the method: Static Specification

[

8.1
5.2

Third step of the method: Dynamie Specification

Execution work and definition of a CL module
Dynamic specification of our problem .

5.2.1 Module from the generation of the DI, mndulr: “‘vehtd«e“

522 Modules from the generation of the DL module "FmrJJF.uchn:].:;"

6 Fourth step of the method: Automatic Generation of Code

fi.l

h.2

The first automatic generat ion of code |, . .,
6.1.1 Code generation in KEOPS fromm DL modu]es
6.1.2 Code generation in CL from DL modules

The second automatic generation of code

T Conclusion

List of Figures

- L]

-] o oen

General diagram of the methodological guide functioning
Abstract data type : Pairofovehicles _

Abstract data type ; Vehicle .
Lxecution work of a CL module

CL modie from DI, module Vehid® | L ..

CL module from DL module “Pair.of vehicles”

12

15
16
18
18
19

20

21
21

26

41

1 Introduction

This report discusses a method for the design of object oriented programs, from data analysis to programming
with an abiject orented language (GDT}, Lluuugh various spectfication steps (also called requirement definition

steps).

This method indaces an incremental process, in the sense that the specificities of the object oriented
programming are integrated step by step in the varions proposed steps.

Our method s wsed from eriginal descriptions of a problem, 1. precise but informal descriptions in
natural language (Fnglish or French).

The wse of this methed leads to the creation of a model of the real world directly deduced from the original
problem space, and intuitively, it's ohvious that the more closely the solution space (in this case, the set of ob-
Jects, the operations on these objects, and their properties that are present in the problem space and that affect
the finding of a solution [2]) fits the real world abstraction, the better we will reach some Software Engineering
aims: modifiability, efficiency, reliability, and understandability.

The convergence of the study on Software Engincering, slgebraic requirements definition, object oriented
languages, and natural language analysis is used to design the wmethod.

This method can be wsed through a guide line developed with this method itself, and allows designers
to analyse the original problem descriptions and o make an object oriented decomposition {inde-
vendently from the OOL), to define specifications understandable by the customer or the user and by the
developer, and then, from thuse specifications, to do an automatic generation of code in the OOL choose:
KEOQPS [3], based on Le-Lisp language.

Mare precisely, this approach consists of [our steps:

* The analysis which is used to emphasize the nesd to map the “solution” on the original problem space,
s0, on the real world abstractions.

+ A first specification step (requirement definition step) defined from a language named Description Lan-
guage (DL} (static specification), which is used to define an algebraic type specification of the problem.

» A second specification step defined from a langnage named Control Language (CL) (dynamic specifica-
lion) whichis used to define controls which can be executed at any time during the program execution.

s Dluring these steps, some verifications are done on the consistency of the given nformation, and some
KEOPS code is automatically generated from the two first problem deseriptions (with DL and CL).

Thew, as the result of the guide use, we obtain Keops files satisfying the static and dynamic specifications,
and we just need to write method bodies.

Belore specifying each of these steps, see figure 1, the general diagram of the methodological guide function-
ing. This will point out the sequence of the various steps of the method.

o the tool, an interface is used to have direct aceess to the different steps.
Ag you can see in figure 1, some partial definition or backbracking is possible. With that, we want lo insist
on the incremental aspect of the method,

Then, thiz article will present a brief historic of this work and show why such a method is defined, and the
four steps of the method.
This method will be presented fist from the theoretical point of view then through a conerete example. This
example represenis the problem of the evaluation of the responsibility of drivers of vehicles when aceidents

happen.

Analysis

Dreacription

- Language
(D)
Static spacification
update {Speacification)
and Requirement
corraction definition
af . crealion and .
modities Code genaration o in CL
. wupdating with CL
in KEQPS (QOL}
ard CL
creafion of file
and KEQPS coda writting
- E::nt rol
Tgusage
-
(GL)
Generated files
Dynamic aspecification
& with
KECPS coda
rpdata
arrd
correction
o
modules
Code gaenerathon
in KEOPS
wupdale
of files

v

Final coda

Figure 1: General diagram of the methodelogical gnide funetioning

2 DBrief historic

The analysis of languages named “object oriented” shows that it is impossible, because of
the diversity of their concepts and their objectives of realization, to define a general method
for object oriented programming that can he adapted to any type of OOL and to any type of

problem.
It 15 true that all O0L have common basic coneepts (classes, methods, inheritance mechanism, instantiation

mechanism, ...}, but each of these languages wanta to bring more.

It appears that a wide variety of concepts specific to some languages such as the metaclasses in Smalltalk or
Loops, the production rules in Kool, the frames in Keops....

Of course, the significance of these languages is in their various application domains: simulation, A L., system

Before a problem can be resclved, the most suitable language must be chosen. 'I'o do that, the problem
needs must be defined, and the specificities of the various languages named “object oriented” must be known,
However, the significance of some such basic concepl can remain vague for someone who 18 nnused to it.

More important is how to build an application with one of these languages 7 The answer is as
much difficult as there are many programming design “directives”™, when they exist, as languages
named “object oriented” consecrate to such and such types of problems,

Moreowver, all the OOL are based on other languages. Objective-C on C [11], KEOPS on Le-Lisp, Object-
Pascal [12] on Pascal and g0 on.
Those programming languages introduce their own programming style, such as recursive program-
ming, or {unetionnal programming. Unfortunately, this also arises when we use the OOL based on
these languages and it is really difficult to abstract the programming methodology underlying
the OOL developencnt.

Alsa, each programmer has a particular computer background, and abstracting their programming habits
in the face of an OOL without methods or wols for programming design is difficult.
We ran point out that it is impossible to think about a general programming method for these
various types of languages named “object vriented”, which are mostly developed in funetion for the

needs of the momen?t .

Nevertheless, because of their common basic concepts, the design of & basic wethod for the design of object
oriented progeams, extendable o each “category”™ of “olject oriented” languages is viewed.
Proposing specifications, this method abstracts for the first time the next implementation language, and in
particular the language’s specificities.

3 First step of the method: Analysis

This analysis approach is used to develop problem specifications from informal bul precise decriplions in natural
language (English or French). It is based alse on the grammatical snalysis of texts, and it is defined from the
approach first proposed by Abbot, J.R., in [1] and developed by Booch, G., (2] and Vogel, C., [13].

“if we cxaomine human languages, we find that they all have two primary cemponents, noun
phrases and verh phrases. A parallel structure exists in programming languages, since they provide
constructs for implementing objects {neun phrases) and operations (verh phroses).

However, most of the languages are primarily imperatives, that 15, they provide a rick set of
constricts for implementing operations bul are generally weak when ol comes fo absiracling real
word objects”. BOOCH, G. in [2].

The essential approach of this method is to take into account the correspondence established between the
real world and the software solution; it mainly consists of & reduction of the problem descriptions,

The next sub-sections describe this analysis method of an original description of a problem. Thanks to that
method, we will get a program which implements a model of a real world as a set of objects which interact
between themselves. The solulion space is expressed here with graphic representations of object. The formalism
of these graphic representations is defined in [3] and [7].

This methad 1= nsed to develop programs from an original description in natural language. Tt shows how to
design data types from commeon nouns, objects from direct references, properties or functionalities from verbs,
and attributes and control siructurcs from their equivalents in terms expressed in natural language.

For instance, we assimilate commeon nouns as a natural language, analogous to some programming language
notions implementing ahstract data types. This fits with an extension of standard understanding of the abstract
data types. As a matter of fact, a type is usually used as a collection of values and a collection of operations
on these values [4]. But common nouns are more than thal. A conunos poun names a class or a concept even
if there is no value, no operation yet defined on this class or this concept. Then, common nouns are used to
declare the existence of a concept whose characteristics have to be developed.

The association between common nouns and abstract types makes more intuitive the sotion of data types.
Tf it is true that a large set of people have an intuitive understanding of common nouns, the concept of abstract

data types is clarified by analogy with these eormmon nouns.

Usually, the methodologies of program design are not easy because they insist on the fact that an abstract
data type is defined as values and operators. But in natural langnages, we frequently create and use common
nouns before we have thought about all details of the concept.

Our analysis method consists of four steps :

1. The definition of problem descriptions, precise and clear, using specific terms of the problem domain.,

2. The identification of the types, ohjects, and operators,

=L

. The rewriting of the problem descriptions from the elements pointed out during the identification step,
and the organization of the operators defining the rontrol structures found in the problem descriptions.

4. The definition of the elements used for the solution space of the problem. (This salution space will be
represented with graphics)

The method can appear mechanical, but it is improbable that the method could be made automatic. Even
if the identification method of types, objects, operators, and control structures is made easier by the problem
descriptions in natural language, it requires a good knowledge of the real world and an intuitive understanding
of the text. That is, the semantic aspect of the text should completed by the syntactic information. Probably
it is this significant interpretation part of the text which considerably complicates the automation of a such
process.

4.1 Description of vur problem

The first step is to define clear and precise descriptions of the problem. Qur problem is a sub-problem of the
evaluation of the responsibility of drivers of vehicles when accidents happen. This sub problem is used in all
companies of car insurance, The systemization of this evaluation has besn done during the feasibility study of
an expert gystem.

We will ptudy the evaluation process of the responsibility of drivers of mofor vehicles when accidents happen involmng twe
vehieles

When they are maneuvering legally, if vehicles are in fwo-way traffie, trespass over the medion fine of the road defermines
their responsibifities.

If the twe vebicles are not in infroction:
If ane of them drespasses aver the median Nne of the road or overiakes i, his reaponsibility iz full
If botk trespass, their responsibility is divided egually.

If ene of dhe two vebicles docan't respect the road signs, his reaponsibility is full Tf both sre on this case, their responsibibily in
divided ﬂg’nnfl’p.

3.2 Identification of types, objects, and operators

The identification steps are :
Identification of abstract data types
s Identification of objects of these data types
¢ ldentification of operators characterizing these types and objects

Before defining each of these steps, we must remember that type, object, and operator identification is ot
a simple grammatical analysis of text, but requires a good knowledge and an intuitive undestanding of the
problem domain.

3.2.1 Tdentification of abstract data types and objects

For the first identification step, which consists of pointing out shstract data types and objects, it is requisite
to identify nouns and nominal groups in the original problem description. To help to understand this relation
between the original descriptions and the soltware solntion, take us off the problem itself to explam the Varions
types of nouns and neminal groups. This presentation has its source in Ahbott, I.I%, [1], which points out that
in the deseription of our real world model, we can find 3 nominal group types:

o« Common nouns name a elass of things or persons. For inslance: language, house ...
s Proper nouns and direct refercnees:

A proper noun names a specific person or a specific thing. For instance: Eyfel tower,
Smalltalk, .. Direct references are references to a specific person or a specific thing, previously
defined without necessarily having referred to them by a noun. For insiance: my pem, the
compuler Screen ...

e Nouns expressing quantities and units of measure:

Nouns expressing quantities name a guality, an activity, or a substance. For instance: air,
music, .. Nouns expressing units of measure are used to name the quantity of a quality, an
activity, or a substance. For instance; bars {of music), humidity {of air] ...

Common nouns are used to identify the object classes that we characterize here as abstract data
types. Units of measure name achitrary units which are common for everybody, and are used to subdivide
what is referred to by the nouns expressing quantities. So they correspond to types defined from numeric
types. Like nouns expressing quantities, they name qualities, substances and activities which don't have apri-
orism any organization between their units, These nouns expressing quantities are divided into units.

Objects are named by the proper nouns and direct references of the original deseriptions of the problem.

Definitions and precise uses of those terms cannot be given in this papers, but an entire description of those
terms and the analysis identification step can be found in [5] in French and [6] in English.

‘I'he example given here will help the understanding of this identification step.

In the next problem description, expressions giving indications on abstract data types are in bold print and
those giving indications on objects are undetlined.

We will study the evaluation process of the respanaibility of drivers of motor vehicles when accidents happen invelving
two vebicles,

When they are maneuvering legelly, if vohiclss are in Lwe-way traffie, trespass over the median line of the road
determines their reaponaibilitio:,

I ihe two yehicles are not in infraction :
If one of them trespasses over the median line of the road or overtakes it, his responsibility is full.

If buth Lrespass, their reaponsibility is divided equally.

If cme of the two vehicles doesn’t respect the road signe, his responsibility is full. If Lot are in this case, Ltheir
responsibility is divided equally.

The terms which give the next abstract types from a first analysis of the original descriptions are evalua-
tion_process, responsibilily, drivers (of motor vehicles), vehicles (motor vehicles), aceidents (happen invelving
two vehicles), {we vehicles and maneuvering.

Here, we can reduce drivers and motor vehicles as vehicles.

As first abstract data types we obtain:
Fualuation.process

Responsibility

Vehicle

Accidents. inwolving o

FPawr_of vehicles (from two vehicles)
Muaneuvering

Trespasemedian line

Median_line

Koad_sagn

In the set of terms giving the next objects, no proper nouns exist, but the reconized direct references are-
the two vehicles, one (of them), responsibility is full, the other (vehicle) and responsibility 18 drvided equally.

We define from these dircct references, the objects associated to their abstract type:
one_patr : — Pairof_vehicles
vehicle_ 1 : — Vehicle (from one vehicle)
vehicle_? : — Vehicle
responsibility_is_full 1 — Responsibility
responsthility_is_divaded_equally 1 — Responsibility

These objects and abstract data types represent a first approximation. We will see that some of them are
not useful for our sub problem, or that some ohjects or abstract data types are missing.

Of course, we can find another solution according to what we consider as essential in the problem context,
Another solution is presented in [5] and in [8].

3.2.2 Identification of operators

The operators are used to characterize the behaviour of each object or object class, Here, we eatablish the
semantic of object in determining the characteristics or operations which can be executed on the object or by
the ohject.

Tor that, we wmust point out verbs, attributes, predicates and descriptive expressions from the original
problem descriptions:

s A verb expresses that sumchbody or something exists, that is in such and such a state, or that does such
and such an action. In our method, we will see through our exemple, that a verb is represented by a
property characterizing the behaviour of an object of the abstract data type alrcady defined or on which
the action will be executed. The arguments are defined by this object or this abstract type and by the
objects requisite for the execution of this action. The return value is the object on which the action has
been executed, then possibly modified.

* An attribute shows the quality, good or bad, that we give or refuse to the subject through one verh:
This story s funny. It is usually linked to the subject by the verbs: to be, to lock like, to seem, to appear,
o be taken for ... In our method, we think of an attribute as an abstract type property, which ean be
applied to all the elements (objects) of that type, and which has a return value equal to the value of this
attribute.

* A predicate points out a property or a relation which can be considered as a boolean (true or false). In
our teol, & predicate is represented as a property which characterizes the abstract type or the object on
which it is applied, with, as arguments, the ohjects requisite to know the value of the predicate, and as
return value the object or the abstract type used and its boolean value,

* A descriptive cxpression gives a description of one or several objects which cannot be known. The
descriptive expressions are usually represented as properties characterizing the object or the set of objects
(abstract type} describes, with as arguments, some characteristics of the deseribed object, and as refurn
value the object that has this desecription,

=

Remark: For all the operators defined from the original descriptions of the problem, the output value is an
object of the abstract type, or the abstract type on which the operator is linked. Effectively, the action associ-
ated to this operator can (or cannot) mudify the ohject or abstract type state on which it has been executed.
It is requisite to relurn this type or this object which heas its state modified. We can also explicitly ask another
return value, which will be added to the concerned ob ject or type.

We will take the same problem description to point out in bold type the verbs, atiributes, predicates and

descripiive exp ressI0NS

We will atudy the pynluation process of the responaibility of drivers of motor vekinles when gecidents happen invelving
fwe vehtcles.

When they are maneuvering legally, if vehicles are in fwa-wey traffic, trespass over the median line of the road
determines their responsihilitics,

If the two vehielss are not in infraction:
If ane of them trespasscs over the median line of #he road o overtakes it, his responsibility Juil,
If both trespass, thetr reaponsibility i diveded equalip.

If one of the two vehiclss doesn’t respect the road signs, his responsibility s full. If both are in this case, their
responsibility is divaded egrailp.

The next operators represent a first approximation of what will be the functionalities and the characteristics
of the cbhjects needed for the evaluation of eur program:

Study.-the_evaluation_process: Operator which characterizes the behaviour of the type Evaluation_process,
with an object from the type Evaluation_process and two abjects from the type Vehrele as arguments.

Maneuvering legally: Operator which characterizes vach object from the type Vehicle by a boolean value.

Which_responsibility.?: Operator which characterizes the behaviour of Trespass.median_line with an ob-
ject from the type Trespass.median_line and an object from the type Pair_ofvehicles as arguments. The return
value is the object from the type Tresspas_medianline which has been treated.

His responsibility: Operator which characterizes each object from the type Vehiele by the value of its
responstbility (full or divided in 2).

?_are_not_in_infraction: Operator which is used to get information on an object from the type Pair_of_vehicles
with, as argument, the present pair and, as return values, this pair treated and a boolean value,

If_1_only_trespass_median line: Operator which tests an object from the type Pair_of_vehicles, updates
this one, and sends as return value the modified object.

If_1_only_overtakes_ median_line: Operator which tests an object from the type Pair_of vehicles, updates
this one, and sends as return value the madified object.

Verify_1_doesn’t_trespass_and_1_trespass: Operator which characterizes the behaviour of the objects
from the type Pair_of vehicles and returns as output value this verified object.

If_2_trespass_median line: Operator which tests an object from the type Pawr_ofvehicles, updates each
attributes responsibility of the two vehicles of the pair, and returns as output value the tested object from the

type Pair.ofvehicles,

1_doesn’t_respect_road_signs: Operator which tests an object from the type Pair_of_vekicles, updates
the attribute responsibility of this object, and returns as output value the modified object from the type
Pair.ofovehicles,

2_doesn’t_respect_road_signs: Operator which tests an object from the type Pawrofvehicles, updates
each attributes responsibility of the two vehicles of the pair, and returns as outpui value the tested object.

10

car.l: Operator which characterizes an object from the type Pair.of_vehicles by an ohject from the type
Vehicle. Remarks that this attribute, and the following, come from the term “one of the two™ which points the
components of a pair of vehicles,

car 2 Operator which characterizcs an object from the type Parr-ofvehicles by an object from the type
Vehicle.

We try to simplify these operators which are synonymous -
The operators 2 arc_notin_infraction, [_doesn Lrespeei_road_signs and P_doesn 1respectroad_signs are replaced
by fandegalmaneuverings, I_oniy_inaillegal meneuverings and Zan_sllegalmanecuverings, This to be near the
attribute maneuveringlegally, and because its boolean value is known we can answer the three preceding ques-
tions.

At this level, the resolution method of the problem {corresponding to the problem descriptions) should
be made more precise by the defined information, that is, the abstract types, the objects, and the operators.
Effectively, we can verify that not all the concepls introduced by the problem descriptions are requisite for the
solulion space, or perhaps that some are missing. This step is used to make an adjustment: that if, to suppress
the concepts that are not requisite and add those that are missing. In general, the concepts correspond to
implicit notions that this step points out.

3.3 Rewriting the problem descriptions

After the update, we can rewrite the problem descriptions with the objects, aperalors and abstract data types
found. Only the control structures stay the same as those in the first problem descriptions:

Aek the Evaluation_process 10 Study_tho. eval uation.process (carl, car 2) concerning the responmibility of drivers
when secidents happen between dwo vehicies that Jorm one_pair (FPair_of vekizies),

According o the Trespass_median dinc, determine Which-responsibility_7 (one_pair) will have each of the twe
wehacien,

if in onepair, the 2in_legal_maneuverings :
uhen
- Hdumly.trespass_median line or IL3only. overtakes median line in one-pair, his.responsibility is cgual io
responsibility_full.
- 2 _trespass_median line in one_pair, cach of fhe fwo wehicles, car.l, car 2, har bis_responsibility equal {0 responsi-
bility divided in-equally.

IJ in ane.palr, loalydn llegal maneuverings, his_ reponsibility i equal 1o responsibility_full.

If in one_pair, 2dn.illegal maneuverings, his. respunsibility s ¢yual to responsibility divided dn_equally.

3.4 Updating the elements and the graphic representation of the solutio n space
3.4.1 Updating the abstract types

Some abstract types defined from the analysis of the ariginal descriptions of the problem, are not really used in
the program progress:

Maneuvering This type which has no object and mo operator 1s introduced in the original descriptions to
characterize the vehicles on the legality or otherwize of their maneuvers. So it is assimilated to the boolean
type. The boolean values are used as the value of the attribute legalmaneuverings of the vehicles.

Median line Common noun which is not used in our problem.
Road.sign Common noun which is not used in our problem.

11

Accidents_involving_two It is not used, but only tospecify the context in which the study of the responsibility
will evolve,

As information, we can say that the abstract iypes not kept here [because the original descriptions are o
subset of the general problem) should probably be kept for the treatment of the complete program.

The type Responsibility has only two objects responsbilitys_full and responsibility is_divided_in-equally, and
no operator. So we can replace this type by the type string because the program uses only the name of these
objects as the value of the attribute his_responsibility of the vehicles. Our generic perspective leads us to keep
the type Responsibelity, and to use its objects in a such sensc,

The abstract types defined are:
Eyaluation.process
Vehiele
Pasr_ofvehicles
Trespassomedien_fine
Responsibility

3.4.2 Updating the ohjects

To study the evaluation processus, we must define our own Evaluation_process which we call eval_proc_2_veh.
Also, for the trespass of the median kine, we must define our own symbol for the trespassmedian_lime, which we
call trespassoferopadr,

The abjects defined are:
frvalproc_f_veh : — Evalualion_prooess
Vehicle- ! : — Vehicle
Vehiolef : — Vehucle
Onepatr: — Pairolvehicles
Responsibality_ts_full @ — Responsibility
Responsibaltyas.dvndedocqually © — Responsibility
Trespass_for_pair . — Trespass_median_line

3.4.3 Updating the operators

The attributes Trespass_median_fine and Overtake_median_line with boolean value, which characterize the ve-
hicles, should be known in the problem to be able to answer to the questions : [fLlonly_frespass mediandine,
If1_only_overtakes_median line and If_#_trespass_median_line. Effectively, the original descriptions of the prob-
lem don't give any way to solve them. So, at the analysis level, two operators are missing:
Trespass.median_line : Operator which characterizes each object from the type Vehicle by a boolean value.
Owertake_median_line : Operator which characterizes each object from the type Vehicle by a boolean value.

The operator Verify_I_dvesn'i_trespass_and_I_trespass characterizing the type Puir_ofvehicles, is not requi-
site. Fiffectively, it is in the original descriptions only as verification or information, but is not used for the
software selution.

The defined operators are:

For the type Evaluation_process
Study_evaluation.process (vehicle 1, vehiele.2)

For the type Vehicle
Maneuvering legally
Trespass_median ine
Overtake_medianJine

His_responsibility

For the Lype Parrofovehicles
Car 1
Car.2
.2 trespass_median line
If. 1 only_overtakes_median dine
If_l_only_trespass_median_line
2_inlegal_maneuverings
Lonly in_illegal_maneuverings
2inllegal maneuverings

For the type Trespass_median_line
Which_responsibility_ 7 {one_pair)

Now that all concepts are defined, we can express our solution space with graphic representations,

3.4.4 The graphic representation of the problem solution space

In the remainder of this repart, we will not develop the entire solution space; we will show only the graphic
representation of the two most important abstract data types of our problem solution space. See figures 2 and
3.

f1_only_trespass_msdian_line

M 1 _anly_overtakes median_lne
2_in_lagal mansuvarings

PRIR_OF_UEHICLES

12 _treapags_ median r.-,.rf :

T_oaly_in_ileagel_mansuvesrings

£_in_illegal_manesuvarin
Car_2 - . #

Une chject = ono_pair

Figure 2: Abstract data type : Pair.of_vehicles

From these graphic representations, it is easy to pass to the next step: the static specification (sec figure 1).

4 Second step of the method: Static Specification

In order that programming satisfy the aime introduced by Software Engineering, a solution is a correct use of
the absiractions. But, without a specification tool to help, the abstraction potion is too intangible to be useful.

13

Hig_respensibitity

Overlake_ madian_fine

I TESpasE
echan_lind

Maneuvering_ legally

Twa objects == wehicle_t wehscle_2

Figure 3: Abstract data type : Vehicle

As figure 1 shows, after the analysis step, we can now go into the static specification step. After specifying
the problem in a static way, we can obtain an automatic generation of code, This code will be in Keops code
and also in Control Language code.

The static specification step comes from methodological considerations. This step is based on the description
language (developed with Keops).

From algebraic specification language techuics, the DL point out that the static description of a system
should be a cognitive model rather than an implementation model. With DL, we describe a system in such a
sense that their properties should be precisely established, independently of implementation choice. With DL,
a problem will be described by independent modules. This description be unlinear and incomplete. Tt is used
to create modules independently of their ereation order, to modify their hicrarchical organization, and to reuse
them to define other modules.

So DL is not a real algebraic specification language but a tool to help to the definition of modules. This
language makes easier the modular and incomplete conception of a problem.

A DL module is defined by 6 parts:

Module : (module name)
Properties : (list of propertics and their signature)
Axioms : (declaration list)
{equation list)
Links : (list of link type and linked modules)
Access rights : (list of modules which have
a visibility right)
Comments ; {character string)
End of module

Mow we can see in detail the basic entity of DL.

The heading is used to know the new data set that we want to introduce,

14

* The list of properties and their signature, which represent the only tools authorized to create or use
the elements of the set. So they must cover all the actions that the programmer wants to execute on one
of these data.

The signature corresponds to the definition domain of the property.

The list of axioms are used to define constraints or precisions on the module properties. In a modular
way, the axioms must support only the module properties.

These axioms and propertics came directly from the abstract data types definition.

¢ The list of hierarchieal links between modules. These links are used to reuse or structure the module
already specified by DL,
The links are defined by a type and o module list. Those links are predefined or can be defined by the
TRer.
The predefined links express relations as: specialization/generalization or issplit dnte/is_a_part_of.
We can find in [9] or in [10], & real expert system in the field of nutrition designed with an OO0L, and
using these differents kinds of link,

At an execution level, these different relations will be translated by various mechanisms of information
search in the graph defined by those links.

» The list of access right are vsed to give visbility to the specified module the modules given in the list.
But at first, the modules are independent and considered as “black boxes”.

Lo help understanding, see the entire static specification of the modules Pairof-vehicles and Vehicle.
The first part (heading and properties) of the module definition comes directly from the diagram of the
abstract data type defined during the analysis step. See figures 2 and 3.

STATIC SPECIFICATION OF THE MODULE “VEHICLE"

Module : Vehicle

Property :
Carl]l : = Vehicle
Orvertake median line : Vehicle — Boolean
Manenveringlegally : Vehicle —= Boolsan
His responsibility : Vehicle ~ Responaibility
Havepriorily : Vehicle — Boolean

Axiom :
V : Vehicle
L Legal maneuverings (V) : IF (Have priority V) THEN i
ink :
Arcesa_right :
Pairof_vehicles Comment :
“This is the etatic specifieation of the moduls ©
Vekiele®™,

STATIC SPECIFICATION OF THE MODULE “PAIR_OF.VEHICLES"

Mndule : Pair of vehicles
Property :
Omeapair 1 = Pairoof vehicles
Vehiclel : Pair.of vehicles — Vehicle
2an Jegal manewverings : Pairofvehicles
—+ Pairof_vehicles x Boolean
I 3 trespass median line ; Pairoof veliclss
= Pairaf vehicles

Axiom :
C : Pairol_vehiches
Vehicle 1 (O} : (net (eq () {Vehicle1 C)))
1cmby.in illeg; ings () :
{met (O= (l.only in illegal manenverings)

{2aindllegal maneuverings C)))
2anJdegalamaneu verings {G:I]
IF (eq (2dndegalonansuverings C) ¢}
THEN (prine “no infravtien of the ughway code")
Link ;:
Acceza_right :
Comment :
“This is the static specficatian of the module :

Foareofavebiels”.

On the module Vehicle, an axiom which marks a constraint on the property legalmaneuvering is defined,
and points ont that if a vehicle sspriorater, then it is in legal maneuwvering.
¥or our subproblem, there is no link here. But an access right on the Pair_ofvehreles means that all pairs of
vehicles can have a visibility on the properties of their cars,

On the module Pasr_af_vehicles, we can point ond that there are two kinds of axiom. Some axioms eXpressing,
conditions that specify dednctions linked to a test, as the axioms relating to the property Zinlegal
TRl E‘:H'I.'R'F'I-J'I 8.

This axiom expresses that if twe cars of a pair of vehicles are in legal maneuverings, then we can deduce that
there s no infraction of the highway code.
We have also axioms expressing affirmations on properties without conditions, as the axioms relating to the

cars of a pair of vehicles.
This axiom afficms that a pair of vehicles has two known cars,

We think that these tweo kinds of axiom are sufficient, in practice, to specify our modules.

As we use this tool progressively, we obtain a library of modules which can be revsed to define the static
spectfication of a new problem.

Now, as shown in figure 1, we can do a first automatic generation step.

The cade generation in Keops from the DL modules defines some type checking on the various entities of

Keops, See section 6.
Mew we can see the dynamie specification step (hefore the automatic generation) because the first generation

of code gives Keope code but also CL code. So we need to know the CL.

5 Third step of the method: Dynamic Specification

Contrary to DL, which is situated at a static division level of a problem, CL is mainly concerned with dynamic
aspects (controls during the execution) of the program to define. It is through this event control language that
we design, from the specification step, controls on the executing environment of the program, or specify some
error cachings, or control event appearances (for consistency contrels for instance) in the environment.

The description of the next systemn is done by the search of dependent events throught a temporal control or
by the search of events which are executed in a specific environment, or simply by the definition of events which
are launched by the appearance of other events. CL can also be used to specify traces, essential for following
program execution.

(1. is a language which is used, from the specification step, to define controls known from the reading of the
original problem description. It is nol necessary to wait until the implementation step to define controls.

These controls will be generated in KEQPS eode during the second automatic generation step (see figure
1), and the tool is used Lo be able to remove them at any moment from the KEOPS program code.

The second antomatic generation of code in the QOL KEOPS start when the dynamic specifications are
completed. The implementation of controls is really boring, so it is interesting to be able to specify them from

16

the beginning, in 2 more attainable language, and take advantage of an automatic generation of code,

CL can be used without CL modules yet defined in the environment, or after the first antomatic generation
of code. Because the first automatic generation of code produces modules of CLL fram the axiors defined in DL
modules, it is possible to take those CL modules to modify them, to complete them ...

Each control specification is linked to a CL module by a KEOPS entity on which the control is coneerned.
For instance, if the control concerns a property access, the associated module will be named by the correspond-

ing KEOPS entity.

The next subsection will show the execution work of a CL module, the definition of a CL medule, and some
examples of CL modules from our insurance problem.

5.1 Execution work and definition of a CL module

The reading of a CL module should be as follows, and be understood in the same way as for the antomatic
generation in KEOPS code, and approximately in the same way as during the execution Program.

:-eagll‘ng initi?
BV
instruetian s

k4

control

Figure 4: Fxecution work of a CL module

Each time the KEOPS instruction defining a CL module appears in the system, the events defining this
module will be activated in the following way: (Look at figure 4 at the same time)

» The initial event is activated, in which there are declarations of variables found in other events. Values
are substituted for the variables.

¢ The control event, and the control(s) are checked:

— If the conirol is valid, then the KEQOPS instruction is normally evaluated. If a KEOPS ercor appear,
it is possible to stop it and to replace it by the KEOPS error event, if this is specified.
There is an evaluation of the instruction defined in the link event. which is used to realise a
treatment, for instance according to the return value of the instruction, before retaking in order, the
instructions that form the program.

17

— If the control iz not valid, then there is an evaluation of the instruction defined in the help error

event, which can be, for instance, an error message.
Then, theee is Lthe evaluation of the instroction defined in the link event as before.

We can see this proeess in detall through our examples.

The basic entity of CL is the module, which is named by an instruction and defined by a control bloc.
Each of these modules of contrel iz associated with a description module, and defines one or several contrals on
the envieonment as soon as the corresponding instruction appears in the system.

A CL module 15 mainly defined in two parts: & heading and a control bloe.

Instruction associated
(instruction}
Initial event : (list of variable declarations)
Control event : (list of controls in Keops)
Help error event : (list of Keops instructions to
execute)
Keops error event © (Keops instruction)
Link event : [Keops instruction)
End of moduls

Mow we can see in detail the basic entity of CL.

» The heading is defined by the definition of the instruction linked to the module. [t is defined as a filter
during the program execution.

For instance, we define & CL module relating to the property “height” of the module “symbolstack” by
“Imatruciion associafed to the module © (Aeight symboletack_Odjeot? "walue®). fn that semas, we specify fhat
condrals will be made on dhe property “Aeight™ ar soom wr & modification ia done on the property “height™ from
any object of type “symbolsiock”,

There are two instructions with which to define a CL module: the message sendings and the access in
writing on the properties of an object.

‘The control bloc is defined by five events: initial, control, help error, Keops error, and link, which have
a fixed linking order. Each event is associated to a specific treatment which will be executed in such or
such a situation. Those treatments can be empty, incomplete or easily modifiable.

— The initial event iz used to define some Lisp variables, local to the control bloe. The constants
will be replaced by their value during the second step of the Keops code generation. A constant
declaration is :

constantname = value

— The control event. Whose associated treatment is used to make consistent tests between the in-
struction linked te this bloe and the environment. It is possible to define several controls, each of

them can be associated to a help error event.
The instruction specifying the control is defined in Keops (see the examples). The definition of the

svntax can be found in [5].

— The help error event. It is possible to define, for each control, an instruction linked to the help
event. The help event instructions are evaluated only if their corresponding control is false.
The instruction defining the help event is defined in Keops.

18

— The Keops error event. Only one instruetion can be linked to this event. [t is defined also in Keops.

— The link event. Only one instruction can be defined in this event, and in Keops. If it is defined,
this instruction is automatically launched after the evaluation of the instruction linked to the bloe,
or after the evaluation of the instruction defined in the Kcops error event, or after the evaluation of
the last instruetion defined in the help error event.

All the instructions in the control bloc are gutomaticaily generated in Keops through the axioms of a DL
module, during the first generation step from DL modules in CL.
The instruction linked to the control bloc is evaluated or not as seon as changes eccur in the environment.

We can follow the explanation with our example given in the next subsection. The given CL modules came
straightly from the first step generation. Nothing is added.

5.2 Dynamic specification of our problem
5.2.1 Module from the generation of the DL module “Vehicle™

1 - CL module generated from the axiom (See figure 5) :

Legalmanewvering (V) : IF (havepriority V) THEN ¢

UPDATE G MODULE

R e ety

irstruction asssciwted with the module :
(Legal_menouverings vehizlasObject? “valus®)

Inltial ewant :

Cantrol evant :
Contral_1 ;. (Mot (Have_prionty *present_schject')}

Halp efror avent :
Contral 1 ¢

KaopE aror evant -

Link avant :

Figure 5: CL module from DL module “Vehicle”

This axiom express that when a writting access is done on the property “Legal maneuvering”, the control
verifie whether the present vehicle bas priority. If yes, the writing value on the property “legal maneuvering”
is systematically “true”.

In the control event, there is a logic inversion of the axiom test part. If the control event is false, the help
error event is evaluated. So there is logical coherence between the axiom and the generated CL module.

19

5.2.2 Modules from the gencration of the DL module “Pair_of_vehicles”

1 - CL module generated from the axiom {See figure 6} :

Vehicle ! (C) @ fnot feq () {Velaeleld C)J

LPDATE CL MODULE

Instruction associated with the module :
[Vehicle_1 Pair_pf_vehiclexObject? “value®)

Inifial aweni @

Confrol event :
Gontrad_1 ¢ (Mot {ag (] [WMehide_1 ‘prusnn-t'_nhjtnl':l]j

Halp arror eveni
Cantrel 1 [Error Matal 1" ("errar on the axiom af ihe
proparty Wehicle 17}

Kaops arrar svent

Limk avent

Figure 6: CL module from DL medule “Pairof_vehicles”

The instruction is a writting on the property. The contrel is to verify that the value of the property “vehi-
cle_1” of the present object is not “NLL".
The CL module generated from the axiom on the property “Vehicle 2" has the same shape.

2 - CL module generated from the axiom (Sec figure 7) :

2_in_ legalmeneyverings (C) -
IF {eq {2_in_legalmanenverings C) i)
THEN (print “no infraction to the highway code”)

Here, the axiom is associated with the functioning of a pair of vehicles. So, from this condition axiom, the
generation will built a CL module on a method. The axiom condition part is on the result of the methed, then
the control must not be done before the evaluation of the method, so, the control should not be specified in the
control event but in the link event. At this time, the control will be done after the evaluation of the method.

The axioms on the properties I_only_inosllegal manewverings and 2in illegal maneuvering are repre-
sented as a method by the automatic code generalion in Keops.
The two axioms express affirmations (not conditions), and as we will see in the next section on the automatic
generation of code, no CL module will be generated.

The presentation of all the control modules is finished. We now have the dynamic specificalion of our prob-
lem. (Those modules came from the axioms specified during the static specification and were automatically

generated)
Of course it is possible to retake those modules and complete them, or to define some other way to refine the

20

Instruction associated wilh the module -
(MES Pair_of_wehiclessobject?
[message (Z_in_legal_manauverings}))

Initlal ewvent :

Conftral avent :

Halp error event :
Haops armar ewvent :

Link awent :
{IF (eg {MES “presan_objsct®
(message [2_in_legal_maneuvarings]))
t)
{prod "No infraction to the highway code))

L

Figure 7: CL module from DL module “Pairof_vehicles”

controls on the problem environment.

The CL is designed in KEOPS and we can use it through a convenient interface. 4 CL module library can
be constituted as soon as the use of the tool. The modules can be reused and completed to define dynamic
specifications of other problems.

Now we can do the second step of the automatic generation, which i3 done from the CL module in
KEOPS. In the tool, there are five possible generation types of OL moduile that can be derive from the axioms.

As figure 1 shows, after the first step of automatic generation, which gives code in KEOPS and alse in CL,
we can use this CL. Perhaps, for this problem, we don't need to complete the obtained CL modules, as we did
in our example. In that case, the third step proposed by the methodological guide is used only to ask the second
sutomatic generation of code to obtain the entire architecture of our program in the KEOPS OOL.

The next section shows the two steps of the automatic generation of code.

6 Fourth step of the method: Automatic Generation of Code

The research aim in the design of this methodological guide is to bring to OOL a methodelogical complement
which facilites the software design. The methodological guide makes it possible to define static and dynamiec
specifications, and also to automatically generate KEOPS code directly through those specifications.
One point concerning this automatic generation of code is that the obtained program will strictly satisfy
the specifications, because it is deduced from them,

Looking again at figure 1, we remark two steps of the automatic generation of code:

¢ After we completely define the static specification of our problem, with DL modules, the first generation
step will give some code in KEQOPS and some code in CL.

+ After we retake or update the CL modules defined in the first generation step, and create other CL modules,

21

the second generation step gives KEODPS code corresponding to the “architecture” of our program. That
means it gives the final program with all declarations of the needed KEOPS entities and controls to
evaluate. Of course the procedural attachment and the method body, corresponding to “How™ to execute
the program should e written by the programmer.

6.1 The first automatic generation of code

The first step of the automatic generation of code relies on a set of description modules (defincd with DL)
deseribing the static specifications of the problem. Tt is necessary to have well-formed modules, syntacti-
cally and semantically, both individually and together. The order in which the modules are used for the
generation 18 not important.

This first generation step gives a part of code i KFEOPS and another part i CL. The two paris are
presented independently.

6.1.1 Caode generation in KEODPS from DL modules

This first part needs to take into account the identity of the module, its properties, its links and its access
rights. To cach generated module there corresponds a KEOPS file, named by the module name and the
extension “0".

The program code is split up into as many files as the deseription module needs for the solution space. In
cach file, the definition of the corresponding description module is written.

RBefore defined the correspondence between the entities of the DL and those of the KEOPS OOL, we give
the KEQPS file defined from the medule Pair_af_vehicles.
This file named pair.ef.vehscle.llis explained immediately after the description of the code generation,

AEAEESEEEERE RS AR R RN R TR

FILE pairafechiclesll

.
] * W

Specifization madule
Module - pair-nf-vehicles
Property -

Definiticn of the DL modules in comment ...

‘End of writing the specification module

{Closs declaration
.r‘i'ﬁH kb b

[CLASS pair'of vehickes
[SURLCLASS root)
vehisle'l
wehicls 2

J:End of the class declarston

Anstances declarntion
;.iii.*."""‘ LEE LIS]

(OBJECT one-pair pair of vehiclsa)

Declnration of & provedural attachment in rending

-EEEARSFRAFFAAARAENEE SRR R AR AR RO B
"

Jior the property @ vehicle'1
RAAE LI R)

(PROC™AT (PROP wehizle'l}
{CLASSE pair'of vehicles)
({TYPE reading)
(DODY VE ()
Cantral of Eransmitter
(ifn {member *origin® (instances pair'ef vehicles)}
{errar “futal 1" (“the transmitter type”
"origin®
is net correct”)
]
Jiend of the tranamitter control

i WRITING OF THE PROC ATT DODY

1End of the body
JiBnd of the pros st

Declnration of the procedural attachment st the Eeginning of writing
LmE

ifor the property : wehicle'd
kbbb d bbb

(PROCAT (PROP vahicle'1)
(CLASSE pnir'af vebicies)
L TYPE writingbeg)
(BODY VE [*value*)
Cantral of trammitber
(il [member *origin® {instances par ol vehicles))
{errar “fatal’l” {“the transmitter type™
*arigin®
“is mot correct”)
1
Jiend of the transmitter coptrol
iControl on the writing valus
lifn (member ®value* (instances vehicle))
{error “fotal 1" (*the parameter type”
"valuct
“of the
Ugahicle i
“of the ohject”
*abject®
‘lia not currect”)

JiEnd of the writing value contrgl
: WHITING OF THE FROC ATT BODY
JEnd of the budy
JEnd of the proc ast

iDeclaration of the procadural wttechment in rending

i".‘““‘thti L1 L]
ot the property : vehiele'2
LTI T P P

Same definition as the procsdurnl attachments
apsucialed to the property ''Vehicle 1°

iDeciaration of the procedural attschment st the beginning of writing

Bakakn bbb S IIT] 1T T TP

for the property : vehicle's
-r"il-tilh-----i-

Same definition an the prucedural nttachmenta
....... aascciated lo the property “Vehicle 1"

{Declaration of the method ?'!ih'!:;nl'mm'ureri.ng
i““-‘"‘l“...lll-“‘.

(METHOT! Z'in'legal mansuvering
(CLASS pair of vehicles)
(BODY VE (}
iContral of the transmitter
(il (member ®origin* (instances pair of vehiclea))
{error “fatal 1" (“the transmitter typa"
*arigin®

Jiend of the transmitter sontrol
(lat ({res

A

(progn
WHITING OF TIE METHOD BODY

TEad of progn
11:End af the caloul of the result
Contrel of the out type
{iftn [MES creathment specifl error—nitial objpect
[mressage {primitive types ® resl)

{arror “fatal ¥ (“The type af the return value af
the method is ot correct”)

)
1:End of the out centrol
1.End &l Jet
};End of body
WErd af the method

‘Dreclaration of the method @ Uoanly'in'illegal maneuvering
AP RASISERET SRRV ETEIED
1

{WTHQD 'E'i-n'lr.xal'mam:uveriug
{CLASS pair'of vehicles)
(BOLY VE [}
sConteal of the transmitter
(ifn {rmember *arigin® (instances pair'of vehiclas))
{error “'facal'1l” (Vihe transmiiter type”
*arigin®
'"ia not correck”)
Jyunad of the brunsmitter control
(It {(res
[progn
TWRITING OF THE METHOD BODY
1:End af pregn
11:End af the calcul of the result
iCantend of the out type
{ifn {member res (instances pairof vehicles])
{error “fatal 1" ("The type of the return value of
the methed is not correct!)

4End of the out control
}End af let
};End of body
}End of the method

iDeclaration of the method @ 2in’illegal maneuvering
e e

Cume definitian ne the methad
...... “1only’in‘illegal maneuvering” ...

The correspondence between the entities of the DL (module, property, link and access ri'g,ht} and those of
the KEOPS OOL s the following:

— Fach declaration of a module is associated to a class declaraiton in Keops. Effectively, the class
is considered as a model for a set of objects.

— The properties of a module can be defined differently according to their arity and coarity. To
each of these properties a decdaration of KEOPS entity is associated:

If the arity hos no sets and the coarily has one sel which is the module itself module_name ===
{ property_name : — modulename) === The property specifies thal an element exists and
is named with the pame of the property in the set defined by the module. In KEOQPS, this

corresponds to a declaration of a class instance.
In our example, see the declaration of the object one_pair instance of the class pasr_of_vehicles.

If the arity has one set which is the module itself module.name or the sel of the modules
{module.name} and the coarity has one set different from the one represented by the module

24

=== { properly_name : modulename — seil or property.name : {modulename} — setl)
=== The property which is delined for a module element or for the module, specifies that its
value has the set type defined in the courity, and that there is no treatment that should be define
tor get this value.

In KEOQOPS, this property definition corresponds to the declaration of a generic property (instance
variable in Smalltalk) or a common property (class variable in Smalltalk).

The set specified by the coarity is used to conirol the type of the property value. Then, for each
property, there is a declaration of a procedural attachment at the beginning of writing, with a
Keops instruction which is used to control the type of the given value,

There are also some controls on the transmitter of the reading or writing access requested for
the properties (see the treatment for the access rights).
In our example, see the declaration of the procedural attachment link to the property Vehiele. 7,

* [fthe arity has several sels 1n which ene is the module tiself module.name and the coarity has sev-
eral sels i which one is the module ilself modulename or the sef of the modules {module_name)
=== (property-name : module.name x set]l x set? x ... — module-name x setA x setB x ..
or preperty-name : {module_name} x set] x set2 x . - {module.name} x setd x set B x ...)
=== The property specifies that it must have some entry parameters with the type setl, set2,
oo to determine its return value which is a list with elements of the type ensA, ensB, and g0 an.
In KEOPS, this corresponds to the declaration of an instance method or class method.

The sets setl, set2, .. specified in the arity are used to make type control on the parameter
value of the method, and setA, setB, .. specified in the coarity are used to control the output
value of the method.

In the method body, a Keops instruction is defined to control the type of the parameters and
another contrels the return value of the method.

Some controls are done on the message transmutier, see the access rights. In our example, see the
declarations of the methods named 2in_legalm aneuverings and [_only_intllegal maneuverings.

If one of the controls s not valid, the system will send o KEOPS fatal arror which stops the
program execution.

— The links of a module correspond to the definition of a sur_class link between the present class
and the classes corresponding to the modules specified by this link.
If 2 new type of link is introdueed, its method of information search in the class graph should be
redefined. Actually, in the tool, the programmer should define in the method body the moment at
which the system must use such and such a type of link.

— The access rights of a module are used to make visible this module for the specily modules. The
class corresponding to the present module is no langer a black box, but is considered to be a glass
box for some clasaes,

In KEOPS, control instructions are defined on potential transmitters in all procedural attachments
and methods yet defined. A procedural attachment is defined in reading for each property, and is
used to control the potential transmutbers.

Now, there remain the axioms which are used to generate CL code.

6.1.2 Code generation in CL from DL modules

This second part of the first generation step needs to take into account the axioms of a module. To each
axiom of a module there corresponds a CL module, referenced by the declaration of a KEQPS instruction
defined from the property of the DL module eontrolled by this axiom.

25

It should be useful to follow, at the same time, the CL modules of our problem (Rgures 5, 6, 7) and
the presentation of the correspondence between the entities of the deseription language and those of the
control language.

The axioms of a module are used to define constraints or controls on the properties of this module and

they can he Epr.r.ilicd as affirmation or condition.

Several KEQPS entities can by generated frem the axioms because we have -

— Element declarations
— Affirmation axioms

— Condition axiomes

and alse becanse the properties of a DL module on which the axioms are associated can be generated in
KEQPS as :

— Gzeneric or common propertics

— Ipstanee or class methods,

Whatever the case, the code generation phase of the DL modules in CL modules will not define any initial
event and any Keops ecror event for evident reasons. See the definition of a control block.

The eorrespondence between the various axioms of a DL module and the generated CL modules are the
following.

= The declarations are used to know the types of the several objects used to define the axions. So
the objects are associated to their type in the definition of the CL modules.

~ The atirmation axioms are generated differently:

= I[the DL module property on which the axiom iz associated is used to generate a gemeric or
commen property in KEOPS, then this axiom expresses a constraint on the writing value

of this property.

The gensration gives:
- A CL module identified by the wriling instruction on this KEQPS property for any object of
elass corresponding to the present DL madule.
- A control instruction in the control event which is used to werify the constraint expressed by
the aziom.
- An instruction in the kelp error event whick wall send a KEQPS fatal error if the control 15
false,

+ If the DL module property on which the axiom is associated is used to generate a class or instance
method in KEQPS, this asiom expresses an affirmation on the composition law of the DL
menlule properticos which is identified W an invartand in the program, and then deesn’l need
any control during the execution of this one.

The generation docsn't give any CL module in this case,

— The condition axioms are differently generated
If the DL module on whieh the axiom is assoeiated is used to generale a generic or common

property in KFOPSI then this axiom EXPTERRER A condition for i.nat.m:lr:a,, on the wr;ﬁllg
value of this property.

The generation gives:
- A CL module sdentsfied by the wriling instruction on this KEOPS property for any object of
the class corresponding to the present DL module.
- A control instruction in the confrol event whick is used {o verify the control expressed by the
aTHOM.

206

+ An instruciion in the help event which is the same as the one defined in the “THEN" part
of the ariom.
= If the DL module property on which the axiom is associated is used to generate a elass or in-
stance method in KEOPS, this axiom expresses a condition on the method result or on
the parameters or...

[f the aziom condifion is on something other than the method resuft, this condition should be
evaluated before the method body, to stop the method execution if the axiom test is right and
replace it with the evaluation of the “THEN" part of this axiom.

The generation gives:

+ A CL module sdentified by the KEOPS message sending instruction. This message corre-
sponds to the property with which the axiom is associated. The message sending can be
evaluated on all the objects of the elass corresponding to the present DL module.

- A control imstruction 1n the control event which is used fo verify the control,

» An instruction in the help event whick is the same as the one defined in the “THEN" part
af the aztom.

If the ariom condition is on the method result, this condition should be evaluated sfter the
method body to obtain its return value,

The generation gives:

- A CL module wdentified by the KEOPS message sending instruction. This message corre-
sponds to the property on which the axiom is associated, The message sending can be
cvaluated on all the ohjecis of the class corresponding to the present DL module.

Recause the control is on the result of the method, it cannot be done during the control event
evaluation (See the execution mode of a CL module). This control should be defined in the
link event, which will be evaluated after the instruction evaluation.

- An mnsiruction in the link event which corresponds to the complete griom.

At the end of this automatic generation of code from the description modules, we cbtain seme KEOPS
files and a list of CL modules. The second code generation step is done from the CL modules to complete the
KEOPS code defined in the file previously given.

Now we can see how the generation is done from the CL modules, how to pass from the events to the KEQPS
instructions, and how to locate these instructions in the previous generated KEQOPS code.

6.2 The second automatic generation of code

The second step of the automatic generation of code relies on a set of control modules (defined with CL) de-
scribing the dynamic specifications of the problem. Tt is necessary to have well-formed modules, syntactically
and semantically. The order in which the modules are used for the generation is not important,

This second step gives the final code corresponding to the complete use of the methodological guide.

For this generation, it is necessary to take into account all the entities defined in a CL module, and the
generated KEOPS code, in order to insert the additional controls brought by those modules in the existing
KEOPS code.

Before we define the correspondence between the entities of the CL and those of the KEOPS OOL, we give
the final KEOPS file defined from the module Pairof vehicles,
‘This file is explained immediately after the description of the code generation, but it is interesting to compare
this file to the one given by the first generation step. We can remark the added controls and their location in
the method and procedural attachment bodies, according to the event defined in a CL module.

[P L LR TR LI TR P L R
a

FILE gairefvehiclas 1l

i
_‘1.;-;;1-1-1.-*ttt'l'.'l.l.l.i'iiiiiiiJﬁi*i*."‘"*“ﬂ“

;5 pacification module

;Mu-dul.w : par-of-vehiclies
\Praperty :

..... Definitian of the DL modules in sommeal oo

‘End of writing the specification module

Cluss declaration
T T

(CLASS pair'af vehicles
{SURCLASS roat)
vehicle']
vehicle 2

hiEnd of the class declaration

JInstance declaration
oo e ol o

[ORJECT anc-pair pair of vehicles)

JDeclaration of a procedural attachment in reading
R R PR FFFEFFFFTOFEE TR R R R bR
;

Jus the property : vehicle'l

EASEETERETE Y
i

(PHOC AT (FROP vehicle'l)
(CLASS pairof vehicles)
{TYPE reading]
(BODY VE)
iContral of tranamitiar
{ifn (member *origin® (instances paic'alvehiclea})
{ercar “fatal’l” (“ihe transmitter type’
*arigin®
) I8 nob currect”)

hend of the transmitter control
: WRITING OF THE FROC ATT DODY

JEnd of the body
1:End of the proc ait

JDeclaration of the procedural attachment at the beginnung of writing

MELELEREE LS L]
'

;for the property : wehicle'l

R L
i

(FROC AL {PROF vehicle'l)
(CLASE pair'al vehicles)
{TYPE writingbeg)
(ROTIY VE (®value™)
(Contrel of tranamitier
(ifn {member ®crigin® (inetances pairofvehicles])
[errar “Ental 1" E"th«e trannmitber {yps”
origin®
i sl cogrect”)

Jend of the transmitier control

JContral of the weiting value

(i [rember *value® (instances vehicule}]

{error “fatnl’1" (“the paramster type”

“valuet
Yof the property”
Yyehisle 1"
"ol the object”
*object®
“is not cormect™)

'J;En]-ﬁ of the writing value control
{ TAG entry axiom eontral
(ifn (ot {eq (} *valus*))
{exit out’ aiom control

ar

(Error “'fatal 1"
(“Error on the aviom aof the"
property Vehicle'1")

J;End ol exit
1;End of entry neiam control

s WRITING OF THE PROC ATT BODY

1;End of tag
:I.I:iull of the body
1:End of the proc amt

;Declaration of the procedural attachment in resding
TR TRTFIATTETRRI IR TFTFF ST FISFSFASTIASAA SN
:

;for the property : wehicle'2
EERRTERERAE

...... Same definition s the procedural attachments
....... associated to the properiy "“Velucle 1"

‘Declaration of the procedural attachment at the beginning of writing
L A L L R s L S A A L e T R L N R e R R e S R L R R L
H

for the property @ wehicle 2
A

Same definition as the procedural attachments
magociated to the property "Vehicle 1"

Meslnration af the methad 2°in legal manenvering
T Y YT T TTTIIETIrEII I NI Y

(METHOD 2in’legal mansuvering
[CLASS par of vehicles)
(BODY VE [}
sCentrol of the transmitter
(ifn [member *origin® {instances paic'of vehiclea))
[error V'fatal’ 17 (Mthe tranemitter type”
*arigin®
s mot correct™)

Jiend of the traremitter contrel
{let ([res
(pragn

WRITING OF THE METHGOT: BOTYY

J;End of progn
1End of the caleul of the pesult
(Contral of the aut seiom
{if (eq res t)
{print " No infraction of the highway code”)
Y;End of if
;Conirol of the out type
(ifn (MES treatment apeciCerror-initlial’ ohject
[message (primitivetypes 7 res))

[eerar “fatal'l™ ("“The type of the return walue of
the method is not cormect™)

)
J;iEnd of the out control
}End af let
JiEnd of body
JBnd of the mathod

iDezinration of the methad - only’inillegal mansuvering
iJ FHESFEE RN SRR SRR RI R

[METHDD 1only in‘illegal mansuvenng
(CLASS par of vehiclen)
(DODY VE ()
:Contral of the transmitter
I:i.fn. [member *origin® (instances pair'of vehicles))
(error “fatal'1” (“the transmitter type®
Sarigin®
Y pol eorrect™)
J:end of the transmitter control
(let {(res
{progn
{WRITING OF THE METHOD RODY

)End ef progn

28

29

11;End of the calcul of the reault
iContrel of the out bype
{ifn [member res (instances par'ol vehicles)]
|error Iatal 1" [“The type of the return value of
the method is not cormet”)

yEnd of the oul control
FEnd of bt
1End of body
3End of the method

iDeclamtion of the method . 270 illegal mansuvering

L R R N s
1

..... Same definatien as the method ...
...... 1 aniy i illegal mansuvering” ..

The correspondence between the entities of the CL and those of the KEQPS OOL is the following:

» From the instruction identifying the module we kiow on which entity the eontrol are made. The
generation doesn't give any KEOPS code.

s The initial event is used to replace the constants with their value before starting the generation. Any
KEOPS code 1s given.

s The control event and the help error event.
To each instruction defined in the event control is associated an instruction in the help error event, then
we present those two events together,

There are some differences in the type of the instruction associated to the CL module which divide the
generation into three parts .

— I the CL module instruction expresses a writing on a KEOPS property from a condition
axiom, then the generation produces some code in its procedural attachment at the beginning of
writing.

'I'his generated code will have the following shape:

(TAG entry_axiom_comtrol
(IF (NOT ‘‘control evemt'*)
(EXIT entry_ariom_control
{SETQ =*value+
‘'corresponding help error eveat'’
1
);End of exit
}iEnd of entry_axiom_contrel

: WRITING OF THE PROC ATT BODY

);End of tag

— If the CL module instruction expresses a writing on a KEOPS property from an affirma-
tion axiom, then the generation produces some code in its procedural attachment at the beginning
of writing.

This generation produces the same code as before.

— If the CL module instruction expresses a message sending, the geperation produces some
code in the method called by this message sending.
The generated code is the following:

30

(TAG entry_axiom_contrel
(IF (NOT *'control event'’)
(EXIT entry_axiem_contrsl
(5ETQ *valne#
'‘corresponding help error evemt?®’
i
V:iEnd of exit
JiEnd of entry_axiom_control

(FROGH

; WRITING OF THE METHOD BODY

JiEnd of progn

JiEnd of tag

Because several control definitions in the contrel event and of course in the help error event can exist,
the automatic generation of code will successively introduce the corresponding KEOPS code where
it is necessary.

¢ The KEOPS crror event,

If an instruction is defined in this event, a definition of a new error method corresponding 1o this instruction
is done in the KEOPS system. Effcctively, the calls to the fatal error methods in KEOPS are modifiables
during the problem execution.

The generation will define & new method in the system, and the mechanims necessary to activate this
method when it is required according to the CL module definition.

The link event.

The generation produces some code in the procedural attachment at the beginning of writing if the in-
struction associated to the module expresses an access on a KEOPS property, or some code in the method,
if the instruction asociated with the module expresses a KEOPS mesange sending.

The generated code is located after the comment on the writing of the procedural attachment bady, or
after the end of the first argument of the “LET" which is used to keep the method result.

The code is the control instruction corresponding to the complete instruction defined in the link event.

After this second automatic generation of code, we can point cut that all the controls introduced by the gen-
eration are located in pre or post condition on the methods and on the procedural attachments, It is important
to remember that all the controls can be deleted, by simple request, at any moment of the problem execution.

Now we obtain some KEOPS files that correspond to the solution of our problem and that are automatically
generated from the static and the dynamic specifications.

The method and the procedural attachment bodies should be completed in KEOPS in writing the code eae-
responding to their functioning at the place where the generation wrote in eomments “procedural attachement
body" and “method body”.

Note that the file loading depends only on the class hierarchy.

3

7 Conclusion

This report describes a progressive method and a guideline for the design of object ariented programs. The tool
is qualified to be a methodological guide because it operates during a large part of the software life cycle: for
the analysis, specifications, conception, and programming.

& The analysis step is not automatie. The treatments performed on the original description of a problem,
to define Lhe concept needed for the specification step, essentially depend on the context in which the
problem evolves, on the knowledge which the reader has about the real world for this domain, and on
what the reader understands. , :

The automation is really difficult to realive, and was not my first research topic. This analysis s easy to
apply to render any kind of problems as abstractions; it is not specific to only OOL,

s The specification step is in two parts: the static and the dynamic specification phases. The static phase
is used to quickly obtain 2 global view of a problem, directly represented as modules. The dynamic phase
is used to define controls or constraints which come directly from the original problem deseriptions.

The specification order is first the static one and then the dvnamic. A go and come back can be done,
but net with any effect on the generated code. The automatic generation of code should be redone for
Lhe modified modules.

The interesting thing about those specifications is that the customer, the user, and the programmer can
easily understand the problem during the eomputerization process,

» The conception step represents here the change from the specifications to the program architecture. This
step is performed by the automatic generation of code in KEQPS QOL. This generation is used Lo get
programs well written, with comments, and well structured in files. The resulling progeams automatically
salisfied the problem specilications becavse the code generation is made directly fram them.

The programming step must begin from the file containing the code corresponding to the program archi-
tecture and must define the actions in the same KEOPS language. In other words, il defines the “how to
da", because the “what lo do” is defined through the specifications.

The prototype of the guide shows the interest and the feasibility of a such approach, It has
been realised with our object oriented conception method.

Qur first objective was to define o general objeet oriented conception method satisfying any kind of OOL
and adapted to any kind of problem.
The result is represented here as a methodological guide, organised in several help phases for the analysis, for
the static and dynamic specifications, and for an antomatic partial implementation, which is based on a common
kernel of the concepta of varions kind of (0L,

From a critic point of view:

s The side “help [or the analysis” has been added to complete the object oriented conception method and
obtain a methodelogical puide which covers all the steps of software development.
Actually, something is missing from this analysis method: we would like to define the hierarchical links
between the abstractions dircctly from the original description of the problem. Now, those links can be
defined only during the static specification step but we think that they can be found from sentences i
natural language.

* The prototype has been implemented with the KEQPS QOL, and the automatic generation of code is also
in KEOPS language. Of course this generation can be easily done in any other OOL.

¢ The fact that the method is based on the commom concepts of OOL leads us to make two remarks :

— We can’t enjoy, for the program conception, the power of concepts specific to varions OOL, such as
several type of message sendings, the frames, the production rules ...

32

= This guide has been realised with KEOPS, but we took only the basic concepts of OOL and the
procedural attachments for its implementation, not the other specificities of KEOPS.
50 the methodological guide can be easily translated inte any other OOL.

The change from the protatype to & real tocl has to be made to allow for a correct and industrial use of
this methodological guide. It should be used to rapidly define prototypes in KEOPS. Then the program can be
operational in KEOFS or, for better efficiency, translated into OBJECTIVE-C [11] which 1s an OOL based an
C, by a cross-compiler LeLisp in C.

References

(1] E. Abbott. Program design by informal engiish description. In Communications of the ACM, 1983.
2] G. Booch. Software components with ADA. The Benjamin Cummings Publishing Company, 1987.

(3] I.M. Goetz. LROZ = Langage de programmation ef de représentation des connaissances par objel. CRIL
FRANCE, 1556,

[4] 1.V. Guttag, I'R. Musser, and E. Horowitz. Abstract data types and sofiware validation. In Communics-
tion of the ACM, 1078,

(8] A. Romanczuk. Vers un guide méthodologique pour o conceplion de programmes orientés objed, PhD thesis,
Université de Lille - FRANCE, Laboratoire d'informatique fondamentale de Lille - Université des sciences
et techniques de Lille, November 1083,

(] A. Romanczuk. Expert system design with an object oriented analysis method. submited to the seventh
IEEE conference on Artificial Intelligence Applications - Miami - February, 1991,

[Tl A. Romanczuk and G. Comyn. An implemented guideline for developing and generating object programs.
Technical Report IT 124, University of LILLE - FRANCE, 1987.

[8] A. Romanczuk and G. Comyn. Présentation par I'exemple d'un guide méthodologique pour la program-
mation orientée objet. Technical Report I'T 171, University of LILLE - FRANCE, 1989,

9] A. Romanczuk, G. Comyn, and K. Beuscart. Use of an ohjeet oriented language keops for the realization of
an expertise in the field of nutrition. In AL and Cognitive Sciences - Manehester Universily Press, 1987,

[10] A. Romanczuk, G. Comyn, and K. Beuscart. An expertize in the field of nutrition with object oriented
language. In TEEE Engineering in Medecine and Brology Sociely - NEW ORLEANS., 1988,

(11] STEPTONE, Connecticut. Objective C, User reference manual, 1986,
[12] A.Synder. Common objects: An overview. In SIGPLAN Notices, pages 19 - 28, October 1986,
[13] C. Vogel. Génie Cognitif. Masson, 1088,

