~ ICOT Technical Report: TR-588

TR-588

A Parallel Theorem Prover in KL1 and lts

Application to Program Synthesis

by
R. Hasegawa, 1. Fujita & M. Fujita

August, 99

1990, 1C0T

Mita Kokusai Bldg, 21F (03)3456-3191 ~5

| G DT 4-28 Mita 1-Chome Telex ICOT 132064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Parallel Theorem Prover in KL1
and Its Application to Program Synthesis

Rvuzo Hasegawa®, Hiroshi Fujitan and Masayuki Fujita®

* Institute for New Generation Computer Technology
1-4-28 Mita, Minate-ku, Tokyo 108, Japan
t Mitsubishi Electric Corporation
8-1-1 Tsukaguchi-honmachi, Amagasaki, Hyogo 661, Japan

August 13, 1990

Abatract

We have been building a parallel automated reasoning system and alse developing a program
synthesizer, which is a promising application of the system for use on the Parallel Inference Ma-
chine{ PIM).

Firstly, we will present a parallel theorem prover for first-order logic implemented in KLI1, and
the KL1 implementation technigues which are also useful for ather refated areas, such as truth
maintenance sysicms and inielligent database systems. The MGTP prover, which has already being
developed, adopts a model generation method, as used in SATCHMO, that was first implemented
in Prolog by Manthey and Bry, SATCHMO tries to find ground models for the given set of dlauses
that satisfies a condition called range-restriciedness. The condition imposed on the clause set allows
g to use only matching rather than unification during the proving process. This property is alsn
favorable in implementing a prover in KL1 since maiching is easily realized with head wnitication
and the variables in the given clanses can be represented as KL1 variables. For ground model cases,
cxperimentnl results show that the MGTE prover is more than three times faster than Lhe SATCHMO
prover on SUN3/260 even in the pseudo parallel environment of the PSLIT machive. To deal with
nengronnd models, MGTE is extended by incorporating unification with occors check, weighting
heuristics and other deletion strategies while still keeping a model gencration paradigm,

We then present a formal system for program synthesis nsing the MUTY prover. The surting
program is taken as an example. The program specification is expressed as a formula. Subprograms
can he used in the synthesized program if the corresponding lemmas are provided to the prover
The program extraction mechanism is based on coustructive logic. The proel trace obtained from
ilie prover is translated to an LF{Edinburgh Logical Framework) proof term and a program can be
extracted from this proof term.

1 Introduction

The research on theorem proviug in the FGOS project aims to develop a parallel automated reasoning
system applicable Lo varions fields such as natural language processing, intelligent database designing,
and other kinds of knowledge information processing on the Parallel Inference M achine (PIM).

We have implemented a theorem prover far first-order logie m KL1, a committed-choice logic language.
We have also developed an experimental system for aulomated program synthesis as an application
suitahle for the theorem prover,

We will now briefly review the research on a theorem prover for first-order logic. The following are typi-
cal calculi for first-order logic that we have taken into consideration: resolution, model elimination[LovT8],
the tableaux method, and the connection method[BihS6].

Recent developments in logic programming languages and machines have shed light upon the problem
of how to implement these classical but powerful methods efficiently. For instance, Stickel developed a
model-elimination based theorem prover called PTTP[Sti88] which is implemented in Prolog. PTTP is
able to deal with any first-order formula in Horn clause form (augmented with contrapesitives) without
loss of completeness or soundness by employing unification with occurs check, the model elimination
reduction rule, and iterative deepening depth first search. Schumann et al. built & connection-method

based theorem-proving system, SETHEQ[SchE4], in which a method identical to model elimination is used
as a main prool mechanism. The system s inplemented using Prolog technology and an approach similar
to Stickel's is taken. Manthey and Dry presented a Tableaus-like theorem prover, SATCHMO[M B3],
which is implemented in Prolog by means of a very short and simple program. SATCHMO is basically a
forward-reasoning theorem prover, which also allows backward reasoning by employing Prolog aver the
Horn clawss sulsets,

The above systems all utihze the fact that Horn clanse programs can be very efflicient]ly solved. In
these systems, the theorem being proven is represented with Prolog clanses and most deductions are
performed as normal Prolog execution.

A method similar to the above seems to be applicable to commitied-choice languages, such as KLIL.
if this were, we could make full use of KL1's mernits, that is, the ease of writing concurrent programs
and of exploiting parallelisms, However, it turns out that it is nol so easy to represent a clanse set for
a thearem directly with KL1 clauses hecanse o KL1 elanse is not just a Horn clause; it has extra-logical
consiructs such as a puard and a commit operalor. We should, theeefore, treat the elause set as data
rather than as 5 kL1 program.

e of the main problems here s how Lo represent variables appearing in a elause set for the theorem
being proven. Two approaches can be considered for this problem: one s o represent them as KL1
ground terms, the other is to represent themn as KL1 variables. The first approach suffers from the
mefficiency of metaprogramming, that is, lerge interpretation overhead of objects on different layers. The
second approach allows us Lo aveid that problem but offers problems specific 1o KL1, as mentioned above.

Tu rL-modj' these deficieneies, while still maJi:il]g effective uge of KL1's features, we adopted a model
generation method, on which SATCHMO is based, us a basic proof procedure, and specialized the method
to two cases: ground model case and nonground model case

Fur the ground model case, a model generation prover makes it possible to use only malehing rather
than full unification. This suggests it s suflicient to use KL1's head unification. Therefore, we can take
the second approach and achieve very efficent implementation, by using a progeamming trick. '1'he MG'T'P
theareny prover, which was built based on the model generation method, can prove a significantly large
class of theorems.

bor nonground model case, where a full unification with occurs check is required, we are forced to
follesw the first approach. Here, we used the vector facility that KL1 offers to remedy the above overhead
problem. In addition, we employed traditional techniques such as clause ordering, weighting heuristics
and viher strategies, which are usually employed in standard resclulion provers. while still staying within
a munlel generation paradigm. For ground and nenground cases, the model generation method works
very well in proving theorems and is easy to implement in KL1

The second topic to be presented is an application for the theorem prover. Although a theorem
prover [or fiesl-order logic has the potential to cover most areas of AL it has been left behind by logic
programming by ten years or more. One reason for this is the inefficiency of the proof procedure and
the other is lack of useful application. Mlowever, through the research on constructive programming, we
became convineed that it is very useful to apply the first-order theorem prover to programming. We
believe automated program synthesis can he realized by this approach.

Curry-Howard isomorphism[Mar#2], which allows us to relate programs with proofs, gives the math-
ematical hasis for developing a formal system to synthesize a program from a proof obtained via a
first-order thearem prover like MGTPE.

However, there are two major problems o be solved to realize the above svstem: how to extract a
prograin [rom a proof in first-order logic. and how 1o incorporate induction and equality into the system.

The first problem means that programs cannot be extracted from proofs obtained by using excluded
middle as used m classical logic. This problem can be salved if the prograw specification is given in
clausal Torm because a proof can be obtained from the clausal set without wsing excluded middle

The second problem is that all induction schemes are expressed as second-order propositions and thus
need second-order unification, which is impractical to use. However, it is posable Lo Lranslorm a second-
order proposition Lo a fisst-order proposition if the program domain is fixed. In relation to equality, a
proof of equality does not affect program extraction, so we may use any efficient algorithm for equality.

From these obaervations, we have developed an experimental system for automated program synthesis
using the MGTP prover. The sorting algorithm is taken as an example. At present, although the system
needs to be given lemmas and axioms necessary for extracting a sort program, all these can be oblained,
in principle, by the theorem prover,

2 Model Generation

We adopt a method called model generation as a basic proof procedure for our prover. We assume that
a theorem to be proven is negated and transformed to a set of clauses, then we try to refute the clause
set as in the resolution method. We say that a clause is a negatie(posttive) clause if it has at least one
negative[positive] literal but no positive(negative) literal. It is 8 mired clayse i il has both of positive
and negative literals. The task of model generation is to try to construct a medel for a given set. of clanses
and to show that no model exists for the clause set (the clause set is unsatisfiable).

The proof procedure of model generation is as follows.

o We start with a oull sed as 2 iwodel candidate and repeatedly apply two rules shown in Fig. 1 to
the clanse set so as to find a model.

o If we find a model candidate under which neither rule is applicable to any ¢lause, then the candidate
is in fact a model and we conclude that the clause set is satisfiable.

¢ If every possible model candidate is rejected after all, then we conelude thal the elause set is
unsatistiable,

There may be more than one clause to which the model extension rule is applicable thereby resulting
in multiple extensions of & model candidate. And if every possible extension turns out not to be a model
for the clavse set, we conelude that the clause set has no model. Also there may be more than one literal
in the consequent in the clause to which the model extension raule can be applied. If it is the case, we
say the mode]l candidate 15 ‘expanded’. In this case we have to show that every extension of a model
candidate cannot be a model in order to show the clause set has no model, The above two cases are
depicted in Fig. 2. OR branches correspond to the first case and ANTY branches to the second case.

Note that if a clausc Lo which the model extension rule is applicable has a literal that is unifiable with
an element of the madel candidate under consideration, then extending the model candidate is redundant
and should be avoided. Also note that the mode]l extension rule i= always applicable to a positive elanse
and that extending a model candidate with the positive clause more than once is redundant and should
be avoided.

A clause can be represented in an implicational form as helow:

Antecedent — Consequend

where Anfecedent is a conjunction of positive literals and Conseguent is a disjunction of positive literals.
When we say ‘clause” in the sequel, we shall mean its implicational form as well as its standard form for
CONVETIENECE,

The model generation method, as ils name suggests, is closely related to model elimination
method[LovT8]. There is a clear difference, however, in that model generation proceeds bottom up
(as in forward reasoning) starting al positive clauses {or facts) whereas model elimination proceeds top
down (as in backward reasoning) starting at a negative clause (or a query).

Deduction based on the mode! generation method can also be viewed as a special case of a deduction
using hyper (positive) resolution, Qur caleulus, however, 15 much closer to the tableaux calculus in the
sense that it explores a tree (or a tableau) in the course of finding a proof. Indeed, a closed branch in a
proofl tree obtained by the tableaux method corresponds exactly to an inconsistent model candidate that
i5 to be rejected in the model generation method.

For example, consider the following set of clauses:

Problem S1[MBEE]:

il pl &), (XY — false.
Ly 2 g X)), s(Y) — false
Ca: o g X) = s(f(X)).
4. r{X) — s X).
Ch: plX)—q(X)r(X)
C6: true — pla)iqlb).
We start with an empty model, M = ¢. M is first expanded by C6 into two cases: M, = {p(a)} and

Mo = {q(t)}. Then by C5, M; is expanded into two cases: My = {p(a), g{a)} and M; = {p(e),r(a)}.
Further by C3, M3 is extended to My = {;{n],q{u],s{f{u}]} but Mg violates C2, so il is marked as

" Model extension rule:

If there is a positive clause or a mixed clause such that every negative literal in the
elause is unifiable with an element of a2 model candidate, then extend the maodel
candidate with each of the positive literals in the elause,

Madel rejection rule:
If there is a negative clause such that all of its fiterals are unifiable with an element
of a model candidate, then reject the model candidate

Figure 1: Madel generation rules

tlosed. On the other hand, M, is extended hy C4 to Me = {pla), r{a), s(u)] which is also marked as
closcd by €1, In a similar way, A, is extended by C8 to M5 = {q(8), s{f(b))} which iz marked as closed
by 2. Now that there i no way to construct any model candidate for the elause sel, we can conclude
that the elause set 15 unsatisfiable,

3 KL1 Based Model Generation Theorem Prover

3.1 Variables and Unification

When implementing a parallel theorem prover in KLL, we have to first solve a problem how Lo represent
variables appearing in the given theorems before going into the main subject how to explait parallelisms
This problem anses whenever we consider unplementing moetaprograms such as a Pralog/GHC meta-
witerproter in KL

Ta salve the problem, there are two approashes:

(1) Represending object level variables with KL1 ground terms
(2} Hepresenting object level variables with KL1 variables

The first approach might be the right path in metaprogramming where object and meta levels are sepa-
rated strictly, thereby giving it o clear scmantics. However, it forees us to write routines for unification
substitution, renaming, and all the other intricate operalions on variables and environments. These rou-
tines would become considerably larger and more complex than the main program, and introduce orders
of magnitude of overhead. This deficieney would be remedied by using a partial evaluation technigue.
However, we have not yet developed a powerful parlial evalustor sufficient to remove the above overhead.

In the second approach, most operations on varnables and environments ean be performed on the side
of the underlying system insicad of running routines on top of it. This enables & metaprogrammer to
aveld writing tedious routines and to gain high efficiency. Furthermore, in Prolog, one can also use the
var predicate to write routines such as oceurrence check in order to make bwilt-in unification sound, if
necessary. This approach may not always be chosen since it makes the distinction between ohject level
and meta level very ambignous. However, from the viewpoinl of program complexity and efficiency, the
actual profit from this approach is very large.

In KL, however, the sccond approach is not always possible as in the P'rolog case. This is hecanse the
semantics of KL1 never allows us to use a predicate like Prolog var, In addition, KL1 built-in unification
is ol the same as Proleg's counterpart, in that unification in the guard part of a KL1 clause is limited
te one way and a unification failure in the body part is considered as a program error or exception
rather than a mere failure that can be backtracked. Nevertheless, we can Lake the second approach to
implement a theorem prover where ground models are dealt with, utilizing features of KL1 as much as
possible. Details of the implementation are described o the following sections.

3.2 Ground Model

The good news is that SATCHMO does not need unification where the range-restrcied[MBSS] property is
enjoved by clauses. A clause is said to be range-restricted? if every variahle in the clause has at least one

1 Ta enstire range-restrictedness & dom predicate may be introduced and extra clauses [ur it are added (o the original sel
of clauses. This transformation does not changs the satisfinblity of the original sei of clauses,

AND

Tgure 22 AND-OR tree in model generation

occurrence in its antecedent. For example, in the problem S1, all the clauses, C1 C6, are range-reatricted
since no variable appears in clawse C6; the variable X in clavses C1, O3, C4 and O35 has an occurrence in
their anteredents; and variables X and ¥ in 2 have their cccurrences in its antecedent.

When range-restrictedness is satisfied, it is sufficient to consider onc-way unification (matching} in-
stead of full unification with occurs check, since a model candidate constructed by model generation
rules should contain only ground atoms. Moreover, KL1 head unification s nolhing but matching, so
we already have a fast built-in operation for inplementing model generation provers for range-restricted
clause sels,

There is, however, a little problem concerning variables shared among literals in a clause, which
requires a programming trick. To sce this, consider the previous example, S1. The original clavse set is
transformed into a set of K11 clauses as shown in Fig. 3. In c¢(N,P,35,R), ¥ indicates clause number, P
is a literal to he matched against an element in a model candidate, GS is a list of atoms appearing to the
left of P, and R is the result returned when the match succecds. Notice that clause C1 is represented by
two KLI clauses. In the first KLL clanse, the first Hteral of O1, p(X), s matched against an element in
the model candidate, If the match succeeds, the interpreter retains an instance of p(X} and procesds to
match the second literal, s (X). At this poiul, Lhe interpreter calls the second KL1 clause for C1 with an
clement of the model candidate as the first argument and the instance of p(X) as the second argument.
Maotice that whenever this call succeeds, the variable X in s(X) will get instantiated Lo the same value as
Iinp(X).

3.3 The Interpreter

Fig. 4 shows a MGTP interpreler written in KL1L

Given a model candidate M and the number of clauses N, the interpreter tries to prove whether
the given set of clauses is satisfiable or not. If it terminates with A=sat{A=uneat) then the answer is
“sutisfiable” (“unsatisfiable”), otherwise it fails to prove.

satisfy_clauses explores every possible expansion of the model, M, checking satisfiability of every
clause by spawning a satisfy_ante for each clause.

The results from the clavses are combined by and_sat. If all of the clauses return sat as the answer,

on

v~ module mgtp_problem.
:= public model/1,nc/1,c/4.

model (M) :=trua|M=[].
nc(NC):~true| KC=6.

cf1,p(X), 00, R):=true|BR=cont.

cl{1l,s(E), [p(X}] ,R):~truel|R=false. A Cl: plX),s{X)->false.
ef2,q(X),0, R}:=true|R=cont .

ef2,s0Y), [g{X)] ,R}: trus|R=false. W2 gi{X),s{Y)->false.
el3,q(X), 00, R):-truelR=[s(£{X))]. We3r qiXl->s(f(X)).
e(e, x(X), (1, R):-truelR=[s(X)]. % ocd: r{l)->s{X}.

cls,pl(x), 01, Ri:-truelk=[g(X),x(X)]. % cB: p(X)-»q{X);:r(%).
cl(6,vrue, [J, B):-true|R=[p{a),q(b)]. % C6: true->p(a);q(b).
otherwize.

cl_._._.R}:—true|R=fail.

Figure 3 51 problem transformed to KL clanses

the model candidate, ¥, is indeed a model. Otherwise, some cluuse would return unsat therehy mdicating
that the clause set is unsatisfiable under the mode| candidate, M.

For each clause, satisfy_ante exhaustively makes combination of atoms out of M for generating
different instantiation of the clanse.

Ifa clause is fonnd such that its antecedent s satisfied by M at satisfy_antel, and that its consequent
15 not satisfied by M at satisfy_cnsq, the model candidate, M, is expanded 1o several branches according
to the nutnber of disjuncts in the consequent of the clayse.

The results from the branches rooted at M are combined by and_unsat. If all of the hranches returs
unsat as the answer. the clause set is unsatisflable under the model candidaie, M. Otherwise, some branch
would return sat thereby indicating that the clause set is satisfiable under some of the expansions of the
model candidate,

There are two kinds of parallelism, AND-parallelism and OR-parallelism. AND-parallelism is exploited
in the current interpreter at extend_model where more than one false processes may be spawned. OR-
parallelism could be introduced at satisfy_clauses where more than one clause is violated thereby
becoming candidates for extending the current model.

3.4 Performance Comparison for Ground Model

Table 1 shows performance comparison among the systems, PTTP, SATCHMO and MGTFP.

SATCHMO is faster than PTTP for all the problems S1, §2 and S3. MGTP is three to four times
faster than SATCHMO for problems S1 and $3. For problem S2, however, SATCHMO is faster than
MGTP since the former solves parts of the given problem directly as a 'rolog program thereby avoiding
mterpretation overhead.

Fuchi developed a method to translate 2 problem together with its proof precedure into a KIL1
program{Fue80]. Fuchi's program runs about three times faster than our system. This difference of
speed is smaller than the amount to be normally expected when interpretation overhead is taken into
account. By applying partial evaluation technique it would be possible for our interpretive method to
oblain performance comparable to Fuchi’s compilation method.

4 Extension of MGTP

4.1 Nonground Model

With MGTF, we can prove a large class of theorems very efficiently. There are, however, more difficult
theorems hard to prove with this type of prover as mentioned in [MB88]. For example, to prove that the
following set of clauses is unsatisfiable is a very difficult problem for the MGTP prover.

r-module mgtp. :—public do/i.

do(h):-true|
mgtp_problem:model (M),
mgtp_problem:nc(N],
satisfy_clauses(0 N, M,A,_).

satisfy_clauses(_,_,_,_,unsat):-trueltrue. alternatively.
Eati:fj_tlausaﬂ(J,I,H,ﬂ,E}:—J<I,J1:=le|
satisfy_ante(J, [J, [truelX] K, A1,B),
and_sat(A1,A2,4,B),
gatisfy_clauses(J1,N M AZ E}.
satisfy_clauses(N,N,_,A,_):-true|k=sat.

and_gat(sat,sat,A,_):-true|A=zat.
and_sat({unsat,_,A,B):-true|A=unsat,B=unsat.

| and_sat{_,unsat,A,B):—troe|A=unsat B=unsat.

satisfy_amte(_,_,_,_,_,unsat}:-true/true. alternatively.

satisfy_ante(J,5, [FIM2], M, 4 ,B):-truel
mgtp_problem:c(J, P 5. R},
satisfy_antel{J,R,P,5 M2, ,M,4,B).

satisfy_antel_,_,[],_,A,_.):-true|A=sat,

satisfy_antei(J, fail ,P,5,M2,M,4,B):-truel
gatisfy_ante(],5,M2 M, 4,B).
satis!y_antaiij,cnnt,F,s,Hz.H,A,B}:—trual
satisfy_ante(J, [P|5] ,H M, 41,B],
and_sat(hl,AZ,k,B),
gatisfy_ante(J,5,M2,M,42,8).
satisty_antel(J,false,P,5,M2,8,4,8) -true|B=A, A=unsat.

satisfy_antei(J,F,P,5,M2,M,4,8) :-1ist(F}|

satisfy_ecnsq(F,F K,41,8),
and_sat{Al,42,4,B),
satisfy_ante(J,5,M2,X,A2,B).

satisfy_cnagl(_,_,.,_,uncat):=trueltrue. alternatively.
satisfy_cnsq([D1|0s] ,F,M,A4,B):trualsatisfy_cnsqi(D1,De,F, M, M, A,B).
satisfy_cnsq([],F M, 4, _):=trus|

mgtp_problem:n(N),

extend model (F, M, N, A,).

satiafy_cnsql{D,Ds F, [DIM2] M, A, _):-true|h=sat.
satiafy_cnsql(D,Ds,F,[],M,4,B):~true|satisfy_cneq(De,F,M,A,B). othervise.
satisfy_cnsqi(D,Ds,F, [_I42]) ,M,A,B):~true|satisty_cnseqi(D,Ds,F,M2,M,A,B)}.

axtend_modell_,_,_,_,sat):-true|true. alternatively.
extend_model([D|Ds] N, N,4,B):-trusal
satisfy_clauses(0,N,[DIM],AL,),
and_unsat(A1,42,4,8),
extend_model(Ds M, N, A2 ,B).
extend_model([],_,_,4,_):-truslA=unsat.

and_unaat{uneat,unsat,4,_J):-true|A=unsat.
and_unsat(sat,_,A,B):-truel|A=sat B=sat.
and_unsat(_,eat, A ,B):-true] A=sat B=sat.

Figure 4: A MGTP interpreter in KLL
7

Table 1: Performance comparison

| Problem 1 s [&2 53

PTTPt || 86msec 24sec | 7(>30mmin)
SATCHMO | 16msec | GBmsee 6. dsec
MGTPE Bodmsec | I0Tmsee 1.5sec

i Number of reductions) (290} [(&,495) r:l]E_.E]_

i (Siestus Prolog VU6 on SUN3/ 260

i (pseudo-Multi-PSI single-PE on PSI-1I)
* 52! Schubert’s Steamroller problem

== 83 Pelletier and Nuadnickis problem

Froblem llll;l[ﬂﬂ-'ﬂﬂ]
pLEE Y 20402, XU, X0
=p(XY) =pl X | p(Y)
splild(i{a, b),a), a))
Since the first clanse s not range restricted we need to add a dom predicate as follows.

dor(X, dorr{ ¥V}, domi{ Z), dom(l') — Pl Y, 2) a2, X040, XN
P XYL p(X) — pY)
plafelefa. bha).a)) — Ffalse

true — domia)
true — dom(h)
dom(X), dom(¥Y) — dem{ilX.Y)

We have not yet obtained a proof for this problem with MGTP. The difficulty is due to the com-
binatorial explosion caused by blindlessly, yel systematically generated dom alome. To avoid this it is
necessary lo incorporate a mechanism to selectively generate such dom atoms that are relevant to prove
the theorem. An idea similar to magie se BMSUBE] might be applicable to this problem. Another way
of solving this problem is to employ a learuing mechanism, By training with a number of theorems of a
sienilar sort, a prover might learn which doin atoms are more relevant, to the elass of theorems.

More drastic approach to solving the problem is doing without dom predicate. In this case, we have
to consider models whose elements may be nonground. We also need full unification with occure check
when applying model generation rules to clauses,

4.2 Variables and Unification Revisited

If the nonground mwdel approach is taken, MGTP's approach of representing object variables in KL1
variables can no longer he effective, instead, the other approach should be taken to represent variables
with KL1 ground terms. Also, as mentioned in section 3.1, roulines for unification, substitution, and
houselolding of the envirenment have to be written on top of KL1.

When represeniing variables with KL1 ground terms, it is possible to consider two alternatives:

+ Representing a variable with a KT.1 atom, aud an enviconment with a KL1 list, or
+ Representing a variable with a KLI integer, and an environment with a KL1 vector.

Routines based on the first alternative can be specified at a high level while they are very inefficient to
execute. On the other hand, routines written aceording to the second alternative turn out to be fairly
cfficient, though their specification looks very low level. In fact, with KL1 veclors, you can program
routines as if you are operating memory cells or pointers directly, thereby gaining performance comparable
to those obtained on firmware level,

Table 2 shows performance comparison between unification rontines. It should be worthwhile to note
that the integer&vector version takes oaly three times as much CPU-time as KL1 buili-in unification,

Table 2: Unification in KL1

[Problem || builtin | atomdchst | integer&veetor |
1 — 9.36 0.51 |
2 0.15 4.89 0.46
K] .46 5.1 1.29
(msec)

1= i(A (A, A4)) = ila(i B, C), D), i(i{ D, B),i(E, B)))
LA X Y, 2N = dla(d B,C) DY D, BY,AE, BY))
& Pl:h{—‘rllf)l-ll:lsh['t'.l‘r'x?]l }-2' rﬂ:x-ﬁj = p[-'x?rdtﬂl h{ rll YjL hl: r?1}:=}l Ysj

4.3 Avoiding Redundancy

To oblain a prool faster, it is very boportant (even essential) to avoid, as much as possible, redundant
camputation that are repeated for identical arguments and results. The idea is sketched as follows. For &
kernel clause having two negative literals we need a pair of positive electrons to perform hyper-resolution.
The pair will be obtained from the current set of unit clavses (o resolvents), M. After performing one
step hyper-resolution for each pair taken out of M as electrons, we may obtain another set of unit clauses,
AM. Then, in the next step. we will have to choose electron pairs out of M + AM . The number of such
paairs ancls Lo

(M+AMP=MxM+M=xAM+AM < M+AM < AM.

Notiee, however, that M = M number of pairs are those which have been selected in the previous step.
Hyper-resolution steps for such pairs are just superfluous but these steps which are performed on pairs
contaiming ai least one electron from AM are only meaningful. Thes argument generalizes to kernel
clanses that have more than two negative literals.

There is o way to avowd redundaney 1o which a it clause 5 retained in a process and a process
netwaork iz constructed dynamically as shown in Fig. 5.

The sketchy algorithm for the method is as follows:

* A model element generated by applying the extension rule is entered into a gueue,
¢ A process, 5, 18 created for each literal, L;, in the antecedent of each clause.
¢ Fach process, O3, picking np a model element out of the gueus, tries to match with the literal, L;.

o [the inatch sueceeds,) creates Ciyy for Lhe next literal, Ly, and sends Lo it an instance of the
literal, L;, as the result of the matching. If the match fails, no process is created for L.

This method is easy to implement. One should, however, i) copy a process network, or 1i) attach a
color to an instance flowing in & stream in order to share the network, when the consequent of the clause
consists of more than one literal,

Ancther way is to retain in a stack, instead in a process, a literal instance as a result of matching
the literal against an element of a model, Fig. 6 illustrates an implementation of the method where S;
is a stack for storing model elements generated; S is a stack for storing results from matching literal L;
against a model element; e is the most recent model element pushed onto Sy; and & is a set of literal
instances generated at the stage triggered by £

The task performed at literal L; is to make combinations of literal instances, §;_; »x Sy, and 5; = e
and then to store into 5, the resulting literal instances, &;.

If the consequent consists of more than one disjunct, stack Sp is expanded to corresponding branches.
Thus 5 may form a tree,

Although this methed is rather conventional compared to the previous method, the problems described
above can be solved effectively.

4.4 Heuristics

Also important is weighting heuristics. We used two sorts of measure for weighting: total numher of
symhbols contained in a literal and an index that indicates, in a sense, the balancedness of a term tree.

Ly Lo Lq —_ C'onsequent

Figure 5: Process neiwork

112
221
2272

211 fia
12 212
/ 2 b2 121

2 2 |14 2] 122 |}
1 11 111
Su 5 Sa Sa
Ly L La o Clonseguent

Figure 6: Literal instance stacks

10

Table J: Perfarmance comparison

PTTPt [=2hour)
SATCHMO | =24hour)

[Otter} | 32sec |
ESP* . 7. dspe
Extended MGTR** 17ser

i (Sicetus Prolog V0.6 on SUN3Z/260)

1 Coon SUNI/260 (including preprocessing)

¥ ESP/SIMPOS Version §.0D5 on PSI-I1

** psendo-Multi-PSL/VE on PSI-IT (single-PE)

T'he former takes effect in improving performance in many cascs, whereas the latter has an effect heavily

dependent on the given problem,
Furthermore, in solving the Tmp problem in section 4.1, we found that the mixed use of these two

measures 18 better than single use of them. 'L'he mixed measure, M, 15 calculated as follows:
M=r={(C/C)+(1=r) = (B/B)

where O s the number of total symbols in a literal; € is the expected maximim value for 7 IF s the
difference of numbers of symbols between left and right branches of a term, i(L, B). B is the expected
maxiunum value for B and r s a factor for the mixture ranging between 0 and 1. Setting » = 0.8, we
obtained the shortest proof for the theorem. With the values r = 0. or » = 0.9 the proof becomes much

longer.

4.5 Performance Comparison for Nonground Moedel

The perfermance comparison for solving the lmp problem is shown im Table 3.
With PTTF, SATCHMO and MGTP for ground model, we have not obtained a proof after hours of
running. We first solved the problem with an ESP program which s a specialized version only to solve

the Imp problem, This program employs:
e Unification with cecurs check
* Redundancy avoiding based on a method similar to the second approach described in section 4.3
* Weighting hueristics

while they are not for general purpose.

A proof of 22 steps is obtained in 7.4 seconds in the ESI program, whereas Otter gives 20 steps of
prool in 32 seconds ineluding preprocessing time. A version of MGTF extended for nonground models
18 written using similar techniques to those used in the ESP version. The extended MGTP takes about
thres times longer than the ESP version to solve the Imp problem. This difference in speed is mainly
due to the difference of overhead in unification routines, since more than 80 percent of the running time
is consumed by nnification.

5 Program Synthesis by Parallel Prover

In the following sections, we present a new approach to realize an automated program synthesis employing
the model generation theorem prover MGTP.

5.1 Framework of Program Synthesis

5.1.1 Proof and Program

Many attempts to realize program synthesis by theorem proving have been made in recent twenty years.
For instance, Manna and Waldinger]Man80] proposed a method embedded in the Tableau Method and
extracted a program from a proof by hand. Traugott[Tra89] extended this method and applied to a variety

11

Type = Proposition & Specification

A-term = Proof & Program
Figure 7: The Curry-Howard Isomorphism

of sort algorithms. But the method is rather ad hoc and has insutficient justification of the correctness
of the extracted progran.

A more strict appreach is to extract programs from proofs in the constroelive malhematies in the
way that is based on the Curry-Howard Isomorphism|Mar82]. The basic idea. first proposed ai the end
of the 10%, is based on the important correspondence betwesn two pairs of a typed lambda term and
its type and a proposition and its proof. Such correspondeney s called proposition as type principle, or
Curryv-Howard isomorphism. Curry-Howard isomorphism is shown in Fig. 7

The major advantage of this approach s Lthe correspondence between the soundness of the extracted
program and the correctness of the proof. A program is mathematically assured if the proof s correct,

Clur program extraction method is based on [Tak87]. But our program extraction algorithm is so
powerful that such programming facilitics as modular and the recursion in various data types are intro-
duced.

5.1.2 Program synthesis by theorem prover

The set of proofs in intuitionistic logic is a subset of the set of proofs in the classical logic on which general
provers are based. So general provers can in prineiple be utthzed to find intuitionistic logic. Although it
has been concensus that it is difficult to make a high performance theorem prover, it is a [ascinating idea
that a theorein prover can be applied for program synthesis.

We recognize three ways toward program syvnthesis

(1) The main part is proved by hand, and easy parls are proved by the theorem prover.
(2) Under some useful lemmas, the provided theorem is proved by the theorem prover
() The whale proof is generated by the theorem prover from general knowledge.

W E]IPI'UH.Ch Lhe sort prmblem from the ptb.'i“.:iﬂ" {Q:I. we rlr'l.'l'.'iv:‘lz- esxeniial lemmas for each dls(}l'ilt-hﬂ'ﬁ Lo
the theorem prover.

5.2 'The problems and the solutions
5.2.1 Intuitionistic logic and prover

Some proofs in classical logic have no corresponding programs. Usual first-order provers generate proofs
hased on classical logic. This suggests to us that current prover technologies are useless for program
synthesis. The difference between the classical logic and the intniomistic logic s that excluded middle(V
P P ¥ = P} cunnol be provable in intuitionistic logie. Execluded middle is equivalent to reduction to
absurdity. Reduction to absurdity has nothing to do with programs. Reduction to absurdity is a proof
method that to assume the negation of a conclusion and to deduce the contradiction. Yom can get no
information from contradiction. If the conelusion is the spec of the program, reduction to absurdity is
prohibited.

The efficient provers today handle formulas in the clausal form, There is only one deduction rule
for the clansal form @ Resolution Principle. Transformation of formulas into clausal form is beyond
intuitionistic logic. For example, you cannot deduce = A v B from ADB. However the Resolution
Frinciple is within intvitionistic logie. Hence, the problems in using clausal form based provers are
combined to the transformation Lo the clausal form. If the specification can be initially expressed in a
clausal form, all the prover based on the clausal form can be used. After the transformation of premises
to the clausal form, you can prove some propositions which cannot be deduced in intuitionistic logic. In
order to prove such propositions in intuitionistic logic, some formulas are in the form of excluded middle,
such as } A V —A where is a sequence of universal quantification. In the case of quick sort problem,
no extra formulae are needed.

12

5.2.2 The Reeursion and the Induction

Many complicated controls of iteration can be expressed in a simple recursion. The recursion corresponds
i the induction in proofs. All induction schemas are based on the well-founded induction on the ordinal
number. Each schemas is correspoud Lo each data domain such as list or natural number.

Induction can he expressed as a second-order proposition. For example, the induction schema for list
is as follows.

¥ P:list — prop
(v L:list (v L": list L = L D P(L")) 2 P(L}}
o W Lelist P{L)

Second-order propositions cannot be utilized by the first-order provers because of their second-order
variables with which provers need the second order unification. Second order unification is not practical
because of its inefficiency,

If the second-order variables are assigned by a proposition, the induction schema comes to he a
first-order Prgpgsjl:j_un_ For nxarnp]ul the above schema for sort algnrithm becomes as follows,

[Z:list (¥ Y:list ¥ <« Z 2 3 Ul:list perm (171, ¥) 2 ord{Ul})
o 3 U2:list perm(U2, Z) A ord(U2)]
o % Zelist 2 S:list perm(S, Z) A ord(S)

Where Y < # means a partial order relation that Y is a sublist of Z { there is a one to one mapping
from Y to £). permia, b) represents that a 15 a permutation of b, and ord(s) means that s is crdered.
This 5 a first-order proposition, which first-order provers can handle.

Induction rule must be expressed in the clausal form in MGTP. We uscd the following formulae to
prove a quick sort problem.

vord(U2) | - perm{UZ2, £} | Drd{sort{){}}
- ord(U2) | = perm (U2, 5} | perm{sort(X), X)
(if the proposition is satisfied for the introduced constant, it is satisfied for any List)

- Y = 5| ord(sort{Y))
=Y <« s | perm{sort{Y)., Y)
{all sublists of the list introduced by this rule can be sorted)

Although these rules are in a form very different from that of the original formula, it is easy to see
the logical equivalence.

5.2.3 Eqguality

In order to prove Lheorems which relate to programs the equality axiom (ex. A = B — P(A) D P(B))
is quite important, because the same data can be created in various manipulations. For example,
coms(car{X), cdr(X)) = X if X is not a null list. “The equality adom is a higher order proposition
and is beyond the area of first-order provers. But it can also be resolved in the same way as induction.
In fact it is not practical because it s not so general that you need many rules for each problem.

As there is no program information in the proof of equality nor in the proof with equality axiom, this
part can he checked by any problem solver. Some efficient algorithma of equality solving, which seem
promising to utilize to our prover are developed. Term Rewriting System(TRS) is one of them and we
are planning to 1se it 0 our prover.

5.3 Sort problem

We chose the “sort problem” as the first example of antomated program synthesis using the theorem
prover. The reason for this choice s that the “sort preblem” is difficult enough for the problem of
program synthesis, but not so much difficult it prevents research. Moreover, various algorithms have
already been invented, so it would be interesting to try to investigate how many algorithm are found in
what way by the theorem prover. Also, from the viewpoint of concurrent programming that is one of
main target of ICOT, the sorting problem will give us various interesting problems.

13

5.3.1 Propositional Expression of the Sorting Problem

It is necessary to express the problem as a mathematical formula to give it to the theorem prover. The
expression which we need s as follows,

¥ Z:list 3 S:list perm(Z. 8) A ord(S)
Where Z:list 15 a syntax sugar of

1?. zilist saw =t 'ﬂ" Z '.: Ij.st:‘ -
3 &list ... —~ 3L E M.

Precdicate “permi{ X, Y17 means thal the list X s permuatation of the list Y.
Predicate “ord| X)" means that X is increasingly ordered.
Note: the problem representation eannot be unigquely determined and neither can the proof.
The followings are the major functions, definitions, and theorems provided to get the proof of the
quick sort,

» functions
CAar, l.'.rl:I'l'.,I COMLS, uppund, .ﬁ.‘.i. Ere

= definitions

ord:list — prop.

perm:list — list — prop,

subbag:list — prop less-set:list — pat — prop,

gre-set:list — nat — prop.

X e list 3 X = nil A X = cons{car{ X}, edr{X)},

X £ list O perm(X, X),

ord{nil),

VZZChst DVEE € nat 5 - Z = nil O less-set(less{Z), E).,
¥ZZ clist 3¥EE € uat o - Z = nil D gre-set(gre(Z), E).

e |emmas

fdivide lemuma/
FLLEILst oV EE & element
3 Great, Less Great, Less © list A

peru{append(less, groat), L) A
less-get{Less, E) A
gre-set{Gre, E) A
sublag | Less, L) A
subbag({Gre, L),

Jordered append‘f
¥ E E £ clement O % Great, Less Great, Less € list O
less-set(Less, E} A
gre-set{Gre, E) A
ol (Laess) A
ord({Gre) O ord(append(Less, cons(E, Gre)}).

5.3.2 Finite Domain Expression of Problems

We have introduced dom-predicate in order to get the proof corresponding to quick sort to use the finite
domain prover. Dom-predicate is the predicate which generates ground terms of the Herbrand eniverse,
and has a great effect on the performance of the prover. That is, withont. generating the term as the
counter example, refutation would never succeed.

5.2.3 FEfficient Proof Search

As we deseribed in the previous section, dom-predicate has a great effect on the performance of solving
non-range-restricted problems by MGTP. The tactics which we adopted for general nse for antomated
programming are as follows. We add the term included in the literal which is in the model, and its

14

Program Proof

Iteration | Induction

<

|Bra3:}_ching < | Case Splitting
-
=

'V 3-Introduction |
Application | ‘?’-Eliminatinnj

Figure & The Corrcspndence between Proofs and Programs

subterm to dom. This method of generating dom corresponds to searching an example in the proof
constructively. Becanse the bottom-up method is one of the proof tactics, the model generated from
MGTP can be regarded as the lemmas. The term included in this lerna is the value which we can
construet, considering each of the propositions as a program. There will be no term in the program
except such terms. And the proof from which a program is extracted must be constructed by such terms.

5.4

Program Extraction

In this section, we show the program cxiraction method by the quick sort example.

5.4.1

Program Extraction Rules

Fig. 8 will he of goad help for intuitionistie understanding of the relation between a program and a proof.
We briefly describe a corresponding program extraction rule to cach inference rule in logic.

%, F~introduction

In the proof using ¥, F-introduction rule, the proposition ¥ x:t.some y:t.p(x, ¥) should be proved
by practically constructing v which satisfies p(x, y).In this case, the program corresponding to such
a proof is the function whose argument is x, and it returns ¥ which satisfy p(x, ¥). So, if we call
the funetion f then p(x, f{x)) is true for all x.

Y-elimination

In the proof using ¥-elimination rule, the proposition q(a) should be proved by showing that g(x)
is true for all x, that is, all x:t q{x).In this case, the program extracted from the proof of g(a) is the
application of a to the program corresponding to the proof of all x:t.q(x). The program extracted
from the proof of¥x:t.q(x) s a lunction whose argument is x.

v-elimination

Or-elimination rule can be considered as the divide-and-conguer method. In the proof using or-
elimination rules, a given proposition should be proved by dividing into some cases and showing
that the propesition could be derived in each case, and that the division could be valid.

In this case, the program extracted from the proof using or-elimination forms the conditional ex-
pressions, that is, if - then - else - formation, and each condition corresponds to each of the divided

cases,

15e IF'II'.I.'I'.I:IH.
Obvicusly, using lemma in the proof is to refer to the fact that has been proved in the context

previously by using the lemma name. By the analogy between proof and program, it is shown that
the program extracted from the proof of the lemma is referred in the program extracted from the
proof. So, using lemma corresponds to using a subroutine.

1nduction

The program extracted from the proof using the induction forms the recursive function, that is, the
function in which the function itself is used in the description. In such a program, the sub-program
extracted from the sub-proof which uses the inductive assumption is in the form of the application
of the program itsell. For the inference rules of inductions, there are program extracting rules which
have the fixed point operator u. The recursive function can he defined by operator u.

15

3!![b=nil]".f (b# nil)

" Vielim
1 ¥ wil.{subbuag({w, b)23 z:l.perm(w, £} A ord(z)
23 z:L.perm(b, zjA ord{z)

¥V = Infroduction
¥ L, ¥ w:iL.(subbag(w, b)>3 z:L.perm{w, z) A ord{z)
7 d z:L.permib, z) A ord{z)

o ligt-Induction

¥ b:L.3 z:L.permi{b, z} A ord{z)

Figure O Proof Strueture of Quick Sort(1)

Now we will show how the program is extracted from the proof of the quick gort problem. We can make
program extracting possible by applying the program extracting rules corresponding to each inference
rules. The following is the ohservation of extracting programs from each sub-proof structure.

On the sorting problem, the theorem can be written as the following.

¥ Melist. S Yelist. perm(X, Y) A ord(Y)

However there are many proofs of sorting problems, so we will consider one exsuple, shown in Fig. 9
In this proof, we first wse indwetion for string{what we call string-induction), and use Y-
b riduetion Then we get the following subgpal,

(¥ Wilist.(subbag(W, B)D 3 Z:list.perm(W, Z) A ord(Z))
2 3 Felist.perm{B, Z) » ord(Z)

Lo order to prove this subgnal, we use the or-elimination rule{divide-and-conquer).In this case, we
divide into two cases, b=nil, and b#nil.

First, Fig. 10 shows that the extracted programs corresponding to three sub-proofs, b=nil, b#nil,
and the proof of validity of the division. Iu the indexed block 1, 2, lambda x is the abstraction of the
asswmption b=nil and b#nil, and lamhda y is the abstraction of the assumption of (string-)induction.

Second. Fig. 11 shows that the extracted programs corresponding to the aub-proof include an or-
elimination rule. As we described above, the extracted program from the subproof using the or-elimination
rule forms the conditional expression. Here, lambda y is the abstraction of the inductive assumption. So,
Lthis program does not form a recursive function,

Finally, Fig. 12 shows that the extracted program correspond to the whale proof includes a string-
induction rule. In this program, there is no A y that is the abstraction of the inductive assumption. This
program forms the recursive function ¢ o which function z is used. The function z is described as recursion
using fixed point eperator ju

The extracted programs from the proof of the sorting problems i the following.

powe A xif x=nil
then nil
else append(z(first(qdiv(head(x), tail{x)}))),
cons(head(x),

16

consl head(x),
visecond{qgdiv(head(x), tail(x)))}

3 (ut‘b —nil then A x Ay x(¢) else A x Ay y(é) j

Woelim

¥ wil.(subbag(w, b)D 3 z:L.perm({w, z} A ord(z))
o Jzlpermib, 2) A ord{z)

Axdy.
uppendl:y{ﬁrs-t. (qdiv(head{x), tail(x)))}},

/

Y-introduction

¥ b:l, ¥ wil.(subbag{w, b) O 3 z:l.perm{w, z)A ord{z)
o 3 z:lpermib, 2) A ord(z))

list-induction

¥ b:l.3 z:l.perm(b, 2) A ordiz)

Figure 10: Prool Structure of Quick Sori(2)

~

(7 : N

A x.if x=mnil then A y.nil
else A yappend(y(first{qdiv(head{x), tail{x))}}},
cons(head(x), y(second|gdiv{head(x), tail(x)))})}

Y-introduction

¥ hl, ¥ wil.(subbag{w, b} 3 z:l.perm{w, z) A ord(z)
2 3 :l.permib, 2}A ord(z)

- list-induction

¥ b:1.3 z:l.perm(b, 2)A ord(z)

- /

Figure 11: Proof Structure of Quick Sort(3)

17

~

i 7 A x if x=nil then A y .nil
else A ¥ . append(y(first{ydiv{head(x), tail(x)))}),
cons{head(x), y{second|qdiv{head(x), tail{x)))))

Fig 6.

Figure 12: Proof Structure of Quick Sort({4)

z{second(qdiv(head(x), tail{x)}))).

In the description, qdiv is the function extracted from lemma 'qdiv’, so gdiv is the subroutine in this
function. The arguments of qdiv are element a and string x, and it returns tuple of string, {x1, x2), in
other words qdiv(a, x) = (x1, x2). x1 consists of elements in x which are all smaller than a. And x2?
consists of elements in x which are all larger than a. first and second are functions which return the first
clement and the second element of the given tuple.

The extracted program in this example is a well-known sorting program, what we call, quick =sort.

6 Conclusion

We have presented a model-generation based theorem prover, MGTP, which is implemented in KLI1.
The implementation techniques developed in KLI are also useful for constructing other systems which
treat ground models, such as truth maintenance systems and intelligent database systems. We have also
presented a program synthesis system which uses the MGTP prover.

Model-generation provers seem to be much more efficient than meodel-elimination provers such as
PTTP for a large class of problems, including Shubert’s Steamroller problem, that essentially deal with
finite domains. Model generation also makes it easy for us to capture the proof process and to desi gn an
efficient prover based on it. In particular, we largely owe our success in the implementation of MGTP in
KL1 to the fact that it needs only to match (one-way unification). In MGTP, variables appearing in the
mput formulas are represented by KLI variables, and fresh variables for a different instance of the formula
are created automatically by simply calling corresponding KL1 clauses. The transformation of the input
fermula into corresponding KL1 clauses is performed quite mechanically with little computational cost.

SATCHMO-like provers, however, are less effective in proving theorems dealing with infinite domains,
which are typical mathematical problems. This is hecause they attempt, in a coarse manner, to generale
the whole Herbrand universe for the given formula. In such cases, appropriate sirategies to restrict search
space need to be incorporated into the prover. Otherwise, the use of full unification with occurs check
might he indispensable,

We have also had some experiences with solving more difficult problems to which MGTP is not
suited, by using P'rolog, ESP and KL1 programs. All these programs are designed specifically for each
problem while still being based on model generation. Several versions of MGTP for nonground models
are currently being constructed and tested. They adopt ground-term representation for object level
variables and employ full unification procedure with oceurs check. Performance evaluation of the provers
on MULTI-PSI is now being carried out intensively.

It is often pointed out by some logic programming researchers that a full first-order theorem prover
has few applications except for mathematics. However, we think that automated programming is one of
the most promising applications for the first-order prover, now that automated program synthesis, which
has been a difficult problem for a long time, has the chance to be realized through a thoerem prover
technology.

18

Cwrry-Howard Isomorphism is an elegant method for relating proofs with prograims. This principle
together with the prover technology makes automated programiuing possible. Through the experiments,
on sort problems, of theorem proving and program extraction, we have shown that this approach is
practical. The following are problems that we faced and solved,

s Not all proofe generated by a theorem prover have corresponding programs, but all programs have
corresponding proofs and the theorem prover can find all of them. Proper control of provers can
avoid useless proofs.

« Induction, which is essential for program synthesis, can be represented as first order axioms.

s The equality axiom is also essential but the proof of equality has nothing to do with programs, so
we can use any equality solver such as a term rewriting system for improving the efficiency of the
prover.

Acknowledgement

We would like to express our gratitude to Dr. Kazuhiro Fuchi for giving us the opportunity of doing this
research and for showing us his original programs, which helped us to develop MGTP. We also wish to
thank Dr. Koichi Furukawa for introducing us to ather related works and for his advice.

References
[Bib8G] Bibel, W., Automated Theorem Proving, Vieweg, 1886,

[BMSU#6E] Bancilhon, F. Maier, D Sagiv, ¥. and Ullman, J.D., Magic Sets and other strange ways
to implement Logic Programs, m Proc. of the ACM SIGACT SIGMOD Symp. on Princ. of
Database Systems, 1986,

[FH30] Fujita, H. and Hasegawa, R., Implementing A Parallel Theorem Prover in KL1, in Proc. of KE1
Programming Workshop ‘90, pp.140-149, 1990 (in Japanese),

[Fuc80] Fuchi, K., impression on KL] programming - from my experience with writing parallel provers
Lin Proc. of KL1 Programming Workshop '90, pp.131-139, 1990 (in Japanese).

[Lov7H] Lovelend, D.W., Automated Theorem Proving: A Logical Basis, North-Holland, 1975,

[Man#0] Manna, Z. and Waldinger R., A deductive apploach te program synthesis, in ACM Trans.
Programming Languages and Systems2(1), pp.91-121

[Mars2] Martin-Lof P., Constructive mathematics and computer programming in Proe. International
Congress for Logic, Methodology and Fhalosophy of Science, pp. 153-175, 1983,

[MB88] Manthey R. and Bry, F., SATCHMO: a theorem prover implemented in Prolog, in Proc. of
CADE 88, Argonne, sllinors, 1988

[Oved0] Overbeek, R., private communication, 1990,

[$ch89] Schumann, J., SETHEO: User's Manual, Technical report, ATP-Report, Technische Universitat
Munchen, 1989,

[StiB8] Stickel, M.E., A Prolog Technology Thearem Prover: Implementation by an Extended Prolog
Compiler, in Jowrnal of Automated Reasonng 4 pp.353-380, 1988.

[Tak87] Takayama, Y., Writing Programs as QJ Proof and Compiling into Prolog Programs, in Proc. af
IEEE The Sympasium on Logic Programming 87, pp. 275 287, 1087,

[TraB9] Traugott, J., Deductive System of Sorting Programs, in
[WosRE] Wos, L., Autemaled Reasoning - 33 Basic Research Problems —, Prentice-Hall, 1988,

19

