ICOT Technical Report: TR-587

TR-587

A Study of Mapping of Locally Message
Exchanging Algorithms on a Loosely-coupled

Multiprocessor

bry
K. Wada & N. Ichivoshi

August, 1990

£ 1990, 1COT

Mita Kokusai Bldg, 21F (3334506-319] ~5

I CDT 4-28 Mita |-Chome Telex ICOT 132964

Minato-ku Tokvo FOR Japan

Institute for New Generation Computer Technology

A Study of Mapping of Locally Message
Exchanging Algorithms
on a Loosely-coupled Multiprocessor

Kumiko Wada
Nobuyuki Ichiyoshi

Institute for New Generation Computer Technology (TCOT)
1-4-28 Mita, Minato-ku, Tokve 108, Japan
phone: $81-3-456-3103

email: wada@icot.orjp, whivashificoet.or jp

keywords: parallel computation, logsely-coupled multiprecessors, load distribution, commu-

nication overbead, distributed shortest path algorithm.

A bstract

Growd load balanee = the key to gel the most feom the processing power of parallel com-
puters. Dynamic load balancing technigues have been developed and proved successful for
tightly-coupled multiprocessors, and for loosely-coupled multiprocessors when the problem is
composed of independent tasks with large granularity. But the problem of mapping inter-
commumicnting processes on loosely-conpled multiprocessers has not been well explored. In
this paper, we consider the pichblem when there is locality in message communicalion (locally
message exchanging algorithmas). As an example, we developed a distriboted algorithm for
a single-source shortest path problem and tested three different static mappings of a large

prd grapl unto a meslh-cornecled mulliprocessor, Multi-PE]. Twoe of them resulted i rela-
tively good performance, and were shown to be a good compromize hetween communication

lacalization and load balance.

1 Introduction

(rood load balance is the key to get the most from the processing power of parallel computers.
For tightly-coupled multiprocessors, fairly good load balanee can be achieved by employing the
task stealing technigue, 1o which an idle processor steals a task from a common process pool or
from the task queues of busy processors.
For loosely-coupled multiprocessors, task stealing is not wsnally realistic, hecarse remote task
searching wonld involve too great a communication everhead. When the whele problem ean be
divided into a large number of tasks whose average size is much larger than task migration cost,

d;ruu.lnil: leviacd bulanc;ng schernes Lhat dsteibute tasks to idie Provcessors cidl achieve much the same

effeet as task stealing, provided inter-task communication is not frequent [%, 7]. When tasks commu-
nicate with one ancother frequentiy, random task distribution will increase communication overhead,
and could lead to performance degradation. But the problem of mapping inter-communicating pro-
cezzes on loosely-coupled muitiprocesanrs has not been well explored.

This paper studies a simple case of the above problem, namely mapping of a locally message
exchanging algerithm onto loosely-coupled multiprocessors. By a locally message exchanging al-
gorithm, we mean an algorithm that solves a problem using a large number of processes, each
of which communicates with its close neighbors, Distributed graph algorithms (e.g., distributed
algorithims for minimum cost spanning trees, maximum connected componsents, ete.) generally fall
into this category. As an example, we chose to solve a single-sonrce shortest path problem for a
large grid graph on a mesh-connected multiprocessor, the Multi-PSI1/V2 [10],

Three mapping schemes, two-dimensional simple, two-dimensional mulliple, and one-dimenstonal
stmple mappings were examined. The latter two resalted in better overall performance than the
first, and were shown to be a pood compromise between communication localization and load

balance.

2 Locally Message Exchanging Algorithms

We define a locally message exchanging algorithm as one which solves a problem using a large
number of processes, each of which communicates with its clase neighbors, Distributed graph
algorithms (e.g., distributed algorithms for minimum cost spanning trees, maximuem connected
components, ete) in which processes corresponding to the graph vertices communicate with their
neighbors along the edges generally fall into this category.!

We considered mapping a locally message exchanging algorithm for a large-scale graph (with
= 1,000 nodes) onto a medium-to-large scale loosely-coupled multiprocessor. We assumed that the
ratio of inter-processor data access cost to intra-processor data access cost is fairly big, say 100. In
this situstion, suppression of inter-processor communication is of great concern for achieving net
performance.

in a locally message exchanging algorithm, inter-process communicalion trasslates Lo local
data access when the two communicaling processes are mapped onto the same processor, whereas
it. translates to inter-processor communication when the two processes are mapped cnto different
processors, Moreover, if they are mapped onto two processors Lhat are far apart, the messages
between them go through a number of routing switches, making the network busier. This means

that the mapping should preserve the locality of the processes as much as possible, in order to

"There ase many graph algorithms that are not of this category. The Warshall Floyd algorlthm [14, 6 to

detarmine all-to-all shortest path is an example.

suppress communication. This s called communicafion focalization,

At the other extreme, if all vertices of the graph are mapped onto one processor (if possible),
there will be no inter-processor communication, but only one processor will be utilized and no
speedup gained. Fven when the communicating processes are evenly distributed over the pro-
cessors, uneven distribution of active processes during computation could lead to poor processor
utihization.

Thus, we have to find a reasonable compromise between communication localization and good
load balance in mapping a locally message exchanging algorithm on a loosely-conpled multiproces-
sor.

Hereafter, we will consider an example of mapping a grid graph onto a mesh-connected multi-
processor. We will actually test three different mappings, using a distributed single-source shortest
path algorithm for a 200 = 200 grid graph on the mesh-connected multiprocessor, Multi-PSI. We
will discuss the Multl-PSI system first.

3 Machine and Language

4.1 The Multi-PSI

The Multi-PSI/V2 [12, 10] is a prototype parallel inference machine developed at TCOT ta provide
the software development envirenment reqnired for pacallel software research. It is a loosely-
coupled multiprocessor whose element processors are connected in 2 mesh network. It can connect
up lo 64 element processors using an & x & mesh network. Fig. 1 shows the logical processor
configuration of the Multi-P'S1. {Sixteen processors connecied by 2 4 x 4 mesh network.) The

performance per processor is 130K append LIPS?,

12 (7 13 A 14 H 15
_I_I:": I T
581 %2 wWH 1N
I I 1 B —
i s enT

Figure 1: Logical processor configuration of the Multi-PSI with 16 processors

*LIPS stands for Logical Inferences Per Second. The performance of 130K append LIPS means the processor
can append 130K cons cells per second.

3.2 KlLi1

On top of the hardware is an implementation of the concurrent logic language KL1 [3]. A KL

program congists of a set of guarded Horn clauses [13] of the following form,
H =Gy o0, G | By, ooy By {myn = 1)

where H, {75, and B, are atomic formulas. H, &), and B, are called the head, the guard goals, and
the bedy goals, respectively. The vertical bar {[) i called the commatment eperalor. The logical
rt-*.arling of the above clause 15, “If Gh oo (7 and By, . By, then IT7 ﬂpe—trai.[nnaﬂy, when
an active process malches H, and the tests Gy, ..., Gm succeed, the process is reduced into child
processes By .., By, The child processes can run concurrenlly, Synchronization s imposced sololy
by data-How relations realized by guard part suspension mechamsm, KL1 15 suited for describing
small-grain processes communicating with each other,

KL has a facility lor specifying execotion priority of processes and for specifying the processor
in which the processes are to be executed. The priorities and processors can he specified by
annotating the program with pragmas. Load distribution can be specified by attaching the load

distribution pragma to the body goal {process creation) as [ollows:
Goalfiprocessor| Proc).

The priority pragmas are used fo specify the execution prionity of the processes. A priovity

pragma is atlached to Lthe body goal as below:
Goal@prierity({ Pria).

Dedy goals without pragimas inherit the priority and processor of the parent goal.

The system provides a fine-grain priority scheduling: There are £098 priority levels in the
current system. The priority scheduling is observed independently within each processor to aveid
the large overhead incurred by centralized priority management,

Nole thal pragmas do not change the semantics of Lhe program. Thus, semantics and mapping

are clearly separated in KLI.

4 Mapping of Grid Graph on a Mesh-Connected Multi-
processor

In this section, we present three ways of mapping a large-scale grid graph on a mesh-connected
multiprocessor. All three are static mappings — that is, & processor is assigned a fixed set of vertex
processes during the whole compulation. Dynamic allocation (or migration) of vertex processes

seemed both difficult and unpromising, but its possibilities cannct be ruled out,

4.1 Two-Dimensional Simple Mapping

First, we give a very simple mapping which we call two-dimensional simple mapping. In this
mapping, we employ p = g° processors, and divide the grid into g = ¢ blocks and map each hlock
onto the corresponding processcr. For example, when the logical processor configuration of the
Multi-PSI with 16 element processors is as shown in Fig. 1, the grid is divided into 4 »x 4 blocks
(Fig. 2). Ench block has the saroe number of vertices, Processor By s responsible for the shaded
black.

This mapping preserves the locality of the grid very well, but unless the computation 12 carried

out evenly on the whole grid during the whole execution, the load balance may oot be good,

1z 13 14 15

The shaded black is mapped onto processec 0,

Figure 2: Decomposition of a graph for two-dimensional simple mapping

4.2 Two-Dimensional Multiple Mapping

Siner two-dimensional simple mapping can lewd Lo poor load balance [or an uneven disteibulion
of active computation. putting each processor in charge of vertices from many different areas can
be a good strategy. Two-dimensional multiple mapping is a simple way of deing this. Under this
mapping, the grid is divided into super-bloeks, each of which s again divided into p blocks just
as in two-dimensional simple mapping. Each processor is responsible for k blocks, each one from
each superblock,

Fig. 3 shows the case of k=4 % 4, p =4 = 4. The graph is decomposed into 16 superblocks,
and each superblock is decompesed again into 16 blocks in the same way as the two-ditnensional
simple mapping. The blocks for which processor Py is responsible are shaded in the figure.

Sinee the total length of the block boundaries becomes larger than the two-dimensional simple
mapping, and since vertex-to-vertex communication translates to inter-peocessor communication
when the edge between them crosses a block boundary, there tends to be more communication
overhead in two-dimensional multiple mapping. Thus, this mapping is a way to achieve higher

processor utilization, but at the cost of higher communication overhead.

1

2
281011
4

B

3 The shaded blocks are mapped onto processor 0,

Figure 3. Decomposition of a graph for two-dimensional multiple mapping

4.3 One-Dimensional Simple Mapping

One-dimensional simple mapping is intended to get the same effect of two-dimensional multiple
mapping by a simpler grid decomposition. We divide the grid simply as p narrow rectangular
strips and map them onto the processors (see Fig. 4). It can be thought of as one particular way of
two-level {block fsuperblock) decompesition of the grid: The grid is divided into p narrow vertical
superblocks, each of which is divided into p blocks, and a processor is assigned one block from each
superblock (The blocks mapped onto one processor are vertically aligned).

Compared to the two-dimensional mapping with k = p, this mapping has less randomness, but
its total block boundary length is half of that in the former. If L is the length of the side of Lthe
grid, the block boundary length of the onc-dimensional simple mapping is {p— 1) - L, while that
of the two-dimensional multiple mapping is 2(p— 1) - L. Fig. 4 shows an example with p = 16

rrrrr lﬁ

The shaded block is mapped onto processor 0.

Figure 4: Decompasition of a graph for one-dimensional simple mapping

5 Shortest Path Problem

5.1 Problem Definition

The shortest path problem i deseribed in terms of graph theory as follows, A directed graph
& = {V,E) 15 defined by a set of n vertices ¥V and a set of ¢ edges £, An edge is an ordered
pair of vertices. The function ¢ is the cost Tunction, such that it maps [rom pairs of vertices to
nonnegative reals. For an edge from vertex 1 to vy, clwy, vy} is called the edge cost or the edge
length. Technically, if there is no edge from +; to v;, then we assume ¢(v;, ;) = 400, some value
much larger than any actual cost. Moreover, we set e, v;) = 0. For [+ 1 vertices vy, vy, ..., wp, if
an edge ¢; from v to vipy existsfor i = 0,1,..., /=1, then a sequence of edges P = (eq,eq,. .. ,e12)
is called a path from vg to v;. The cost of a path is just the sum of the costs of the edges on the
path. P is a shortest path from v; to v; if its cost is minimum over the cost of all paths from v
to v;. The single-source shortest path problem is the problem of finding the shortest paths from a

given vertex wp, called the source, 1o every other vertex in V.

5.2 A Distributed Shortest Path Algorithm

We present a distributed algorithm for solving the single-source shortest path problem. Assumse
there are p processors, /. ..., Fy_1, which can communicate with each other over some communi-
cation medium, We decompose the set of vertices 1 into the direct sum of its subsets, i.e., subsets
Vouoo oo Vpoq, much that V= Wpuliu.. WV, VNV =010 £ 7). and map each V; onto processar
E.

Each processor maintains the shortest known cost and path [rom the source vertex to each of
the vertices mapped onto it. The cost and path associated with the vertex are updated by the
cost-path mformation,

Cost-path information is of the form cp(cost, v, v;). Tt means that a path from the source to
the vertex v exists and ils cost is cost, and the predecessor vertex of vy is »; on the path. During
the execution of the algorithm, each vertex v; keepe the minimum known cost to that point and
its predecessor vertex on the path in two variables cost;, path;. Given a cost-path information
cpleost, vy, v}, costy, path; is updated to cost, v; respectively when cost < costj. Then the
processor creates new cost-path information cp{cost + ¢(v;, v), vg, vy) for each neighboring vertex
vg of v At each processor, the cosi-path information is kept in a priority quene and is dequened
in order by lower cost. When processor Fy ereates the cost-path information for each neighboring
vertex w of v, if vertex u belongs to the subset of vertices ¥}, the information is enqueved in
processor I}'s own priority quene. Otherwise, processor P sends the information by inter-processor

message to processor Py, which is respousible for uw € V;. When processor F; receives the cost-path

Initialization of proceszor Fh:

hegin
for every vertex v which belongs to processor) do coat; = oo, path; = unknown :
initialize the local priority queue ;
cosly =0
for every neighboring vertex v, of vy do

gend cple{ve, v.), vy, vo) to processor Fy that v, belongs to
end

Initialization of proceasor Faila £ 0):
begin
for every vertex v, that belongs to processer P, do
cost, 1= o0
initialize the local priority queue ;
end

Search for shorfest patha afl proceszor P

If the priority queue is not emply,
bezin
dequene cplcost, vy, vi) from the priority queue ;
if cost, = cost then

begin
cosl; 1= coat
peth; = w; ;

for cvery neighboring vertex vy of v, do
send ep{eost 4 efvy, vy), vy, v;) to processor Py which ve belongs to
end
end

On receiving the message cplcost, v, 1),
begin
enguene cp{easd, vy, i) 1o the prionby quene
end

Figure §: The distributed algerithm

information, it engueues it in ils own priorily queuc according to the cost.

Initial cost-path information for every vertex is cost = 400, path = unknown, and all priority
quenes are emnpty. The processor to which the source vertex vy is mapped creates the cost-path
information ep{e{va,v;), v5,v0) for each neighboring vertex v; of the source vy and enqueues it in
each priority queue of the processor ta which u; belongs. The algorithm terminates when all of p
priority queues are empty. {Lhis can be detected by using any distributed termination detection
technigque.} At this time, the cost of the shortest path and the predecessor vertex on the path are
kept in cost; and path; for each vertex v;. The distributed algorithm is given tn Fig. 5.

‘I'he distributed algorithm reduces to Dijkstra’s sequential algorithm when all vertices are
mapped anta one processor (except difference in the processing of the cost-path information which
is ignored in the later computation). At the other extreme, when the n vertices are mapped onto

the same number of processars (i.e., p = n), the algorithm closcly resembles Chandy and Misra's

distributed algorithm with overwritable message bullers [2], Overwriting of & previous message in
their algorithm corresponds to engueuing of & cost-path information that is better than previous
onea. This amounts to overtaking of intervertex messages, and reduces the computational com-
plexity that would otherwise be exponential. Chandy and Misra’s algorithm is more complex in

that it can handle a graph with negative cycles.

5.3 Implementation in KL1

In our shortest path program, message exchanging vertex processes are represented by KL1 pro-
cesses. The priority quece management was simply and efliciently realized by the priority pragma
facility in the language in the following way. When a vertex process sends cost-path infermalion
to a neighbor vertex process, il spawns a lemperary process to deliver it. A temporary process
torresponding to a message with a lower cost Is given a higher priority than one corresponding to a
message with a higher cost, Thus, messages with lower costs are delivered earlivr than those with
higher costs, realizing the effect of a prionty queue,

‘The mapping of vertices on the processors were specified by the load distribution pragmas. We
were able to test different mapping strategies fairly easily, just by changing how the arguments to

the pragmas are calculaled, without affecting the logical specification of the program.

6 Measurements and Analysis

We Lested the above-mentioned strategies of mapping grid graphs on the mesh-connected multi-

processor, Multi-PSI. The following presents the performance results and provides some analysis,

6.1 Graph Used in the Experiments

We used the following grid graph for our experiments,

Graph shape: The graph is a directed grid graph with 40,000 (200 = 200) vertices. The edges
exist in both directions for all pairs of neighboring vertices, We placed the source vertex at

one corner of the grid.

Coasts for the graph edges: The costs for the edges are given by & psende-random number

generator that generates nonnegative integers from 1 to 99,

6.2 Measurement Results and Analysis of Performance

We ran the distributed algorithm to solve the shortest path problem for the grid graph on the
Multi-PS1, using the three mappings discussed, and with varying oumber of processors,

Figure 6: Wavefront

The execution times are shown in Fig, 9 and the speedups in Fig. 10, The vertical axis in
Fig. 9 represents the execution time in seconds, and the horizontal axis represents the number
of processors used. In Fig. 10, the vertieal axis represents the speedup, and the horizontal axis

represents the number of processors used.

6.2.1 Two-Dinensional Simple Mapping

The performance of the bwo-dimensional simple mapping was the worst among the three. A four-
fold increase in the number of PrOCRSROTR translates to a HI‘IEE"I‘]IIF of a little less than two-fold.
Let us consider the reason why we could not obtain good performance with this mapping.
During the execution, the cost-path information is initially created at the processor in which the
source vertex resides, after that, the information is propagated to other processors gradually like

a wave. A processor is idle before the wave comes and becomes idle again after the wave has gone.

Figure 7: The cstimation for the two-dimensional simple mapping

The speedup for this mapping can he estimated as follows, first ignoring interprocessor com-

munication overhead and speculative computation® that may arise, We assume that the edge cost

A Computation that may turn out unnecessary afecrwards. Heoristic search of subtrees to find & sclution is &

Lo

distribution is more or less uniform, so that shortest paths do not deviate very much from Man-
hattan paths. In such a case, cost-path information is expected to spread from the source vertex
like a wavefront. At any point in computation, the wavefront consists of the set of vertices that
are of equal distance from the source vertex, and those vertices are currently active in the graph.
The shortest paths have already been determined for the vertices that the wave has passed, and
cost-path information has not vet activated these vertices that are more distant from the source
vertex than the vertices on the wavefront are. When the source 1= placed at one corner of the grid,
the wavefront is expected to advance as in Fig. 6.

Under these assumptions, the execation time and speedup for solving the problem wsing p =
q° processors can be estimated as follows. As we divide the problem into the same number of
subproblems as the number of processors, the number of subproblems becomes also g% in all. Let
T he the time required for one processor to create and conswime the cost-path information for all
the vertices in one shaded triangle in Fig. 7. Then, as the time required for one processor to salve
the entire problem is proportional to the total number of the vertices in the graph, 1t takes 27'p
time when only one processor is used. The time required to solve the problem with p processors is
2Tq. Therefore, the speedup iz

e gt
—— = =g =./p
Ty g v

This means processor utilization rate is 1/,/5, which is poor and becomes poorer as the number
of processors increases, In the real performance figures, the speedup increases a little less than
two fold as the pumber of processor ingreases four-fold.

We took measurernents of the processor utilization rate and commnunieation overhend for esch
mapping strategy when the number of the processors is 16 (Fig. 11). The height of each vertical
bar represents the provessor ulilization rate ({busy_time/toial_cpecution fime) » 100), the black
part represents the communication overhead (time spent in message handling routines®). The

average processor utilization rate of 24% for this mapping is close to the expected work rate of

25% (= 1//10).

6.2.2 Two-Dimensional Multiple Mapping

In the two-dimensional multiple mapping, each processor works when the wave of the creation of
cost-path luformation pusses through on the & subscts of vertices dispersed on the graph. As a

result, the idle time of each processor was reduced as we had expected.

typical case of speculative computacion.
10 the two-dimensional plane, the Manhattan distance is defined by diz, y) = |31 — 21| + [v3 — =a|, for 2 =

(T1.72), ¥ = (p1,82). A Manhattan path is a path whose length is equal to the Manhattan distance of the two

vertices at both ends. Note there can he many Manhatian paths that connect iwo given vertices.
#Precisely speaking, message handling represents a significant part {sxpected to be more than 90%) of bul is not
wyual Lo the tolal communication overhead.

11

In Fig. ¥ and 10, we can see that much betier processor utilization rate is obtained with the
two-dimensional multiple mapping than with the two dimensional simple, in all cases of the number
of processors used at the execution. In fact, the processor utilization rate was 80% with & = 4 x 4
and 94 4% with £ = B » ¥ in the case of 16 processors (Fig. 11}, However, the execution time
does not improve as dramatically. This is due to much increased speculative computation and

communication overhead as discussed later.

6.2.3 One-Dimensional Simple Mapping

NN
SN

é. N B \T

Part of graph active at time 6T ~ 7T

Figure 8: Expected Advance of Wavefront in One-Dimensional Simple Mapping

In Fig. ® and 10, we can see that with this mapping, we could obtain similar same performances
to the two-dimensional multiple mapping.

We will discuss the speedup for this mapping under the same assumptions as we discussed in
the two-dimensional simple mapping. Let T be the time required for one processor to create and
consume the cost-path information for all the vertices in one shaded triangle in Fig. 8. Then it
takes IT time to create and consume the additional information to the line in the figure. It follows
that the time required to solve the problem with p processors is T{3p — 1). As it takes 2Tp* time

for one processor to solve the entire problem, the speedup is

ITp? It 2
= By = h 13.
T(3p-1) 3p-1 3 p(when p>>1)

It says that the expected speedup is about two thirds the number of processors, in particular, the
speedup is proportional to p, not the \/p as in the two-dimensional simple mapping.

The actual speedups are worse than we discussed above. It was 1.97 when 4 processors were
used. But 5.7 with 16 processors, 11.85 with 36 processors, 17.34 with 64 processors, they become
worse as the number of processors increases,

The average processor utilization rate of 45% for this mapping with 16 processors is also worse

than the expected work rate of 68% (= 2-16/(3-16 — 1)) (Fig. 11).

12

Execulion time|ssc)

I'wo-dimensional sunple
- One-dimensional simple
Twa-dimvenzional multiplelk = 4 x 4)
- T'wo dimensionsd multiple(k = 8 x 8)

"‘IL\-_‘_H\
""“*-——-_____.
.
W m ey
R S-S
SRS |
'n T T L T T T

14 9 16 I5 26 49 64

Number of processors
Figure & The execution time for various mappings and number of processors

7 Discussion

We would like to consider communication cverhead and speculative compulation thal are ignored
in the analysis above.

When the grid is divided into blacks for mapping, inter-processor communication arises at
the boundaries of the blocks. As the grid is divided into smaller and smaller blocks, the total
length of the block boundaries becuines longer and longer, incurring more and more inter-processor
comunnnication. The actnal percentage of communication overhead depends on the size of the grid,
the program, the underlying language implementation, and the particular multiprocessor used. But
it s cxpeeled to be proporlional to the total length of the black houndaries.

In Fig. 11, the ratio of communication time to non-communication time in the busy time is
5.3%, 19.9%, 34.1%, and 10.2% for two-dimensional simple, two-dimensional multiple (with 4 = 4
super blocks and 8 x 8 super blocks), and one-dimensional simple mappings. The results of dividing
those numbers by the total boundary length of 6L, 30L, 62L and 154 respectively (L is the length
of the side of the grid) are 8.8%, 6.4%, 5.5%, and 6.8% per L, which is fairly constant® as expected.

The ameount of speculative computation was very difficult to predict. While all computation in

The messurement. crror is 5% ~ 10%.

13

Speedup , Two-dimensional sumple

U] - L JLILED One-dimensional simple
= = == Twoedimensional multiplelk = 4 % 4)
4 e o ms Twpa-dimensional moltiple(k = & x 8)
70 4 o
‘_I-
R o
| e __..-"'r
S
110 4 _.:-r
e e
{‘.-_,- a ‘_._'___._,.__..---—"
e
e
A
L}

T

14 9 16 25 36 bl il
Number of processors

Figure 10: The speedup for various mappings and number of processors

Dijkstra’s sequential algorithm is mandatory, all cost-path information processing in the distributed
algorithm is speculative hecanse one cost path information ean turn eut to be useless if a better
information later arrives. We compared the number of cost-path information packets generated
in executions using various numbers of processors and mappings against that in a single processor
execution. Fig. 12 shows them. The excess part represents the amount of cost-path information
that have turned ocut useless. 1t was 20.2% in two-dimensional simple, 38.1% in two-dimensional
multiple with 4 x 4 superblocks, 20.2% in two-dimensional multiple with 8 x 8 superblocks, 17.2%
in one-dimensional simple, The excess is less in the § = 8 division than that in the 4 = 4 division,
This apparent anomaly seems to come from the regular repeating patterns in the edge cost distri-
bution, due to the nature of the pseude-random number generator used, but this has not yet been
confirmed.

Toextend our experience to more general cases, we have to consider (1) different types of locally
message exchanging algorithms, (2} different types of graphs, and (3) different types of networks
of the multiprocessor.

The reason why one-dimensional simple mapping worked fairly well was due to the patiern
of computation in the shortest path algorithm. If the computational load were uneven along
the horizontal direction in the graph, the performance would have been worse, Two-dimensional
multiple is expected to perform better in general cases, A more random mapping can be also
considered, in which the graph is divided inte & » p blocks, and each one of p processors is in
charge of randomly chosen k blocks spatially acattered in the graph. '

The topology of the graph and that of the multiprocessor network must be considered as a pair:

14

Frocessor utilization rate(%) Processor utilization tate{%)
1004 100

507

Two.dimensicnal simpie One-dimensional simple

Frocessor utilization rate(%) Processor wtilization rate(%)

LI 108
50H Tis I
i
: oLl

Two-dimensional multipled x 4 Two-dimensional multiples = 8

Eo3 Rate of aperations for communieation
[HAate of ether operations except comnumunication

Figure 11: The processor wlilisation rate for various mappings with 16 processors

domain and range of mapping. In our experiment, the network traffic was very small compared
with the bandwidth of network hardware. Thus, the topology of the target network was not so
important. The two reasons were: (1) the overhead in interprocessor communication was mainly
in encoding and decoding of message packets, and (2) most of the interprocessor message sending
was {rom one processor to an adjacent processor (average traveling distance was close to one edge
of the network).

Locality is a relative concept, relative to the target machine. In a sense, a tightly-coupled
multiprocessor is one in which everything is local. Load balancing is easy, since communication
suppression need not be considered. This ideal situation, however, does not scale. Loosely-coupled
multiprocessors buy scalability at the cost of lost locality. As larger and larger scale multiprocessors

are built, the program mapping will increasingly have to take locality preservation in consideration.

8 Conclusions

Good load balance is the key to get the most from the processing power of parallel computers.
Dynamic load balancing techniques have been developed and proved successful for tightly-

coupled multiprocessors, and for loosely-coupled multiprocessors when the problem is composed

of independent tasks with large granularity. But the problem of mapping inter-comrmunicating

processes on looeely-coupled multiprocessors has not been well explored. In this paper, we con-

15

MNumber of cost-path information messages {in ten thousands)

Twao-dimensional simple

oo Omne-dimensional simple
* - - - - Twoodimensional mubtiple(k = 4 » 4)
@ - - Two-dimensional multiple(k = & x 8}
A0 -
4 s

14 4 16 FE] a8 A9 64
Mumber of processors

Figure 12: Number of cost-path infarmation messages for various mappings and number of pro-

CEEROrS

sidered the problem when there is localily in message communication (locally message ezchanging
algorithms). Distributed graph algorithms generally fall into this calegory. As an example, we
developed a distributed algorithm for a single-source shortest path problem for a large grid graph
on & mesh-connected mulliprocessor, Mulii-PSLL

We experimented with three different static mappings: two-dimensional simple mapping which
has the least communication overhead of the three. two-dimensional multiple mapping which has
higher processor utilization rate at the cost of higher communication overhead, and one-dimensional
simple mapping which has less communication overhead than the two-dimensional multiple but
with less even load distribution than the two-dimensional multiple mapping. Measurements were
taken of a shortest path program with the three mapping, with varying number of processors, and
the actual speedups and communication overhead were discussed.

The experiments showed that two-dimensional multiple mapping and one-dimensional simple
mapping attain a good compromise betwesn communication localization and load balance. Unfor-
tunately, the impact of ways of mapping on the amount of speculative computation is left as an
open question.

The Multi-I"SI proved a useful tool for doing parallel programming research — we could run a
medium-scale program and obtain results that scale. The separation of semantics and mapping in
KL1 greatly facilitated the process of experimenting load distribution and priority scheduling.

We would like to conduct further research on this topic, using different types of graphs and

other types of locally message exchanging algorithms.

16

9 Acknowledgments

We would like to express our gratitude to Takashi Chikavama for giving us the idea of using the
priority mechanism of KL1 to schedule messages, and Kazuo Taki for fré;quem, stimulating, and
helpful suggestions and guidanee. We thank Katsuto Nakajima, a former member of ICOT and
now back in Mitsuhishi Flectric, who helped us gather measurements of processor work rate and
communication overhead, and Kazuaki Rokusawa, now back in Oki Blectric, for helpful suggestions
and observations, and other members of ICOT whe made valuable suggestions.

We would alse like to thank Kazuhiro Fuchi, the director of ICOT and Shun’ichi Uchida, the
manager of ICOTs Research Department, for giving us the opportunity to participate in this

research.

References

(1} A.¥.Aho,J. E. Hoperofi and J. D. Ullman. The Design and Analysis of Computer Algorithms,
Addison- Wesley (1974).

[2] K. M. Chandy and J. Misra. Distributed Computation on Graphe: Shortest Path Algorithms.
Comm. ACM, Vol.25, No.11 {Nov 198%), pp. 833-837.

[4] L. Chikayama, H. Sato and T. Miyazaki. Overview of the Parallel Inference Machine Oper-
ating System (PIMOS). In Proceedings of the International Conference on Fifth (reneration
Computer Systems 1088 (1988), pp. 230-251.

[4] N. Deo, €. Y. Pang and P. E. Lord. Two Parallel Algorithms for Shortest Path Problems.
In Preceedings of the 1950 Internatiwonal Conference on Parallel Processing. ILEE, New York,

244 153, 1980,

5] E. W. Dijkstra. A Note on Twe Problems in Connexion with Graphs. Numerische Mathematik
1 (1959), 269-271.

[6] R. W. Floyd. Algorithm 97: Shortest Path. Comm.ACM, Vol.5, No.6 (1962), p. 345.

[7] M. Furuichi, K. Taki and N. Ichiyoshi. A Multi-Level Load Balancing Scheme for OR-Paralel
Exhaustive Search Programs on the Multi-PS1. To appear in Procecdings of the Second ACM
SIGPLAN Sympuswum on Principles and Practice of Parallel Programming (PPoPP), 1990.

[8] D. B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, Vol.24,
Nod, pp. 1-13.

17

[4] V. Kumar and V. Nageshwara Rao. Load Balancing on the Hypercube Architecture. In Pro-
ceedings of the Fourth Conference on Mypercube Coneurrent Computlers and Applications,

1988,

[10] K. Nakajima, Y. Inamura, N. lchiyoshi, K. Hokusawa, and T. Chikayama. Distributed Imple-
mentation of KL1 on the Multi-PSI/V2. In Proceedings of the Sizth International Conference
on Logic Programming (1989), pp. 436—451.

[11] M. J. Quinn and N. Deo. Parallel Graph Algorithms. ACM Computing Surveys, Vol.16, No.3
(Sept.1954), pp. 319-348,

[12] K. Taki. The Parallel Software Research and Development Tool: Multi-PSI system. Program-
ming of Future (Generation Computers, Elsevier Science Publichers B V. (North-Holland),

1988,

[13] K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Language with the Concept
of & Guard. Technical Report TR-208, ICOT, 1046,

[14] 5. Warshall. A Theorem on Boolean Matrices, JACM, Vol.9, No.1 (1962), pp. 11-12.

18

