ICOT Technical Report: TR-582

TR-582
A Logic Programming Approach to Specifying

Logics and Constructing Proofs

by
H. Sawamura, T. Minami. K. Yokota
& K. Ohashi (Fujitsu)

August, 1990

© 1990, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191 -5

Ic DT 4-28 Mite 1-Chome Telex 1COT J32904

Minato-kue Tokyo 108 Tapan

Institute for New Generation Computer Technology

A Logic Programming Approach to
Specifying Logics and Constructing Proofs

Every universe of discourse has its logical structure.
S. K. Langer (1925)

Hajime Sawamura® Toshiro Minami

International Insntute for Advanced Study of Social Information Science
(IAS-SIS), FUJITSU LIMITED

140 Miyvamoto, Numazu, Shizuoka 410-03, JAPAN
hajime@iias.fujitsu.junst minami@iias.fujitsu. junet

* Present address : Automated Reasoning Project, Research School of
Social Sciences, Australian National University, GPO Box 4, Canberra,
ACT 2601, AUSTRALIA

hs@arp.anu.oz
Kaoru Yokota Kyoko Ohashi
FUIITSU LABORATORIES LTD.

1015 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211, JAPAN

Abstract

Logic programming languages serve as good implementaton languages for theorem
provers and intéractive reasoning sysierns since they directly implement search and
unification which are essential operations for traversing a search space for a proof and
manipulating formulas and proofs. This paper describes a practical logic programming
approach to a general-purpose reasoning assistant system that allows a user w define
hig/her own logical system and to reason in the defined sysiam.

In the first half of the paper, the need, significance and design principle of
EUQDHILOS : a general-purpose system for computer-assisted reasoning, are discussed.
Then the system overview is dascribed, with emphasis on the following three points : (1)
a formal system description language based on definite clause grammar, (2) a methodology
for proving based on several sheets for logical thought, (3) visual human-computer
imterface for reasoning. In the lauer half of the paper, the potential and usefulness of
EUODHILOS are demonstrated through experiments and experiences of its use by a
number of logics and proof examples therein. These have been used or devised in a circle
of computer science, antificial intelligence and so on.

1. Introduction

A new dimension of computer-assisted reasoning research is explored
in this paper, employing a logic programming approach. Logic
programming languages serve as good implementation language.s for
theorem provers and interactive reasoning systems since they directly
implement search and unification which are essential operations for
traversing a search space for a proof and manipulating formulas and proofs
[9]. This paper describes a practical logic programming approach to a

general-purpose reasoning assistant system that allows a user 1o define
his/her own logical system and to construct proofs in the defined system.
We have named this system EUODHILOS, an acronym reflecting our
philosophy or observation that gvery gniverse gf discourse has jis [ogical
Struciure.

In these days, various logics play important and even essential roles in
computer science and artificial intelligence (e.g., [37], [36]), and
surprisingly in aesthetics which has been thought of as being in a directly
opposite position to logic (e.g., [20], [19]), as well as in other scientific
theories (e.g., [4], [26], [41]). Specifically, it can be said that logics
provide expressive devices for objects and their properties, and inference
capabilities for reasoning about them. It is also the case that symbols
manipulating methods provided in logics are basically commeon to all
scientific activities. So far, people have made use of a wide variety of
logics, including first-order, higher-order, equational, temporal, modal,
intuitionistic, relevant, type theoretic logics and so on. However,
implementing an interactive system for developing proofs is a daunting and
laborious task for any style of presentation of these logics. For example,
one must implement a parser, term and formula manipulation operations
(such as substitution, replacement, juxtaposition, etc.), inference rules,
rewriting rules, proofs, proof strategies, definitions and so on, depending
on each logic under consideration. Thus, it is desirable 1o find a general
theory of logics and a general-purpose reasoning assistant system that
captures the uniformities of a large class of logics so that much of this effort
can be expended once only. A similar observation and motivation can be
found in the papers of [14] and [15], although the approaches differ. In this
paper, we aim at building a general and easy to use system which handles as
{lﬂillffzgf these logics as possible and allows us to reason in various ways

1.

There are three major subjects to be pursued for such an interactive
and general reasoning support systern. One 15 a language expressive enough
to describe a large class of logics. The second is the kind of reasoning styles
suitable for human reasoners which should be taken into account. More
generally, reasoning (proving) methodology, which reminds us of
programming methodology, needs to be investigated. The third subject is
reasoning-oriented human-computer interface that may be well established
as an aspect of reasoning supporting facilities. An easy to use system with
good interface would be helpful in the conception of ideas in reasoning, and
in their further promotion.

We believe that a general-purpose reasoning assistant system
incorporating these points should cater to the mathematician or programmer
who wants to do proofs, and also to the logician or computer theorist who
wants to experiment with different logical systems according to the
respective problem domains.

This paper is organized as follows. In the first half of the paper,
following the discussion of the need, significance and design philosophy of
EUQDHILOS, a system summary of EUODHILOS under development is
described. We emphasize the following three points : (1) a formal system
description language based on definite clause grammar, (2) a methodology
for proving based on several sheets for logical thought, (3) visual human-
computer interface for reasoning. In the larter half of the paper, the potential
and usefulness of EUODHILOS are shown through experiments and

experiences of its use by a number of logics and proof examples therein.
These have been used or devised in computer science, artificial intelligence
and other related fields. They include first-order logic for a logical puzzle,
an inductive proof and the halting preblem, second-order logic,
propositional modal logic, intuitionistic type theory, Hoare logic and
dynamic logic for program verification, and the intensional logic for
Montague's semantics .

2. Need, significance and design philosophy

Much work has been devoted to special-purpose reasoning assistant systems
whose underlying logics are fixed (e.g., [12], {39], [18], [38], [7]).
However, we are exploring a new dimension in a general-purpose reasoning
assistant system.

We first take up some issues concerned with the generality in
reasoning assistant system and several aspects of viewing such a generality.
We have already found and recognized that in these days a logic or logical
methodology forms a kind of paradigm for promoting computer science,
artificial intelligence and so on. And we stated that it is desirable to find a
general theory of logics and a general-purpose reasoning assistant system
that captures the uniformities of a large class of logics so that much effort
for providing reasoning facilities can be expended once only and hence we
aim at building an easy to use and general reasoning system which handles
as many of these logics as possible. This was our first motivation for
pursuing the generality in reasoning assistant system. The second issue
comes from a rigorous approach to program construction. Abrial [1] claims
that a general-purpose proof checker could be perhaps one of a set of tools
for computer aided programming when we consider program construction
from various theories. We are certainly in a situation that before embarking
on the construction of 4 program we need to study its underlying theory,
that is to give a number of definitions, axioms and theorems which are
relevant to the problem at hand. Note that every program (universe) to be
constructed (studied) has its underlying theory (logical structure). The third
issue concemns the construction of a logical model, or more generally
methodology of science. We observe that human reasoning process consists
of the following three phases : (1) making mental images about the objects
or concepts, (2) making logical models which describe the mental images,
(3) examining the models to make sure that they coincide with mental
images. It is not conceivable that phase (1) could be aided mechanically
since some part of phase (1) is very creative. On the other hand, it is
likely that phases (2} and (3) could be largely supported mechanically by
allowing the modification or revision of the definition of the language used
for the modeling and by introducing certain reasoning devices. These are
just the points that a general-purpose reasoning assistant system is intended
to support. Philosophical aspects of the generality from a logical point of
view can be found in |20] and [10). A logic is, in a broad sense, a way of
doing things. In this sense it is not & surprising fact that there may exist a
number of logics for things. Also it is well known that a logic has various
styles in its formulation such as Gentzen's LK, NK, Hilbert's linear style,
etc., and that these are mathematically equivalent, However, if a logical
system is to be viewed as a form of representation of a system of self-

consciousness, then we will have to think of these various logic
formulations as different [10].

All this discussion may be summarized as, to borrow Langer's
statement [20], "Every universe of discourse has irs logical srructure”. Thus
it eventually supports our discussions about the need and significance of the
generality in reasoning assistant system from the philosophical point of
YIEW.

The above discussion led us to the research and development of
general-purpose reasoning assistant system EUODHILOS with the
following outstanding featres :

« Formal system description language based on the definite clause

grammar (DCG

= Proving methodology using sheets of thought

« Reasoning-oriented human-computer interface

In what follows, we will sketch each of these features in more detail ,

3. An overview of EUODHILOS

3.1 Functional features

We list the main features of EUODHILOS and explain them briefly (sce [40]
for the details). We start by describing the language of a logic to
EUODHILOS. Fundamentally, EHODHILOS has almost no defaults, so it
must be told everything,

3.1.1 Formal system description language

What is a logic? What language should be expressive enough to describe or
deal with logics? The answers to these questions could turn out to define the
formal system description language for capturing the uniformities of a large
class of logics so that it can be used as the basis for implementing proof
systems. There have been some attempts to pursue the formal system
description language. In this, these attemnpts have shared the goal of
EUODHILOS, e.g., Prolog is employed as a logic description language in
[33], AProlog in [9] and [23], typed A—calculus with dependent types in [14]
and [15], a specification language for a wide variety of logics in [1], an
attribute grammar formalism in [31], 2 metalanguage ML in [13] and a
higher-order logic in [27].

Almost all of contemporary logics may be considered as having a
logical framework consisting of a proof theory and a model theory. A proof
theory specifies the syntactical part of a logic and a model theory specifies
the semantical part of a logic. In this paper we are mainly concerned with
specifying the syntactical aspect of a logic. The syntax of a formal system is
made up of two constituents : language system and derivation system.

(1) The language system

A language is a tool for talkinf about objects and is formed from
underlying primitive symbols. A logical language is one in which
propositions are expressed and reasoned about. It is usually specified by
utilizing some of the following: variables, constants and functions as
individual symbols, predicates (including equality), logical connectives,
auxiliary symbols, etc. Artributes such as type, sort, arity, operator
precedence are sometimes associated with some of these symbols. Once
these primitive symbols are specified, complexities such as terms, formulas,

eic., are constructed from them by fomation rules. Also, notational
conventions for defining or abbreviating symbols are usually required. At
this point, we face our next fundamental question: what kind of
metalanguage is naral and sufficient to describe such an object language?

{2) The denivation system

The derivation system gives us a means of manipulating a logical
language. It is specified by axioms, inference rules, derived rules, rewriting
rules, and concepts of proofs, etc. Insofar as we confine ourself to the
existing types of formal systems, we can enumerate primitive operations.
Included in these are substitution, replacement, juxtaposition, detachment,
renaming, unification and instantiation. These are common operations
within various logics except for the differences of languages. Since we are
considering a general-purpose reasoning system for logics, we have to
provide a general method for those symbol manipulations. So, our next
fundamental question is: what sort of primitive operations and constraints
on objects are sufficient to manipulate logics and how could these be
provided in a generic manner ?

In addition to these guestions, we need to pay attention to the concepts
"free”, "bound" and "something is free for a variable in an expression”.
These can also be dealt with in a recursive fashion.

In what follows, we will attempt to answer these fundamental
questions.

3.1.2 Specifying a logical syntax and the expressiveness of the
definite clause grammar

In EUODHILOS, an object language system to be used is designed and
defined by a user. The meta language is definable also. This is indispensable
for the schematic specifications of axioms, inference rules and rewriting
rules and schematic proofs. A current solution for formal system description
language is to employ so called definite clause grammar formalism (DCG)
[29], where the problem of recognizing or parsing a string of a language is
transformed into a problem with a proof that a certain theorem follows from
the definite clause axioms which describe the language. The DCG formalism
for grammars is a natural extension of contexi-free grammar (CFG). As
such, DCG inherits the properties which make CFG so important for
language theory such as the modularity of a grammar description and the
recursive embedding of phrases which are characteristic of almost all
interesting languages, including the languages of logics. It is, however, well
known that CFG 1s not fully adequate for describing natural language, nor
even many artificial languages. DCG overcomes this inadequacy by
extending CFG in the fulluwing three areas [29]: (i) context-dependency,
(ii) parameterized nonterminal, (1i) procedure attachment.

These also yield great advantages for specifying logical grammars,
compared with those mentioned above. DCG provides for context-
dependency in a grammar, so that the permissible forms for a phrase may
depend on the context in which that phrase occurs in the string. DCG is
somewhat similar to attribute grammar in the sense that context free
grammar is made context sensitive by associating a semantical facility with
grammar rules [31). The necessity for context-dependency is often
encountered in defining logical syntax. The following examples show how
naturally and economically DCG allows us to express the context-
dependency which occurrs in ordinary logical practice and allows arbitrary

tree structure to be built in the course of the parsing, with the help of (i) and

(iii).

Let us describe some concrete examples of the syntax definition in
order to see the paradigm of definite clause grammar formalism. The
defining clause of first-order terms such as "If f is a function symbol of arity
2 and t and s are terms, then f(t, s) is a term” is represented as

term(f(T,S)) --= functor (), "(", term(T), ",", term(S),)", {anty(f, 2)).
The defining clause of terms in the intensional logic [11] such as "If A is a
term of type (a, b) and B a term of type a, then A-B is a term of type b" is
represented as

term{A-B, b) --> term(A, (a,b)), "«", term(B, a).

It should be noted that DCG originally possesses the apparatus for
describing the correspondence between the external expressions manipulated
by a user and the internal expressions manipulated by a computer in terms of
the parametrized nonterminal.

Once a definite clause grammar definition for a logical syntax has been
given, it is first convened to the definite clause grammar associated with the
internal structures of expressions. The conversion is done with the help of
an operator declaration provided by a user, which is for indicating which
syntactical element should be viewed as an operator in the grammar rule.
Then the bottom-up parser for the new grammar is automatically generated,
employing the BUP generation method for the definite clause grammar [22].
The reason why we do not generate a top-down parser for the defined
language is to avoid the anomaly of left-recursiveness which often appears
in the ordinary definition of a logical syntax. The automatic method for
generating the internal structures of the expressions of a language have been
provided by us [25]. The unparser for the internal structures is also
automatically constructed with the help of the operator precedence
declaration provided by a user. The generated parser and unparser are
internally used in all the succeeding phases of symbol manipulations.

It is clear that our a%pmach based on DCG is far superior to the other
approaches based on attribute grammar (e.g., [14], [31]), in which we have
to provide the internal and external representations of expressions, and
hence those automatic generations of a parser, an unparser and intemnal
structures greatly lighten a user’s burden in setting up his own language and
taking care of it. Readers interested in the details of the algorithms can find
these in [25].

3.1.3 Specifying a derivation system
A derivation system consists of an inference system and a rewriting system.
They are given in a natural deduction style presentation [30] by a user. An
inference rule, especially, is stated as a triple consisting of three elements,
where the first is the derivations of the premises of a rule, the second the
conclusion of a rule, and finally the third the restrictions that are imposed on
the derivations of the premises and conclusion, such as variable occurrence
condition (eigenvariable) and substitutability such as "t is free for x in P".
Well-known typical styles of logic presentations such as Hilbert's style,
Gentzen's style or the equational style can be treated within this framework.
Inference rules are presented in terms of a schematic rule description
language in a natural deduction style as follows :

[Assumption,;] [Assumptions] [Assumption,]
P‘rcinis:l Prc.misi:z Frcrf:is:,,

Conclusion

where brakets are used to encompass a temporary assumption to be
discharged, ":" denotes a sequence or a subtree of formulas which is a part
of a proof from the assumption and each assumption is optional. If a
premise has the assumption, its subtree of a proof indicates a conditional
derivation. In forward reasoning, an inference rule may be permitted to
apply if all the premises are obtained in this manner and the application
condition is satisfied. Then, the dependency of a conclusion on temporary
assumptions is automatically calculated by the ordinary method [18]. In
backward reasoning, discharging the asumptions, generating some
assumptions and checking the application conditions are in general
impossible and hence delayed until completing the partial proof tree under
construction.

Defining the derived rules is allowed if they are justified for validity
on a sheet of thought described below. The derived rules would become
useful when we wish to shorten the lengthy and tedious derivation steps. In
a sense, they play a role of tactics, although we have not had operations for
combining tactics to form tacticals [12].

Rewriting rules are useful for handling equational reasoning often
appearing in ordinary mathematical practice. 'ﬁm&c can be simply presented
to the system in the following schematic format :

xXpP1

exp,
The rule is applied to an expression when it has a subexpression which
matches to the exp;, and the resulting expression is obtained by replacing
the subexpression with the appropriate expression of the exp;.

3.1.4 Proof construction facilities
The major drawback of reasoning in formal logic is that derivations tend to
be lengthy and tedious because of the detailed level of derivations required
in reasoning. Furthermore, performing formal derivations is time-
consuming and error-prone. Readers may notice that such a situation is quite
similar to the formal development of programs in which programs can be
derived or transformed and properties of programs can be established.
Using computers for formal reasoning can overcome the problems with
errors and the time-consuming task. The current version of EUODHILOS
has the following unique facilities which are able to support natural and
efficient constructions of proofs in the defined formal system.

(1) Sheets of thought

This originated from a metaphor of work or calculation sheet and is
apparently analogous to the concept of sheet of assertion which is due to C.
S. Peirce [28]. A sheet of thought, in our case, is a field of thought where
we are allowed to draft a proof, to compose proof fragments or detach a
proof, to reason using lemmas, etc., while a sheet of assertion is a field of
thought where an existential graph as an icon of thought is supposed to be
drawn. Obviously, proving by the use of sheets of thought yields proof

modularization useful for proving in large. It may be beneficial to note that
proof modularization is approximately equal to the concept of program
modularization, 1o borrow the term of software engincering. Technically, a
sheet of thought is a special window with multi-functions for reasoning in
the multi-window environment of a Personal Sequential Inference machine
(PST).

(2) Tree-form proof

As mentioned above, inference and rewriting rules are presented in a
natural deduction style. This naturally induces the construction of a proof
into a tree-form proof with a justification for each line (node) indicated in the
right margin. Consequently it leads 1o the explicit representation of a proof
structure, in other words, proof visualization.

{3) Schema (meta) variables

The Schema variables are useful not only for the schematic
specifications of axioms, inference rules or rewriting rules, but also for
schematic proofs. Substitution and unification viewed as the common and
primitive symbol operations are supposed to operate on schema variables, in
addition to the usual vaniables.

3.1.5 Proving methodology
The predominant style of interactive reasoning is goal-directed, in other
words, top-down or backward reasoning, whereby the user breaks a goal
into subgoals. It is, however, desirable that reasoning or proof construction
can be done along the natural way of thinking for human reasoners.
Therefore EUODHILOS supports the other typical methods for rcasmﬁng as
well. They include bottom-up reasoning (forward reasoning), reasoning in a
mixture of top-down and bottom-up, reasoning by using lemma, schematic
reasoning, etc. These are accomplished interactively on several sheets of
thought.

As examples of deduction process on several sheets of thought, let us
illustrate some of the reasoning styles in more detail,

(1) Forward and backward reasoning

In order to deduce forward by applying an inference rule, one has to
start by selecting the formulas used as premises of the rule. Then one may
select an appropriate inference rule from the rule menu which has been
automatically generated at the time of logic definition, or one may input a
formula as the conclusion. If one selects a rule, then the system applies the
rule to the premises and derive the conclusion. If he/she gives the
conclusion, then the system searches the rules and tries to find one which
coincides with this deduction. In the case of backward reasoning, the
reasoning process is converse to the forward reasoning, so that the
intermediate proof may branch off to partially justified proof fragments and
the complete justificiation of those partially justified proof fragments is
delayed until the completion of a final proof tree.

(2) Schematic reasoning

EUQDHILOS allows us to construct an abstract proof in the sense that
metavariables ranging over syntactic domains of an object language are
permitted to occur in the process of the proof, that is, we can make a
partially instantiated proof. Such a proving facility is very convenient for
having an indeterminate or unknown predicate (such as invariant assertion in
Hoare logic) unspecified temporarily in the proof constructing process.

(3) Reasoning by lernmas and derived rules

Theorems constructed on the sheet and validated derived rules can be
stored in the theorem database and rule base respectively. They are referred
to and reused in the later proofs for other theorems. After using
EUODHILOS systematically and over a long period of time, the theorems
turn out to build up theories.

(4) Connection and separation functions on sheets of thought
{a) Connection by complete matching : Two proof fragments can be
connected through a common formula occurring in them when one of them
is a hypothesis and the other a conclusion. The process begins by selecting
the two formulas and invoking the proper operations. As a result, the proof
fragments are connected into the one proof fragment. Schematically, This
amounts to attaining the following inference figure which can be viewed as
valid :

rkc {on a sheet of thought)
ACIEA {on a sheet of thought)
AT EZRA {on & sheet of thought)

where T, 4 and T might represent sequences of formulas (possibly empty),
and A and C denote formulas in some defined logical system.

(b) Connection by the use of a rule of inference : This 15 essentially a
forward reasoning and may be called a distributed forward reasoning. The
process is similar to the above except that the connection is done from the
distributed proof fragments through an appropriate rule of inference. Let us
take an example schema of modus ponens :

' -A>B {on a sheet of thought)
Ala {on a sheet of thought)
LA +-B {on a sheet of thought)

with the same proviso, adding that B represents a formula.

(c) Connection by unification

Two proof fragments can be connected through two unifiable
formulas occurring in them when one of them is a hypothesis and the other a
conclusion. The process begins by selecting the two formulas and invoking
the proper operations. As a result, the proof fragments are unified to the
most general proof fragment. It is, however, noted that the unification can
be done through schema variables mentioned above.

Besides, connection methods such as analogical matching,
instantiation, etc., would beome extremely beneficial to intelligent reasoning
system, which is left as a future subject.

{d) Separation

The separation is converse to the connection by complete matching.
The separation process begins by selecting a formula occurning in a sheet of
thought and invoking the proper operations, As a result, the proof fragment
is detached into the two fragments. Schematically, This amounts to the
converse to the connection by complete matching above. So it is omitted.

3.1.6 Human-computer interface for reasoning

In the interactive reasoning system, it is up to the user to guide the search
for a proof and discover a proof with the machine's help. And the process
of finding a proof is often one of trial and error, and various attempts can
become very large. Therefore a good user interface should make it easy to
manage proofs. In EUODHILOS the following facilities are now available
as a human-computer interface for ease in communicating and reasoning

with a computer, in particular facilities for inputting formulas and formula
visualization.

(1) Formula editor

This is a structure editor for logical formulas and makes it easy to
input, modify and display complicated formulas. In addition to ordinary
editing funcrions, it provides some proper functions for formulas such as
rewriting functions.

(2) Software keyboard and Font editor

These are used to make and input special symbols often appearing in
various formal systems. It is a mater of course that provision of special
symbol which reasoners are accustomed to use makes it possible to reason
as usual on a computer.

(3) Stationery for reasoning

Independently of the logic under consideration, various reasoning
tools such as decision procedures become helpful and useful in reasoning
processes. In a sense it may also play a role of a model which makes up for
a semantical aspect of reasoning. Currently, a calculator for Boolean logic is
realized as a desk accessory.

3.2 Implementation

Exploinng the bit-map display with multi-window environment, mouse,
icon, pop-up-menu, etc., EUODHILOS is implemented in ESP language
(an object-oriented Prolog) on PSI-II/SIMPOS.

4, Experiments and experiences with EUODHILOS

We have tried to apply EUODHILOS to various types of reasoning. Logics
and proof examples that we have dealt with so far on EUODHILOS include
various pure logical formulas, the unsolvability of the halting problem and
an inductive proof with first-order logic (NK), the equivalence between the
principle of mathematical induction and the principle of complete induction
with second-order logic, modal reasoning about programs with
propositional modal logic (T), the reflective proof of a metatheorem and
Montague's semantics of natural language with intensional Logic (IL),
Martin-L&f's intuitionistic type theory, reasoning about program properties
with Hoare logic and dynamic logic. These logics constitute a currently
well-known and wide range of logics or formal systems.

In this section, in order to demonstrate the potential and usefulness of
EUODHILOS, we first show how EUODHILOS can be used to specify a
logic and construct a proof under the specified logic, taking up an
intuitionisic type theory. Then, we will list some other proof experiments
with different logics, together with brief annotations. The important point
here is not the complexity of the examples, but rather the holistic
understanding of a whole story played with EUODHILOS. These proof
experiments with different logical systems would help to convince the
readers of the potential and usefulness of EUODHILOS in a much wider
range of applications. (See [35] for the detailed definition of each logic and
proof examples in the experiments.)

- 10 -

Martin-L6f's intuitionistic type theory and a constructive proof
The first reasoning system we have chosen as an example is a tiny subset of
the intuitionistic type theory described in [21] and [2]. The principal
expression in the intuitionistic type theory is a judgement of the form "a e
p", reads "a is a proof of a proposition p” in one interpretation, where "a" is
an expression in A-calculus and "p" is a first-order formula interpreted as a
type. The judgement is naturally and well described in the framework of
DCG. The intuitionistic type theory is defined by a number of natural
deduction style inference rﬁes [21] which are of course best suited to our
treatment of rules.

Tiny languape for the type theary
The language definition basically consists of three parts: an object
language, a meta language and an operator definition.

Syntax of object langauge :
judgement -—> term, "e”, type ;
term --> bind_op, variable, ".", term1 ;
bind_op --> "L";
term —-> terml ;
terml --> terml, "e", term?2 ;
terml --> tetm? ;
term2 --> "(", term, "}" ;
term2 --> or_intro, "(", term, ")" ;
or_intro —> "inr" | "inl" ;
term2 --> variable ;
variable --> x;
type --> type, =", typel ;
type --> typel ;
typel --> typel, "v", typel ;
typel --> typel ;
type --> " typel ;
type2 --> "(", type,)" ;
typel --> basic- :
basic-type --> "P" | "L";

Syntax of meta language ;
terml --> meta_terml, (", term, ")" ;
terml --> meta_terml;
term?2 --> meta_terml;
type2 --> meta_type;
variable --> meta_variable;
meta_terml --="F" 1 "a" 1"b";
meta_terml —> meta_variable;
meta_type --> "A" | "B";
meta_variable --> “"X" | "f",

Operator definition with or without precedence :
with_precedence
~ o v A E;
without_precedence
or_intro, meta_term1.

- 11 -

It is noted that the syntax definition for the meta langua ge is provided
for defining inference rules schematically, and the operators displayed under
the heading "with_precedence” have precedence in the indicated order and
the operators without precedence, e.g. "inl" in the term "inl(x)", are listed
simply by themselves or the nonterminals by which they are denoted. The
operator declaration is to tell the parser that the terminal declared to be an
operator or the terminal denoted by the non-terminal is entitled to become the
principal operator of the internal structure for an expression generated by the
grammar rule,

Inference Rules
The intuitionistic type theory is defined by a number of natural

deduction style inference rules [21][2]. For the purpose of illustration we
consider just four rules and one rewrite rule. These are the rules for function
introduction and elimination, the two rules for v—introduction, and the
rewrtite rule in lieu of the definition ~A=A o L.

[Xe A]

F(X) € B
(A-introduction CA-T0)

MX.F(X) e ASB

ae A fe A>B
- {=-elimination (>-E))
fsa ¢ B

ae A

- - {inl-introduction (inl-1))
mnliale AvB

e e (inr-introduction {inr-I))

,,,,, I___ (definition as rewriting rule)

We have specified both the language system and derivation system
which are possibly sufficient to the proof in Appendix 1. We may often
want to revise or modify the defined logical system, due to the
inconveniences encountered later. By the inconveniences, we mean the
logical systcm being 100 weak, (00 strong, redundant, or irrelevent. Once a
logical system has been specified, the revision or modification of it is critical
and must be done carefully since already established facts may not be
guaranteed to hold. The current version of EUODHILOS does not warrant
such a theory revision as yet. However, a revision is safe in the case where
the logical system is augmented by adding symbols, axioms and inference
rules to the old system as far as the addition is consistent with the old one.

In Appendix 1, the screen layout of the proof of the theorem

- 12 -

~—(P v ~P) is shown, which means that the law of excluded middle cannot
be refuted. This is an instance of Glivenko's theorem that if P is any
tautology of the classical propositional calculus then the proposition -~P is
always constructively valid. _

Hoare logic and program verification

Hoare logic [17] is the most well known logic for the axiomatic
semantics of a pmgmnnnin% language and the verification of a program. The
principal formula in Hoare logic is a form of P{§](Q, reads "if P holds, then
after executing the program 8, Q holds”, where P and Q are first-order
formulas and § is a program in an ALGOL-like programming language.
These syntactic objects are easily described in the framework of DCG, as
well as the inference rules of Hoare logic.

In Appendix 2, we show the screen layout of the proof of the
following partial correctness assertion of a factorial program,

true{z:=1; y:=0; while ~(y=x) do y:=y+1;z:=z*y od}z=x!
with the precondition "true” and postcondition "z = x!".

Dynamic logic and reasoning about programs
Dynamic logic [16] is a kind of multi-modal logic which is an extension of
classical logic. The principal formulas in dynamic logic are the dynamic
formulas of the form [alp and the dual <a>p, read informally "after
executing the program a the proposition p holds", where "a" is a regular or
context-free program and "p" is a first-order or dynamic formula. They can
be easily dealt with in the framework of DCG. The proof examples includes
the following properties of a factorial program :
Termination ;
x200 <z:=1;((x>0)7;z:=xx z;x:=x-1)*; (x =0)7>true
Partial Correctness :
x=n>ofzi=1;((x>0)7;z:=xxz;x:=x-1)*; (x=0)?)(z=n!)
Total Correctness :
x20Aax=no<z:=1: (M z=xxz;x=x-1*; (x=0)">z=n!)

Intensional logic, reflective proof and Montague's semantics
Intensional logic [11] is a higher-order modal logic based on the simple type
theory, which requires context-sensitive constraints on terms. It includes a
lot of complicated logical concepts which however are all well described
within the framework of DOG and the rule description conventions.

The following metatheorem is ingeniously proved with the help of the
reflection principle ([39]).

Pt => - Vx:a. Pt (Generalization rule)

In Montague's language theory, natural language sentences are first
translated into expressions in intensional logic, which in tumn are analyzed
by using the posible world semantics, Under the defined intensional logic,
the following complicated intensional formula :

(Ap:(s,(e,0)). Ix:e(fish:(e,)ex:e A pi(s,(er)){x:e]))

Mhy:e.(believe:((s.0,(e,1) » M(walk:(e,t) » y:e) « jie)
which is a translation of a natural language sentence "John believes that a
fish walks”, easily and precisely reduces to a more simple and legible one :

- 13 -

Ix:e.(fish:(e,t)ex:e A believe:((s,t),(e,t)) » Mwalk:(e,1) » x:¢) = je).

First-order logic (with NK)
{1} Smullyan’s logical puzzles
(2} Unsolvability of the halting problem
(3) Proof by structural induction on list

(4) Category theory

Second-order logic and a simple equivalence proof
- VP[P(0) A ¥n(P(n) D P(n+1)) = VnP(n)] =
YR[Vn(Vj(j < n = R(j)) > R(n)) > VnR(n)]
(The principle of the mathematical induction is equivalent to the principle
of the complete induction.)

Propositional modal logic (T) and modal reasoning about
programs

F<palipog2<@ag) .
(A strong correctness assertion s implied from a termination assertion
and a weak correctness assertion.)

3. Related work

Much work has been devoted to building the systems for checking and
constructing formal proofs in various logical systems, e.g., see [5], [39],
18] and [38] for proof checker, see [12], [7] and [33] for proof
constructor, see [6], [34], [14], [15] and [24] for general system of
computer-aided reasoning. Here we will confine ourselves to various
approaches to the general system for computer-assisted reasoning to which
much attention have been recently paid. And also, we will have to restrict
ourselves to seeing only the distinction of a formal system description
language in each approach for the sake of the space limitation and since
there have not yet been so much work as to the other aspects such as
proving methodology for computer-assisted reasoning and reasoning-
oriented human-computer interface, to such an extent that comparative
studies become possible.

In [33], Prolog is employed as a logic description language as well as
an implementation language of & proof constructor. In [9] and [23], A-
Prolog, which is a higher-order version of Prolog and hence more
expressive than Prolog, is proposed to specify theorem provers. In [14] and
[15], atyped A—calculus with dependent types is used for building a logical
framework (LF) which allows for a general treatment of syntax, inference
rules, and proofs. It also has the advantage of a smooth treatment of
discharge and variable occurrence conditions in rules. In [31], the axioms
and inference rules of a formal logical system can be expressed as
productions and semantic equations of an attribute grammar. Then,
dependencies among attributes, as defined in the semantic equations of such
a grammar, express dependencies among parts of a proof. In [27], a logic is
to be encoded 10 a suE:ct of a higher-order logic. What they are aiming
principally at seems to be automatic check of rule conditions basically in one
way reasoning, with which we are confronted in applying a rule. In our

- 14 -

approach, we have to attain this in the framework of our proving
methodology, that is, in the environment that allows us to reason forward,
reason backward, reason in a mixture of them and so on. The uniform
treatment for them, however, is left open. In a current version of
EUODHILOS, the problem of automatically checking the application
condition of a rule 1s supplanted by presenting the rule condition to be
checked to a user when he or she chooses and applies a rule with the
conditions and entrusting the confinmation to a user. Note that this is not our
final solution to that. In [13], the metalanguage (ML) for interactive proof in
LCF [12], a polymorphically typed, functional programming language, is
used to show how logical calculi can be represented and manipulated within
it. In [1], constructing a general-purpose proof checker 1s undertaken
through devising a theory of proofs. It is "general purpose” in that it may
take as input the axiomatization of a formal theory together with a proof
written within this theory. A theory of fs is a kind of a specification
language for formal system from the viewpoint of software engineering,
and also a formal system description language. His approach is based on the
rigorious approach to program construction : to define a theory and then to
apply 1t

In addition to such a purely theoretical interest as what a general
theory of logics is, an important benefit of these treatments of formal
systems is, although their approaches are different, that logic-independent
tools for proof editors, proof chekers, and proof constructors can be
constructed. As to logic-dependent tools, we think that it would be better o
provide them by designing an appropriate metalanguage such as ML [12].

Among the present general reasoning assistant sylems, it seems fair 1o
say that it is only EUODHILOS and [8] that attempted to integrate such a
distinctive feature as proving methodology plus logic defining capability,
emphasizing visual interface for reasoning,

6. Concluding remarks and future work

In this paper, we have presented the unique features of a general-
purpose reasoning assistant system EUODHILOS. We have shown the
advantages and potential of our approach through a number of formal
systems and their proof examples. Specifically, the following have been
demonstrated:

(i) Advantages of generality

The generality of EUODHILOS have been tested by using it to define
various logics and to verify proofs expressed within them. All the logics
with their proofs were created in several hours. If we had had to develope a
reasoning system with the same functions as EUODHILOS for each logic
from scratch, it would have taken much time to do it, and we would have
had to repeat almost the same task for constructing a reasoning system every
time we were working on a new logic. EUODHILOS has demonstrated the
usefulness of generality in a much wider range of applications.

(ii) Definite clause grammar approach to the definition of logical

syntax

The definite clause grammar formalism was employed for specifying
logical syntax. We have found it more natural and easier for users to define
a logical syntax, compared to the other approaches to logical system

.15 -

description languages mentioned before. And the DOG framework allowed
us to automatically generate a parser with the function which generates the
internal structure of an expression, and an unparser(generator). Therefore a
user does not need to commit himself in those generations at all. Another
positive feature is that the framework requires less expressive knowledge
from the user in order 1o describe the logics. This shows the advantage of a
logic programming approach to a general reasoning system. It is needless o
say that the search and unification operations, which the logic programming
have, are essential for traversing a search space for a proof and manipulating
formulas and proofs, especially in a general setting for a general reasoning
system.

A formula editor and a debugging facility to test the defined language
serve to check the intended syntax. We have shown that these greatly lighten
a user's burden in setting up his own language [25].

(iii) Proving methodology based on sheets of thought

Lots of experiments for proving have convinced us that reasoning by
several sheets of thought natrally coincides with human thought processes,
such as analysis and synthesis in scientific exploration, from the part to the
whole and vice versa. It may be also expected that they turn out to give a
promising way towards proving in large.

(iv) Visual interface for reasoning

It 15 not so easy to objectively assess the interface. But I believe that
the visual interface for reasoning not only has been useful but also has
sen'ei_d to easily define the logics and to conceive ideas for constructing the
proofs.

An attempt at constructing a general-purpose reasoning assistant
system 1s, however, at the initial stage of research and development, and
lacks a number of significant issues which should be taken into
consideration. We shall touch upon some of future research themes which
may be helpful to augment and improve EUODHILOS.

(1) Augmentation of formal system description language

Much effort has to be spent on making the logic description language
more expressive. For example, in the current framework, rule descriptions
for tableau method, Fitch style presentation of an axiomatic system, some
formulation of relevance logic, etc., seem not to be expressible.
Furthermore, automatic mechanism for checking the side conditions of rules
is not satisfactory as remarked in the previous section. To overcome these
deficiencies, we would need some more powerful rule description language
and method.

(2) Investigation of higher-level supporting functions for reasoning

Developing a language for prnof strategies, incorporating metatheory,
etc., are important subjects since these could attain increasing the
naturalness and efficiency of proofs. It is also a remarkable recognition that
reasoning generally consists of the manipulation of information, not
symbols and they are just one of the many forms in which information can
be couched(3][32]. We believe that when we intrinsically consider
reasoning it become crucial to incorporate such an aspect into syntactical
reasoning,

(3) Maintaining a relational dependency among various theories

(4) Opening up a new apﬁl.icaliﬂn field of reasoning by EUODHILOS

(3) Improvement and refinement of human-computer interface for the

reasoning system

- 16 -

Acknowledgements

We would like to thank Prof. J. A. Robinson (Syracuse University), Dr. R.
K. Meyer and Dr. M. A. McRobbie (Australian National University) for
their valuable comments and discussions on the paper. Thanks are also due
to referees, whose comments were helpful.

This work is part of a major research and development of the Fifth
Generation Computer System project conducted under a program set up by
the MITL

Dedicated with affection to the first author's late wife, Fumiko.

References

[1] Abrial J. A. : The mathematical construction of a program, Scicnce of Computer
Programming, Yol. 4, pp. 45-86, 1984,

[2] Backhouse, R. and Chisholm, P. Do-it-yourself type theory (Part 1), Bull. of
EATCS, No. 34, pp. 68110, (Part 2), ibid., No. 35, pp. 205-245, 1988.

[3] Barwise, J. and Eichemendy, J. : A situation-theoretic account of reasoning with
Hyperproof (extended ahstract), STASS Meeting, 1988.

[4] Baiog, T. : The axiomatic method in phonology, Routledge & Kegan Paul LTD,
1967,

[5] de Bruijn, N. G. : A survey of the project automath, in: Seldin and Hindley (cds.), To
H. B, Curry : Essays on Combinatoty logic, Lambda calculus and Formalism,
Academic Press, pp. 579-606, 1980,

[6] Cogquand, T and Huet, G. : Constructions : A higher order proof system for
mechanizing mathematics, LNCS 203, pp. 151-184, 1985,

[7] Constable, R.L., et al. : Implementing mathematics with the Nuprl proof
development system, Prentice-Hall, 1986.

[8] Dawson, M., Sadler, M. and Mainbaum, T.: Generic logic environment, Proc. of
CASE ‘B8, pp. 215-218, 1988.

[9] Felty, A. and Miller, D. : Specifying theorem provers in & higher-order logic
programming language, LNCS, Vol. 310, pp. 61-80, 1985.

{10] Fujimura, T.: Why does logic matter to philosophy?, Philosophy of Science, Vol
14, The Journal of Philosophy of Science Society, Japan, pp. 1-5, 1981 (in
Japanese).

{11] Gallin, D. : Intensional and higher-order modal logic, with applications 1o Montague
semantics, Morth-Holland, 1975,

[12] Gordon, M. 1., Milner, A, J. and Wadsworth, C. P. : Edinburgh LCF, LNCS, Vol.
78, Springer, 1979.

[13] Gordon, M. J. C. : Representing a logic in the LCF metalanguage, in: D, Neel (ad.},
Tools and notions for program construction, Cambridge U. P., pp. 163-185, 1982.

[14] Griffin, T. G. : An environment for formal system, ECS-LFCS-87-34, Univ. of
Edinburgh, 1987,

[15] Harper, R., Honsell, F. and Plotkin, G.: A framework for defining logics, Proc. of
Symposium on Logic in Computer Scicnce, pp. 194-204, 1987.

(16] Harrel, D. : Dynamic logic, in Gabbay, D. and Guenthner, F. (eds.) : Handbook of
philosophical logic, Volume II : Extensions of classical logic, pp. 497-604, D.
Reidel, 1984,

(17) Hoare, C. A. R. : An axiomatic baisis for computer programming, CACM, Vol. 12,
No. 10, pp. 576-580, 583, 1969.

[18] Ketonen, J. and Weening, J. S. : EKL - An interactive proof checker, User's reference
manual, Dept. of Computer Science, Stanford Univ., 1984.

(191 i(_lé’r!st*.l : Making sense in music I - The use of mathematical logic, Interface 5, pp.

, 1976,

17 -

[20] Langer, 5. K. : A set of postulates for the logical structure of music, Monist 39, pp.
S61-570, 1925.

[21] Martin-Laf, P. : Inwitionistic type theory, Bibliopoplis, 1984,

[22] Matsumoto, Y., Tanaka, H., Hirakawa, H., Miyaoshi, H. and Yasukawa, H. : BUP:

A bottam-up parser embedded in Prolog, New Generation Computing, Vo. 1, pp.
145-158, 1983,

(23] Miller, D and Nadathur, G : A logic programming approach o manipulating
formulas and programs, Proc, of [EEE Symposium on Logic Programming, pp. 380-
IRE, 1987,

[24] Minami, T., Sawamura, H., Satoh, K. and Tsuchiya, K. : EUODHILOS : A general-
PUFPOSS reasoning assistant system - concepe and implemetadon - |, W appear in
LNCS, Springer, 1988.

[25] Ohashi, K., Yokota, K., Minami, T. and Sawamura, H. : An astomatic generation of
a parser and an unparser in the definite clavse gramman(submitted), 1989 (in
Japanese).

[26] Parker, J. H. : Social logics : Their nature and uses in social research, Cybemetica,
Vol. 25, No. 4, pp. 287-307, 1982,

[27] Paulscn, L. C. : The foundation of & generic theorem prover, I. of Automated
Reasoning, Vol. 5, pp. 363-397, 1980,

[28] Peirce, C. §. : Collected Papers of C. §. Peirce, Ch, Hartshome and P, Weiss (eds.),
Harvard Univ. Press, 1974,

[29] Pereira, F. C. N, and Warren, D, H. I, : Definite clavse grammars for language
analysis - A survey of the formalism and a comparison with augumented transition
networks, Arntificial Intelligence, Vol. 13, pp. 231-274, 1980,

[30] Prawitz, D. : Natural deduction, Almgvist & Wiksell, 1965,

|31]) Reps, T and Alpern, B : Interactve proof checking, ACM Symp. on Principles of
Programming Languages, pp. 3645, 1984,

[32] Robinson, J. A. : Private communication, 1989.

[33) Sawamura, H. : A proof constructor for intensional logic, with 55 decision
procedure, [IAS R. R., No. 65, 1986.

[34] Sawamura, H. and Minami, T, : Conception of general-purpose reasoning assistant
syslem and its realization method, 87-5F-22, WGES, IPS, 1987, (In Japanese).

[35] Sawamura, H., Minami, T, Yokota, K. and Ohashi, K. : Potential of a general-
purpose reasoning assistant system EUQDHILOS, Proc. of Software Science and
Engincering, RIMS, Kyoto Universily, 1988, also ITAS Research Report, 1590,

[36] Thistlewaite, P. B., McRobbie, M. A. and Meyer, R. K. ; Automated theorem-
proving in non-classical logics, Pitman Publishing, 1988,

[37] Turner, A. : Logics for antificial intelligence, Ellis Horwood Limited, 1984,

[38] Trybulec, A. and Blair, H. : Computer assisted reasoning with MIZAR, UCAI
'85.pp. 26-28, 1985.

[359] Weyhrauch, R. W. : Prolegomena 1o a theory of mechanized formal reasoning,
Artificial Intelligence, Vol. 13, pp. 133-179, 1980.

[401 Yokota, K., Ohashi, K., Sawamura, H. and Minami, T. : Gencral-purpose rcasoning
assistanl system EUODHILOS - its unique funclions and implementation -, 1990 {in
preparation) (in Japanese).

[41] Zanardo, A. and Rizzotti, M. : Axiomatization of genetics 2. Formal development, J.
Theoretical Biology, Vol. 118, pp. 145-152, 1986,

-18 -

Appendix 1. Inmitionistic type theory and a constructive proof

I EL |

" [TR T TN [T T e SRRl T TR)
€8 ampk
- _ITEgr=Adb =B L1%) TUTRE W0) Al T
VR
T Ly L TERES TN TR SR R TR L 9
CLFpeey
TEATSE Ta baddmd { () | VM "L b 00 Y
(1] p 11
L IR NI PR ST T
0 LE 3y
[T (T Addd Wi] Tl bl {4) | 7 “WPE3) SAIT
F]] 1 i Y s ——
TEM(H) | TR W
{) I p——
by TERTT T
01 "Zhaed
(TS Al () 1MF [TEC LTS Al W]
ARl TIeTE E
L)
¥
wahy Pl 1

ey G- wdfly
HEELERLIT - TR T LT T L]

EARATE L = PR :
fum eSS E-— ﬂl.._“. a $% PUS 3%
Pt - PPt il v 13 WBU 33
iy Sl v WO IXY st
Ba e " P ¥), [1 - 1.-1
. il el | 3 4 JHRL 1epoa
B e Thie e e o g | TV INRONL ey —nguy
TRy g TEAEE XYLINAG e T 3enpuT
) L RIS R < (AR CHYDEAT LiOS im0y
INEAT "UTE D PR Cem § e Ep 1M0d n_._"l.l..lﬁ_l
$3F3TTIUT ¢ YN CELFWE T 21001

- 19 -

Appendix 2. Hoare logic and correctness proof of a program

InmE ((pofale (T 5 efin Ao | Do) 3 00e 0L TE 100) a0

WPy R | (pofmEm il j¢fa JASEn el Pum) T ipe SR @ omp pmmay

iy |AmE (pofeEw IZ §]+fe ! Bope afes | (o] | Sex r-__l- dEm A m DR g
-...!.Tuat._:ln.-i-_vnunu".-l}vnls.[....i.__:-n ﬂh.iwlﬂuvnml:-q N ho-n..._-_-_:-_:.._.
ifm (AT X b iR Refear (Raa ._.h"h.n..:n_..a-._ L= LY
= LE] jAnfinE N LR PR R RS VR BT P
n_.__.m_r-._.:_..-_w_-_____.n_.:_.”_l_”-;....”__-- MV ELITTR T AT — P T |
L L —

PR il oy R

ifi«f)miTaN)ax

....;..;: ¢¢0'G'-Tr-a-[!'@ #

(30 L= il 10m PEOU, 3
T F=T PO AR - -
IARES fm) oy | A
SO | TS I T ==] P
EEW IS A== W] MEmsEj s
IEw T) U e T e -] Peaso
- = .
: HEWNOHL ™ 0™ 3 tale mmaBoadt), c— pwwalladd
1 1335 F-3 1otie o adt e ¥
HO1xY B 4 [P -eag o | pomi) 3 = ELIUEL U DT DR T TUTETS [ey
i
TWRIEA 1650 E— = P S L R |
ER TR PR L] 4 (ol pwd = Py = vl 2=~ P slload U7
ERL QS C EL (- ipewalp il 2-- muladd
WY NS o Py ke o "ue | 0" PEaE "weale il <-- wmilcaid i1
VoA LI0S o fas s
JLTE | | LELT LR B0 i D W] W TS e W Y

