~ ICOT Technical Report: TR-580

TR-380

B ATV Ly MBET - N — ALE
Juan & BE %

| —ik

July, 1990

& 1990, ICOT

Mita Kokusai Bidg. 21F (03)3456-3191 35

" :D I 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japun

Institute for New Generation Computer Technology

Wik e A7V x 7 MERAIT — % X— X5
Juan OEfE

i —1k
() AR = o o — R NN

B F — A < 2 e A7 e 2 PGS A fAAA ETEER - AT Ve 2 MERT B
2 (D00 @2 ¥n 588 Juan OEfEEER D, LIS EONMgT, ATV DT 4 HE
LT EANERIN TS, A7 Va2 NRIITHAGNA T V=7 FRRRA 7Y =7 O
fe I RTE T AR X, 2OB—{LEH L LTir 2 — FIUEfwTwD, #7527 1D
Er SO FRCE L Twd, A—ADIABICEAIEESRA Y » FLLTHwGR, £
RHRETER D, Fo - 2ed - ABEFRBATATEDY, HEeHilEsa—
Al Ao e sty L PR AR D, BT Juan OFFEL R P DAICERE] T 4

Outline of a Deductive and Object-Oriented
Language Juan

Ivaznmasa Yokota
Institute for New Generation Computer Technology (1COT)
21F., Mita Kokusai Bldg.. 1-4-28, Mita, Minalo-ku, Tokyo 108, JAPAN

e-mail: kvokota@icol.or.p

We explain the outline of Juan. which is a deductive and object-oriented database langnage
nnder design, along the line of extensions of deductive databases with object-orientation con-
cepts. In Juan, data and procedures are expressed iu he framework of logic programming.
Objcct identifiers are in the form of exlended terms for intentionally defined or persistent ob
jects, unification of which is formmlated in record algebra. Properties of ohjects are appropriaic
for partial information. All attributes in a head of a rule is also in the form of extended terms
to play a role of methods. Modular concepls are introduced in Juan and a query is processed

by message passing between modules. In this paper, we describe mamnly the features of Juan.

1 Overview

There are many approacheswhich have been proposed
as extensions to relational databases for supporting more
application domains, frequently referred as ‘new’ ones.
Among such extensions, deductive and object-oriented
databases (DO0Ds) are expected as a powerful candidate
for mext generation database systems [14]. Briefly speak
ing, DOODs are intended to be integrated databases
with beth advantages of deductive databases (DI3Hs) and
object-oriented databases (OODBs). For such intentions,
there are several approaches from some viewpoints: which
is regarded more important, DDDBs or OODBsY, what are
characteristics of OODRsT (2, 4]; what kinds of incom-

plete (and partial) information should be focused on®

We take an approach for DOODs as extemsions of
DODBs, by embedding ohject-orientation concepts into the
farmal framework of DD Hs. Extensions of DD Bs are clas-
sified from three viewpoints: logical, data modeling (en-
capsulary), and computational (paradigmatic) extensions
[14]. Especially, from viewpoint of the data modeling
ones, there are many works in three aspects: introdue-
tion of complex data structure, encapsulation of data and
procedures, and introduction of object identity.

In this paper, we describe rather informally an outl-
line of a DOOD language called Juan, which focuses
an ‘ohject-oriented [database)’ extensions in the above
framework: mainly data modeling and computational ex-
tensions, Not to mention, we do not exclude ather exten-
sioms, but we would rather embed also logical ones into

next version of Juan.

Juan has many distinguished features from other re-
lated works such as F-logic |5, 6] and DOT [10], espe-
cially in object identity, methods, modules, and inheri-
tance. We discuss how to embed object-orientation fea-
tures into DDBs in Section 2: object identity, properties,
hierarchy, inheritance, and methods, where we do not
necessarily intend to cover all its features. After then, we
discuss the unification in Section 3 and explain the out-
line of Juan in Section 4, and then describe some points
to be further discussed in Section 3.

2 Embedding Object-Orientation Fea-

tures

2.1 Object Identity

Object identity is a property, which identifies an object

e

from others, and an ebject identifier (oid) is represcota
tion for object identity. There are some criteria for gen-
erating and maintaining oids, especially from a viewpoint
of DOODs as extensions of DDBs:

(1) Rules define objects intentionally, each of which also
should has an oid. That is, rules should support a
mechanism for dynamically generating the ofd of such
an object, This featurc has not heen considered suffi-
ciently in other QODBs,

(2} Object sharing needs a ‘global” oid referred from the
related objects, especially in a distributed environ-

ment.

{3) A persistent object also needs an eoid, which should
be possible to be recalled when the object is activaled

N Memnory again.

(4) An oid should be given even when we have only par-
tial information ahout some object, because we can-
not expect an object has a fixed number of attributes

and fixed structure as the identification information.

Under such considerations, we define eoids as extended
term representation based on attribute-value pairs, and
the corresponding naming mechanism in the form of

rules.

For example, consider a graph consisting of nedes and
ares, where paths are defined in Prolog as follows:

path{ X, ¥} = arc(X, V).
path{ X, V) = arc[X, Z), path(2, Y.

What kind of an oid should be given to such an inten-
tionally defined path? Each path can be identified by the
corresponding route from the initial node to the terminal
one, where an owd might contain eyelic routes {infinite
structure] in a path.

Now such route information can be embedded as a
parameter of the predicate path in a Hilog style [3):

path{[X, ¥])/(X.Y) < are(X, Y).
path{[X|R)/(X,Y] &= are(X, Z), path(R)/(Z.Y).

In this case, path{R) before /' plays a role of the eid of
a path !, which is generated by the rules, and are(X, 1Y)
is an ofd in itself, As such an odid 1s |:lg,'lca.1l}' EE!IEI.B.i-Ed.

Ihiote that seiributes in oids (shortly, id-atiribates] can be alss embed-
ded into & Ust of properiies me follows:

pathiX, ¥.[X,¥]) & arc(X, ¥).
pathiX, VL [X| R = arel X, Z), path(Z, ¥,)

F —

differently from pointers or oumbers, it can be used over
multiple name spaces, especially for sharing objects or

activating persistent objects.

Another critical point is to represent partiality of an
ohjert. Even if we have nol a complete list of proper-
lies, we want to identify some object from others. Con-
sider the following example in the form of attribute-value

Pairs:

pti'd-i{,l;r:[ﬂu?ﬂﬂ. = _]:ﬂﬁ:'r!”lﬂ. list of attribu 1-':3]
person|name = paul,age = 24]/|a list of attributes]
person|name = paul,age = 30]/[a list of attributes]

where the firsi persen is identified only by a name, while
the second and the third persons are discriminated by
both remes and ages. When we want 1o distinguish mul-
tiple johns, we can add any number of attributes inlo

s,

For coming up te the above four criteria, we represent
an oid in the form of extended terms, called an object
ferm. Assume a set O of basic objects and a set V of
ohject variables. An object term is recursively defined on
CIU W as follows:

(1} A basic object s an object term,
(2} An object variable is an object term, and

(3) Oly = o1, -+, dn = o] is an object term, where
o,
and oy,
id-atirtbute

« Iy are a basic object or an object variable,
<o o, are object terms. [, = o; is called an

2.2 Properties

Each object can have any numbers of properties {or at-
tributes), which are different from id-attributes. In Juan,
a separator /% is used for separating id-attributes from
the succeeding attributes. Such an object is called an
attribute term defined as follows:

(1} An object term is an atiribute term, and

(2} OJIF Ay, Sifa{An. - Al o]
tribute term, where O, F,, 5; are object terms, A, Ay
are attribute terms (1,7 = 0), #i is called an opera-

tor: —, +—, or =.

is an at-

F; and 5; play a role of labels, F| is called a funetion
label which takes a function value, §; is called a sef label
which takes a sef value, Assume that any label is typed
such that it takes either a function value or a set value.

3

For example, consider the following example:
john/|age =30, habby — {music, sport}, parent — {mary}]

where john, age, 30, hobby, music, sport, perent, and
mary are basic objects, john plays a role of an aid of the
object, */' is a separator, and there are three attributes
in ‘[and ‘] 30, muste, sport, mary also might play
pids in other attribute terms, that is, complex objects are
represented in a nest of oids (although we don't mentien
it in this paper). A label age takes a function value, while
hobly and parent take set values. There are three kinds

of operators,
{1} age=30 — john's age is exactly 30 years old.

(2) hobly — {musie, sport) — john's hobby is subsumed
by music or sport, that is, an operator ‘=" represents

some possibility of the atiribute.

(3) parent « {mary} — one of john's parcnts is mary,
that is, an operator " represent partial information

of the atiribute,

Not to mention, operators ‘= and ‘«' may take a func-

tion value and ‘=" may take a set value,

Alrcady mentioned in 2.1, an oid has also id-atiributes
like the following:

joknllast name = lenmon|{|- -]

Such an id-attribute is alse treated as one of properties,
In another word, a list of id-attributes plays a role of a

primary keg in all properties of an object.

What are differences between id-attributes and attrib-
utes? Ullman discussed aboul value-oriented systems
versus object-oriented systems [11]. Tn his word, id-
attributes (or an oid) is vaiue-oriented, while attributes
succeeding an oid are object-oriented, because the former
iz decided by combination of basic objects and cannot be
dissolved, while the latter can be dissolved into conjunc-
tion of simpler attribute terms with the same oid. In the
sense, Juan can be said to integrate two approaches.

2.3 DMethod and the anlemantatiun

Labels (attribute names) are conventionally formulated as
functions from a set of oids to a set of attribute values,
The formulation can be read from an object-orientation

point of view as follows:

s An oid is a receiver object,

® A label is a message identifier,

¢ Arguments (if there are) of the label are messages
themselves,

e An attribute value (which might be a variahble) is a

return value, and

o The implementation is written in the bedy of the

ruie.

That is, each attributc can be read as a method. In F-
Ingic [5], labels are extended to a first order term called
an id-term, that is, a message with arguments, and in
new Fologic [6], the notation is revised like ‘natural’

methods with any numbers of arguments:

person[legal_names: P Y —» {N]]

— persen : Pllast name 2= ¥ — N]

And the semantics is changed for such varizsble numbers
of variables. However, it is a kind of overloading and the
arguiment positions are left to be fixed because id-terms
used as labels are essentially a predicate-based notation.

We extend labels (methods) in the form of extended
terms, the syntax of which are same as ope of wds,
Each attribute consists of a message identifier and the
message itsell. As a message, there can be any numbers
of arguments in the form of an attribute-value pair, Fuven
if all messages are not given to an object, the evaluation
is proceeded,

A e consists of an attribute term (a head) and a
gt of atiribule terms {a body), denoted as [fead <=
By, B, Any argument used as an allzibute in a head
can be a method to the object (the odid), and the imple-
mentation |= written in the body. A method is defined
as a seb of rules with same odd, and each rule can has
different implementation in each body.

(Consider the following example:

person[name = john]/[telllocation = X| — Y|
= implementation part,

where assume that object variables X and Y are bound
i the implementation part. If & message telflocation =
office] or tel|location = home] is sent to an object
prrsom|name = jofn|, it is evaluated in the body, and the
corresponding phone nnmber is returned as an instance
of ¥. If a message tel without an argument is sent to
the object, instances of a pair of X and ¥V are returned.
Further, & phone number might be changed according te
time such as daytime and night. Representation in such
an extended term is adaptable for such changes.

Even if labels are extended in the form of object terms,

the semantics remains to be basically same, that is, the

4

labels are interpreted as functions, the domain of which is
a set of oids and the range of which is also a set of oids
or the power set ©.

2.4 Lattice on a Set of Object Terms

In this subsection, we introdoce sul.rsumptinu relation be-
tween ground object terms (eids), and discuss about the
related inheritance of properties between objects [attrib-

ute terms).

2.4.1 Ordering botween Objects

Assume that a set 0 of basic objects has lattice structure
(with a jein A and a meet V operations) based on the
subsumption ordering = between basic objects. By the
definition of an object term in 2.1, a ground objecl term
is also defined as a pair (T, f) of a set T' of frees con-
structed on & Y and a function f from T to &. Let T be
a set of ground object Lerms.

Congider the following example:

persmuame = johi,

phone = numberfo ffice = 11, home = 12]|

It is represented as the following pair (T, f):

T ={T, T.name, T.phone, T.phonc.office, T.phone home}
F={IT,person),(T.name, john), [T.phonc, number),
[T.phone.office, 11),(T phone home, 12']}

As an example of path in 2.1, an object term may have

infinite structure.

The subsumption ordering of basic objects is extended
to T as follows:

(T L) E(Ty fi) e TaCT A Yee O filo)= filo).
By using the ordering, we can write properties as {ollows:
of [l — oy, 1+ o).

where o; C ;. It means a range of the attribute value of

a.d.

We introduce an equivalence relation = on T. If two

object terms o1 and o; have same struclure excepl a

{ Nirendy merdionsd. an ateribute valus can be separsted as comhination
of ihe cormesponding sid (o & set of eids) as the sttplbute valoe and [a wel

of) the attribate termis] =with the same vid(s).
I Earl, eobder & W LATY SETERET A 7, which i ecarsvructed by & and

a concatenation sperster ', Them & wee ¢ in defined as & subset of O

Vabe O abetDaet

nurmnber of cyeles or concatenation of part of the cyele,
we define oy = oy (sec the details in [13]). This relation
corresponds also to an example of Krebs eyele in [9]. C is
extended by £ as follows:

o =Zoy Dy Eoanoy Tyl

The relation & is partial ordering on T/ =,

2.4.2 Lattice on a Set of Objects

Given two object terms (Ty, fi) and (T3, fi). & new fune-

tien fi A f; is defined as a minimal set satisfving the

following conditions:

(1) Ap,) € fi,3(p.nal € fo. Py Ama) € 1A fH

(2} Jp, i} € fr.—3p, "::l €fe [prleinfe

(3) Ap,nz) € o~3(pm) €fi- Pz} € finfy

(4) Tf A, L) € fy A f2. then =3(pa,n) € fi A fo, where
p is a prefiz of pa.

Note that fi A f; is defined even if there are n; and n;

such thal ry; Any = L and there 13 no prefix which takes

L.
similarly, fi ¥ f; is defined as follows:

Apm) € fr,Apnz) E i (p V€ fiv hy

Az intersection and union of two trees are also trees, a
meet U and & join M operations are defined for given two
object terms (T3, fi) and [Ty, f7), as follows:

(1) (N AU(Tn L) =(ThnT, fi v f2)
(2) (T)T fe) = (LU T fi A fa)

Clearly T/ = constitutes a complete lattice,

2.4.3 Inheritance and Exception

Atteibutes are inherited along the lattice on & set of
object terms. When there are multiple attributes with
same oid a3 the result of inheritance, their values are
joined or merged according to the operator:

(1) if of[{ = 4y, 0 = ty], then of [— ¢ M4,
{2} if of [l = t1,] — 1a], then of|l — #; L ta].
MNote that lattice operations is defined between object
terms, while they are not defined between atiribute
terms. Then, as the result, the lower structure of {; or

f; might be last by this process.

5

Fecall that id-attributes are treated also as part of

propertics. Assume that some label [appears in an id-
attribute of an object oy and in an attribute of another

object oy, and oy C oy

o1 8 1]
o i {oa}{l = ty]/[- -]

where oy : {04} means o C op. In this case, o; does
not inherit the attribule with [from o, that is, an id-
attribute with | suppresses to inherit attributes with the

same label [, that is, it causes an exception.

Consider the following cxample in Juan:

bird/[flying = yes|
penguin|flying = no) : Inrd
super_penguitt : {penguin},

An object penguin[flying = no! docs pot inherik a
property flying = yes, while super.penguin inherits
flying=yes.

As a label has an argument, another expression can be
written by using a label with arguments:

bird/| flying|who = bird] = yes]
perguin : bird /| flying[who = penguin} = noj
super_penguin : penguin |

[flymglwho = super_penguin] = yes

If the imheritance relation is saburated, we have the fol-

lnwings:

bird/[flyinglwho = hird] = yes)
penguin : bird/|flying[whe = bird] = yes,
Sflying|who = penguin) = nol
super _priguin : penguin]|
flying|whe = bird] = yes,
flying[whe = penguin] = no,
Flyinglwho = super_penguin] = yes

It does not cause any inconsistency, hecause each label is

different from olhers.

3 Identifiability

An ohject is discriminated from another by comparing
their oids, which m_ight have infinite structure. Then,
oids cannot be compared simply under unigue name as-
sumption, because there is a hierarchy between basic ob-
jects, and an intentional object has an oid with object
variables. For such identification, unification between ouds

is introduced.

3.1 Object Identifier as Record Algebra

An object identifier (edid) corresponds to a so-called
record structure, For a theory for such data structure,
especially as a foundation of unification of partially spee-
ified terms (PSTs) in CIL, record algebra is proposed (7],
Here we formulate ofds as record algebra and the unifica-
tion theory on it. (Refer the details in [7].)

There are two differences between eids and FPS5Ts in
record algebra:

{1} There are basic objects or object variables in all
nodes of a tree in an eid, while there are tags or
parameters only in leaves of a tree in a PST {in
record algebra).

{2) There s a gl between basic objects because they
constitute a complete lattice, while there is oaly iden-
tity relation between tags in record algebra.

These differences make a concept of conflict for oids to

be unnecessary.

1o terms of record algebra, O° iz an access semigroup
which constitutes a tree, and @ is a merge syslem, an
element of which is attached to nodes of the tree. Let
R be complete O®-record algebra generated by © and W
be a set of object variables. Then, R[V] 1= record algebra
which adds V to A Note that, in [7], PSTs are restricted
in the tagged position, while the formulation of record
algebra does not have the restriction essentially, that is,
pids are formulated as G{V).

3.2 Unification between Object Identifiers

An oid iz a subset of A]V] and a pair o) ™ oy of two
ouds is called a basic constraint, where b9 is mergeable (or
informally unifiable), Before the definition of unification,
we must define o - 0, where .o € R[V|. Let | and o'
be G din and ({lg,-- 0o Dia}, F), respectivaly,
where F = {{lj,on) < Uy deiopa)} (035 called a
branch af F). And let

o= {{I‘:],' v 'Jlm}:n {“;Uﬂfm }1 R [I;kra;kJ}J
Then o'« ¢ is defined as
{{I-Iﬂr' o bl b F UL 05,)00y H'rjhdﬁi”j'

Clearly o' - 0 is also an element of H[V]. Note that the
definition is different from [7], because all nodes take
basic objects or object variables. In record algebra, there

are seven constroint orioms in order te solve & set of

constraints:

reflective law oMo

symmetric law o Moy = 0p MOy

restricted transitive law r Mo,z Mo, = o Maog,
where 1 is an object variable,

base law o)+ 01 M o+ 0y,
where either branches of o] or ¢} is not a prefix of

another.

merge law (17} {o9.07) M oy == 0 o

merge law (2) {o1.00) M oy = oy Moy

cancellation law o oy Mooy = o Mo

where {01,0:) i3 a pair of two elements in a sel and
L = K means that if [exists, then A also must exist.
In these axioms, we do not need the dase faw, because an
oid has basic objects or object variables in all nodes.

It is easy to understand that these axioms correspond
to urification process. For example, the capcellation az-

iom generates new basic constraints between subterms,

Unification algorithm is simply given as follows [7):

(1) An input is a set O = {g, -, } of basic con-

straints,

(2] Saturate & by applying the above axioms. This step
stops at finite steps, and results in T

{3} ' is the required outpul.

In & case of oids, this algorithm always succeeds where ©
contains a set of substitutions. However, further compu-

tation is needed:

{11 Az a glb of two basic abjects is not computed during
the process, we must compute C by lattice operations
of C7.

(2] As L is normally computed during the process, we

should cut down some cases,

Mote that unification between oids ran be formuelated
in another way. That is, as an eéd can be translated into
& w-term [1]. we can consider the unification as the join

operation {and the generalization as the meet operation).

4 Outline of Juan

In the previous sections, we explain various features of
Juan. In this section. we skeich the syvotax and the se-
mantics, the details of which will be explained in [13].

— 8§ —

4.1 Syntax

There are four kinds of symbols: a set 0 of basic objects,
a set ¥ of object variables, a set W of world identifiers,
and a zet T of rule identifiers. We show the svntax briefly
in the BNF style in Table 1.,

Iz the above syntax, we have not explained same fea-

tures yet;

- lutrudu.cins a dolled obfeel oy.0y. -« .0, which is use-
ful for indirect representation of an object, For exam-
ple, jekn/laffiliation — paul.a ffiliation].

o lotroducing a world concept and modularizing a data-
base. See the details in [12, 8],

We have some additional restrictions to the syntasx:

« When basic objects and object terms are used as
labels, tl:e:,' are t}rped for detiding to take a function

valus ur & set value.

o Fur avoiding A-unification, object variables in a dot-
ted abject are restricted in unifieation.

» Ohject variables cannot appear in a set value, for

aveiding AC F-unification,

The overall structure of Juan, defined above, copsists
of six-level entities as Table 2. And the ordering be-
tween object termz and between words are defined as
o {oy, 05} and w: {wy, - wy) respectively.

4.2 Semantics

There can be some approaches for the semantics of Juan,
If object terms and atiribute terms can be interpreted
as a set of constraints, just like as a szet of semantic
cxprl_-ssiuns i ilﬂ], we can consider Juan as a consbraint
legic programming language CLP{X}. However, in the
case, there is a problem on treating rules:

o If a rule is written as a triple of a head, a body, and
a sel of constraints, where a head and an element of
a body are based on predicate-based notation, il is
easy to consider Juan as onc of CLP(X]. However, il
might be ambiguous why extended term representa-
tion is introduced.

A rule itsell can be considered as a Boolean con
straint. However it is questionable whether the cor-
responding constraint solver works efficiently or net,
because implication in a rule might disappear.

o La means ‘e {4 a).

=

So, we consider the semantic domain [/ as a set of ground
object terms, that is, a mapping M interprets o € T as
an element o € {7 % In the sense, we abuse T instead of
U and also other symbals.

In this subsection, we sketch the semantics of ob-
ject terms and attribute terms. As for a modularized
database, refer [8]. (The details of the semantics of the
whaole langun,gc will b EX}'r]ﬂ.inE.'d in ilﬂ],:l

4.2.1 Object Terms

The interpretation is different depending on whether an
object term is used as an oid or a label. Because of the
macro Jevel domain, we consider only a ecase of a lahel.
A label iz interpreted as a function from T to T or ol
aceording to the type of the label.

Fuor l;'x.amp]g, intﬂrprﬂlaliﬁns aof pzrmn[namt = jahn]

and per,g:rﬂ,f[rmmr. = j-:hn] are different:

Mpersonname = jokn]]

= M[person][M[name] = M[john]] € [V,
Mperson|name = john|]

= M[name]{ Mperson]) = M[jokn] € T,

where in the latter neme is inl.erpn:h:d as & function
from 7 to £7, That is, interpretation of an object term is

changed according to what role it plays,
Consider another example:

person[name = john|/|tel[locafion = home] = 11,
telllocation = office] = 12]

The interpretation constitutes a kind of fiyper-graph:

Miperson[name = john||
Mliel[location = home [telllocation = o ffice]]
M1 M12)

where

Mtel[location = homel]

[M]person|name = jokn[]} = M[L1] and
Mtelllocation = office]]

{M[person[name = john|]) = M[12].

*The incerpre
eatinm A of an eid (T.f) = (fli. - dae- Jod{lee - -dnead, - F) s given as
Eollows:

MT. = (ML
= (ML) Ml b LMD - M) A])

That i, it ik also & tree i the domain LT

Table 1: Syntax of the Language

<object term>

i

<basic object>[“[" <id-attributes list *%]"]

| object variable>
| <object term®“."<object term=

<id-attribute: u= <basic oliject> “=" <object term>

<attribute term> == <object term> [“7*{"<object term> list®}"]
[/ 4["<attributes list*]"]

<attributes =

<object term><operator><attribute term>

| object term> <operator> “{"<attribute term> list“}"

“operator> e B | a, i I

<database> = S{*<world rules list*}]”

<world rule> i= [<world label>"="] <rule>
| =world relation>

<world label= e

“("«<world identifier>{ *,"<rule identifier>]"}"

ne | <world label= 4" <warld label=

<rules =
<world relation> =

«world identifier =

walttribute terim=s ["'-“:“ <attribute terms>].'Lst.|

e “{“:.‘_l.'.'i_rrhl lentifer=]i.‘.h“}'

Table 2: Languages Structure

Entities Definitions

world = moddule in a nusdufarized database

database = sct of rules

rule = (attribute term, [ettribute term.-- - aitribule Lerm})

attribute termn =
object term =
basic object, object variable

[object term, {attribute,. . - attribute})
{basic object, id-attribute) | {object variable, id-attribute)

4. 2.2 Attribiute Terms

First, complex attribute term is dissolved into conjune
tion of simple attribute terms. Let n be a function such
that gle: {-+}f]-++]) = o. Then

Moy : {ogg, oo [filhvr, oo a2 {vag, -, vam)] =
Moy - {on A A Moy s {o MM

Moy /[fi8in(w)] A M] A--on

Mo [Is182{n{vn). -+ v)]

M] A---ﬁM[t-gm]."'-

MNext, ordering and operators are interpreted as follows:

(1) Ml : {oz}] = M[o] S Mla]
(2) Mlew/1fi = o] = MA)NM[e]) S Mlea]

(3) Mloy/[sy = {vn, vum}]

= Ye; € M1 J(M[o]}, Feu € Mva]. & Co ez
That is, in the case of 2 set value, the operator is

interpreted as Hoare's orderding.

(4] “=" 15 interpreted in the opposite direction and *=" iz

interpreted ms — 80"

As an attribute term i3 dissolved into a set of noo-
nested attribute terms, each of which has only one at-

teibute, we consider anly the simple case,

5 Concluding Remarks

We describe the outline of & DOOD language Juan under
design. Juan has capability of various features of object-
orientation concepls, which are embedded into DMIHs.
The key peint iIn such extensions is extended term rep-
resentation, and we use it to represent not omly data
structure hut alse object identity and methods. Another
important aspect of an object otientation paradigm is the
computational model, which is mapped into query pro-
cessing in a modularized database.

In this paper, we have not cxplained the following

points:

Discrimination of function walues and set values,
where the guestion is syntactical differences [6] or
explicit typing.

Treatment of dotted objecls, which would closely re-
late to the depths of the language: lattice construc-
tion, unification, semantics, and terrmination of query
Processing.

Dynamically generated ordering or inference about a
hicrarchy itself, where reconstruction of a lattice of
object terms might be fallen into inconsistency.

Semantics of rules, databases, and waorlds, whick are
ander consideration, as well as procedural and fix-

point semantics.

As there have been very few works on DOOD languages
and the syvstems, there remain many problems to be dis-
cusaed. Tn the tentative syntax of Juan, we are making
some experiments on molecular biological databases such
as [4) and vase bases for fegal reasoning, Lthrough which

we are mnaking reguirements clear.

Acknowledgments

The author would like to thank Hideki Yasukawa, Yuki
hire Morite, members of Quirote meeting, and members
of ETR-5WG for valuable and stimulating comments and

SUggestions,

Relerences

1] H. Al-Kaci, “An Algebraic Semantics Approach to
the Effective Resolution of Type Equations™, TO§,
vol.4d, pp.293-351, 1986,

[2] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,
D. Maier, and 5. Zdonik, “The Object-Oriented
Database System Manifesto”, DOODED,

3] W. Chen, M. Kifer, and 0.5, Warren, “Hilog as a
Platform for Database Languages (or why predicate
calculus is not enough)”, DEPLEY,

[4] The Commitiee for Rational Thinking, “The Object-
Oriented Counter Manifesto”™, a manuscript disirib-
uted at SITMOD 80,

[5] M. Kifer and G. Lauszen, *F-Logic: A Higher-Order
Languages for Reasoning about Objects, Inheritance,
and Scheme”, SIGMOD 84,

— 8

[6] M. Kifer, . Lauscn, and J. Wu, “Logical Foun-
dations for Object-Criented and Frame-Based Lan-

guages”, draft, 1990

[7] K. Mukai, “Merge Structure with Semi-Group Op-
eration and its Unification Theory™, Computer Soft-
ware, vol.T, ne.2, 1990 (in Japanese)].

[8] C. Takahashi, “A Deductive Database with Hierar
chical Structure”, Prec. of SIGDBES, IP5]), Sappora,
July, 19390 {in Japanese).

|§I] H. Tanaka, “Metabolic Reaction Database™, Proc. &f
SIGIDRS, TPS], Sappora, July, 1990 (in Japanese),

[10] M. Tsukamoto, 5. Nishio, and T. Hasegawa, “DOT:
Term H.t';]rﬁ:‘:lltal.it‘m for I..ugic Natabases with
Object-Oriented Concepts”, Advanced Detobuse Sys-
tem Symposium, Kvoto, Dec, 7-8, 1890 {in Japanese].

1] J.1. Ullman, “Database Theory: Past and Future”.
PODSEY.

[12:‘ K. Yokota, “Deductive Databases with Mierarchi-
cal Structure”, JOOT [aternal meme., pre-session of
DOO-WG, June 29, 1939, (in Japanese]

[13] K. Yokota, “A Deductive and Object-Oriented Data-

hase I.a.nguage Juan” | in J:rt;Jrl:u:!irrtL! 1900

[14] K. Yokota and §. XNighio, “Towards Intesra-
tion of Deductive Databazes and Object-Oriented
Databases: A Limited Survey”, Advanced Database
System Symposiwm, Ryoto, Dec. T-8, 19389,

