ICOT Technical Report: TR-579 -

TR-579

Sontence Processing das Constraint

Transformation

by

K. Hasida

July, [}

oIS, [COT

Mita Kokusar Bldg, 21 (1313458-3191 -3

" :[:] I 428 Mita 1-Chome Teles ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Sentence Processing as Constraint Transformation”

ITASIDA, Koiti
Institute for New Generation Computer Technology (ICOT)
Mita Noknsal Bldg, 21F, 1-4-28 Mita, Minato-ku. Tokyo 108 JAPAN
Tel: +81-3-156-3069. E-mail: hasidaicot.or.jp

Absiract

In most practical rather than idealized problem domains, due to partiality of
taformation, sowe sort of constraint pl'ngra.ll'll'r‘lill,__ﬁ; is FEquirt‘d. rather than IJIL‘I"—']}
preferable as widely deemed, That iz, information processing i such domaius shonid
e regarded as transfornmation of constraiuts.

A method, called Dependency Propagation (D) of translorming logic program
is accordingly proposed as o way of execution in constraint programming rather than
compilation in procedural programming. As such, DP is meant o subsumne various
procedural methods 2= approximations. DP may first be regarded as a special case
af unfald Told transformation of logic programs. but later is extended by introducing
transelansal variables and some pelated vpecations for local transformation. Also
disenssed is a general strategy for choosing the right operation depending upon the
ol compniational context.

Sentence comprehension and production are hypothesized to be transformetion
of constraints by a general procedure, Standand algorithms for processing context
free langnapes are demonstrated to emerge from sentence processing by DEP under
context-free granmunars. Tt s wlse shown that compound structures are also dealt
with efficientlv along the same line,

1 Introduction

Procednral programming, where we stipulate the direction of information flow — as in,
sav, assignment y :=f(x) -— postulates that the prograpuner can restrict in advance the
range of possibilities abont which pieces of informalion are aceessible and how informative
they are compared with each other with respect to the problem under consideration. The
task of a programmer here is to design a flow of inforination so as to investigate the
accessible pieces of information in a decreasing order of informativeness.

Such a procedural approach often fails in daily situation as are considered in Al
hiowever, due to partiality of information. Cousider for instance how we understand
natural language sentences. It is previously nnknown which pieces of information are
accessible and which of them are more informative as to the delermination of what the

*Presented at The Logic Programming Conferenee 90, Tokyo. Also presented at ECAT90, Stockholm,
in & contracted version.

sentence means. Phonological information might be partly missing or unclear because
of notse. Syntactic mformation may or mayv not contribute very much., 1t s not so
informaltive when, for example, purely svntactic analvsis gives rise to innumerable different
parses of the sentence. Semantic inforination also may or may not be very informative.
When von have little prejudice about the semantic content of what you hear, syntactic
information would often contribute hetter than semantic information.

Fartialitv of information thus gives rise to a too diverse patiern of information How
to stipulate in advance in terms of procedural program. If you employed the procedural
paradigm in such cases. von wonid end up with either a wrecklessly complicated program
which fails to reflect the modularity of the relevant knowledge, or a program which is
terribly inefficient. failing to implement the diverse flow of information. at the price ol
mochilar organization. Consider a computer svstem to comprebend natural langunage
sentences, To refiect the modularity of the relevant consiraints in the program is to make
procedure modules for morphological analvsis, syntactic analveis, semantic analysis, ete.,
and then line them up along this order. This would prevent, for instance, the reference
to a piece of pragmatic information at the stage of svntactic analvsis, contradicting the
diversity of information flow.!

When we face partiality of information as in the domain of natural language. therefore.
we need some sort of constramt programming, in order to implement a diverse flow of
information and at the same time to have modular design of the svstem so that it shonlid
be tractable for the designer. be it human or nature. Namely, the information internalized
i the svstemn should be regarded as constraints rather than procedures. This conclusion
letng applicd to every mtermediate stage of computation, it follows that wformation
processing should be transformation of constramnts.

Ihe rest of the paper discusses a method of constraint transfermation. The problems
we consider are those of artificial intelligence or cognitive science in general and natural
language processing in particular. In such problems, one must deal with constraints on
combinalorial efijects such as parse trees and semantic networks., Constraints on numerical
domain, finite domain, ete. [1, 2, 9, 11, 14, 18] play at best a minor role here. The
irapsformation method we develop is an extension of unfold/fold transtormation of logic
program., The vital difference between the preceding works on program transformation
aned onrs, however, s in the purpose. Former approaches have been interested in derivation
of efficient programs. In contrast, we are interested in efficient transforination, because to
us transformation is primarily execution rather than compilation. So a major objective
ol vurs is to got officient domain-specific algorithms emerge from domain-independent
transformation strategies. In fact, we show that a general control scheme of constraint
transformation applied to sentence parsing under context-free granunar gives rise to a
process approximated by standard algorithms, and that more complex grammars may
also he dealt with along the same line.

TAlthough we are able to write a fairly coneise and efficient procedure for sorting without respecting the
modularity of the nnderlying constraints, the difference between sorting and natural language processing

1= that the constraint relevant to the former is far sitnpler than in the Jatter, and the possible patterns of
information flow thercin is strongly restricted as mentioned carlier.

2 Dependency Propagation

A method of constraint transformation. called dependency propagation, is introduced be-
jaw. The first two subsections describe three local transformation operations: fusion.
doiwnward penetration and wpward penetralion. Discussed after that is which operation to

choose m o which vccasion.

2.1 Basic Method

We represent constramts in terms of fipst-order logic programs on Herbrand universe.
which is a domain of combinatorial objects. A program is a set of program clauses. as in
Prolog. A program clanse is a disjunction of afomic constraints. An atoiiv constraint is
aliteral. a possibiv negated hinding of & variable (such as X ££(Y¥)), or a possibly uegated
eapiality hetween two variables. The arguments of an atomic constraint are all regarded as
possibly instantiated variables, For instance, a binding X =Y, Z} is an alomic constraint.
whose argiients are X, ¥ and Z and equality X=Y is also an atomic constraint whose
areuments are X oand Y.
A program clanse looks like:

(1) plX,£00)) = q(X,a), riY).

DEC-10 Prolog notation being adopted, namnes beginning with lowercase letlers stand
for constants {including functions and predicates) and those beginning witlh uppercase
letters varables. Underseore () is also used accordinglv. TTalike Prolog, the order of
atorie constraints in the body and whether a binding is embedded in a literal stipulatedd
separatelyv are irrelevant. so that [1) is identical 1o the {ollowing.

(?) p(X,Z) :- W=a, q(X,W), Z=£(Y¥}, r(Y).

Just for the sake of expository simplicity. we assume that a program clause Is a Horn
clause. but our method is not so restricted cssentially. The formulation of a program will
e extended in the next section by allowing transclausal variables, so that a program is
not exactly of a clansal form in the standard seuse of the term.

B a cansfraint we mean a set of programn clauses with one distingnished clause called
ihe top clanse. which is the representative of the entire constraint. Only the top clause
i« written as lacking the head, The body of a clause is called a goal, and the body of
Ve top clause s called the fop goal. As in Prolog again, the purpose of the computation
s 10 show that the top goal is satisfiable,® in the sense that it has a minimal model as
a set of ways of assigning finite Ierbrand terms to the variables appearing in it. Thus
the constraint (1o, program) is transformed so as to have a more concise represcotation
of the minimal model. A piece of computation is carried out upon a goal, and [ails if it
i detected Lo be unsatistiable, A variable is instantiated when its value is known to be
unique in Lhe context of the goal.”

“More generally put, the purpose here is to tailor an abductive explanation [§] of why the top goal conld
be true. e to partiality of information, or lack of knowledge in particular, this involves assumption of
some parts of the constraint without any explicit reason to believe them to be true,

30f course there is ne algorithm to judge whether a goal is satisfiable, or whether the assigninents to
variables therein are uniquely determined in that context, for exactly the same reason why there i3 no
corresponding algorichm lor Prolog programs.

For instanee. goal (3} may be transformed to (4). llere the definition of predicate
member 15 (5}, Predicate p, defined by (6). has heen created during this transformation.

{4} :- member(X,[a,b,c]l), member(X,[b,c,d]).
(4} 1= p(X).

{3} member(E,[E|_]).
member (E, [L12]) := member(E,5).

(61 p(b).
plc).

Let us formulate a general procedure for constraint transtormation. Our pracedure
is a sort of unlold/fold transformation [13] controlled so as to yield satishable goals, hy
elitninating dependeney in the program. We say there 15 a dependency when one variahle
appears at two different arsnment places of two (possibiv the same) atomie constraints
in the saine goal. For example, the following goals each have a dependency.

(71 = plX), qlX,Y).
i) o= plX. X0,
vy - p{f (X))

{7) has a dependency concerning variable X. 5o does (8). The dependeney in (495 is implicit;
this goal 1= regarded as identical to the following, where the dependency concerning ¥ i
explicit,

(10} = plY), Y=£(X).

A vacwous dependency need not be climinated. A dependency is said to be vacuous
when one of the argument places is vecwous. An argument place is vacuous when it
imposes 1o restriction on the instantiation of the variable, Thus, only the first argument
place (Lo the slot X oceuples in X=£(Y¥,2)) 15 not vacuous in a binding. The first
argument of member as defined by (5) is vacuous, so that the dependency in the goal
below is vacuous and hence invokes no computation.

(11} - member(a,S).

Note that, as far as Horn clause program under the closed world assumption (CWA) is
concerned, a goal is satishiable i it conlaing only vacuous dependency and every predicate
there is satisfiable. As a special case, the cipty goal is satisfiable, A predicate is satisfiable
il the body of at least one ol its delinition clauses 13 satisfiable, Let us say that a goal s
modular when 11 contains only vacuous dependeney and every predicale there is modular.
We further say that a predicate is modular when the hody of at least one of its definition
clauses is modular,® Here we employ the MINIMAL delinition of modularity. That is.
nothing other than mentioned above is mwodular, so that modular goals and predicates
are satisfiable in the standard sense thal they have linite models. Predicale p which has
only one definition clause as follows is hence not modular,

*In the foregoing literature [4, 5, 17], modularily has been given a stronger definition; ie.. that a
predicale = modular when ALL of itz definition clauses have s modular body.

(12} pOO = plx).

Flimination of dependency is a very good heuristic as long as Horn clause logic pro-
grams under WA are concerned. and is still a useful henristic in more general cases
as well. We pick up clauses whose body contain dependency, and replace them with
pyuivalent clauses without dependency. by fusing two atomic constraints into one for each
dependency.” A new predicate s imtroduced here. For instance, (13} is transformed that

way to [14).

(13) p(X,¥,2,W) :- qlX,¥}, ri¥,Z}, s(W).
(1 pX,Y,Z,W) - (X, L2, s(W) .

Preddicate c0 has heen ereated here. such thal €0(X, Y, Z} is equivalent to g (X, ¥) A (Y, Z)
for anv X. ¥ and Z. That is. two atomic constraints q(X, Y) and r (Y, Z) have boen fused
te e0(X, ¥, Z). The definition clauses of 0 might contain some dependency, probably
due to the original dependency just eliminated. In faet, hoth clanses in €0's delinition
(13) comtain a dependency, provided that g s deflined by (16].

(137 a. cO(X,Y,2) - ¥=£(X), r(Y,Z).
h. cO(g(W),Y,Z) :- q(M,Y), r(Y,Z).

61 a4 qlX, FOX)).
b, qlg(W),¥) = g(W,¥Y).

Transformation is thus recursively applicd. (13a) and (15h) are transformed to (17a) and

[1Th]. respectively,

(17 a, c0(X,£{X),2) - <1(X,2).
b, c0(g(W),Y,2Z) - cO(W,Y,Z).

Note that ¢1(X, Z) has replaced ¥ = £{X) and £ (Y, Z). When [using a literal and a binding,
i general. the areuments of the resniting literal are the arguments of the old literal and
the binding minus the first argmment of the binding. Note also that, in the transformation
of the second clause. the body has heen folded into c0(W, Y, Z), based on the equivalence
mentioned above.

We refer to this method as dependency propagation (DP) 5, 6], in the sense that
dependency propagate across the constraint as climination of dependency gives rise to new
dependency. A simple version of DI mav be formulated as a special casc of unfold/fold
transformation ol logic program, which has been shown to be sound [15] in the sense of
the declaralive semantics being unchanged.

2.2 Transclausal Variables

In the standard formmlation of clausal form, each varable is local to one clanse; le.,
universally quantified with that clause as the scope. A typical drawback of this is that
no information ahout variables may be shared among different clauses. This raises com-
putational complexity concerning both time and space: Communication of any such in-
formation thus necessitates explicit computation such as resolution or fusion, and the

SMore than two atomic constraints may be fused al once in some implementation [17].

arity ol predicates tends to be large. The method discuszed so [ar here s problematic in
this connection, hecause fusion tends to introduce predicates of greater arily, increasing
compntational complexity and decreasing readability.

A standard practice by which to settle this issue is to introduce global variables, as
i« the case with most programming languages. We will refer to what correspond here
as transelausal variables, which are very similar to the global variables of PASCAL. For
instance. program (18] should be iulerpreted as meaning (19). in the standard notation
af first order logic,

(18) p(X') - q.

q - r.
r o= =(X').
(X' - .

(197 WX {piX) — gl X} A~
YX gl X)) — AN A
YX{r N — <X} A
YUY« XN}

A variable with a superscript, lke X' in (18}, is a transclausal variable; e its different
agecurrences i dilferent clauses are regavded as sharing the same memory location.

We sav an atomic constraint o i a goal s an eecestor of atomic constraint ;7 in another
goal, when either they are the same or there is a clause 5 1= AL such Lhal v is nnifiable
with o and the body of A contains an ancestor of 3. Nowhere else o s an ancestor of 3.
Introduced accordingly are quasi-order relations among atomic constraints and clanses,
That is, we say an atomic constraint o o a goal is higher than another atomic constraint
A another goal. or 4 s fower than o, when the goal to which a belongs contains an
ancestor of 3. Also, a clause © 05 higher than another clause ¥, or ¥ 15 lower than .
when the body of @ contains an ancestor of the atomic constraints in the body of W,

Dependencies concerning transclausal variables may be transclausal. That is, a de-
pendency concerning a varigble occurs between two atomic constraints which refer to this
variahle as an argument and belong to two possibly different clauses® Here, there must
be a goal contaming distinet ancestors of these atomic constraints: lLe., the two atomic
ronstraints must he conjunctive with each other. In the lollowing program, lor instance,
there occuts a dependency concerning X! between Lwo alomic coustraints p(X', ¥) and
% =a, because two of their distinel anceslors g{A) and r appear in the body of the first
clause.

(20} s(h) := q(A), T
q(Y) = p(x',Y).
r - X'=a.
ro- (X',

There is another dependency of the same sorl belween p(X', ¥) aud t{X') for the same
reason, but the two occurrences of X'} in X'=a and t(X') constitute no dependency,
because they share all the ancesior literals, such as r in the first clause.

*We assume. without loss of generality, thal Uhe Lwo argniments of a possibly negated equality must be
transclansal variables cach of which appears in a clanse higher than but not equal to the one containing
that equality,

fi

Let us revise DP to supporl transclausal variables. Several modifications arc necded.
First. the definition of modularity must be changed, corresponding to the above revised
definition of dependency. Second. transformation strategy should be extended s0 as Lo deal
with transclansal variables, Two operalions are proposed below to handle transclausal
variables.

For instance, variable ¥ in (21) may become transclausal when the dependency con-
cerning it is eliminated. For instance, {22} is obtained after

I'or instance, suppose the dependency concerning Y in (21} is to be eliminated. Here
let us make ¥ peacfrate downwards through p(X, Y). 10 obtain {22). where Y has been
rendered transclausal as Y.

(217 = plX,Y), q{¥,2).
(227 = cO(X), q(¥",2).

If s defined by (230, eb will be defined by (214).

(23] a. p(1,a).
b, p(2,b).

(247 a. c0(1) :- Y'=a.
h. c0(2) :- ¥'=b.

Now there have arisen two pieces of transelausal dependency concerning Y9 here. One is
hetween q(Y?, Z) in (21) and Y'=a in {24a), and the other is between q(Y", 2) in (21]
and Y=b in (24h). To eliminate these pieces of dependency, let us lower g(¥?, Z) 10 {21)
and get YO penelrating downwards, to obtain the following.

(257 = cO{K).

(26 a. c0(1) = Y'=a, <c1(Z).
b, c0(2) = Y'=b, <2(Z).

Predicates et and €2 are derived [rom g, in the contest of (26a) and (26b), respectively,
just as e was derived from pin the context of (21). The definition clauses of ¢1 and
c2 prohahly refer to YV, Note here that no new predicate has been introduced from 0.
{'omputation would proceed further so as o climinate the remaining dependency.

As sketched above, downward peneiraiion engenders transclausal occurrences of vari-
ables in lower clauses. Upward peneiration introduces transclausal vecurrences of variables
i1 higher rather than lower clauses. Upward penetration is typically applied wlhen a tran
selausal variable appears as an argument of the head of a definition clause [or the predicate
of the literal to be unfolded, as with the second clanse in the following, for instance.

(27} a plXY) = q(X, Y2, (XD,
b, q{ﬁlj Uy - s(U).
. q(va} e u(H}.

We assume that the literal g(X, Y} in (27a) is aboutl 10 be processed in order to elhinu-
nate the dependency concerning X. Suppose further that the transclausal variable Al car
ries some information somewhere higher than (27a). Upward penetration of A' through
q(a', U) gives rise to the following.

(28) & p(A',Y) = c(¥), r(al).
h. p(X,Y) :- q(X,Y), r(X).
cooefl) - s,
dooq(V, W) o= udW).

Clause (27h) has been replaced with {28¢). We have created (28a) by copying (27a)
[(=i28h)) and replacing q(X,¥) with ¢(¥Y) plus X = A" therein. A clause must be created in
the same way from every clanse whose body contains q. Note that there is no remaining
dependency within the above part of constraint.

2.3 Choice of Local Operations

[n smnmary, we have discussed three types ol local transformation vperations: [usion,
downward penetration. and upward penetration. For each of them. there ave two cases:
unfolding and folding. Unfolding introduces a new predicate and folding renses a predicate
previously created by an unfolding of the corresponding type. Whenever possible, folding
1s preferred to wnlolding. If folding caunot apply, an appropriate type of nnfolding should
he chosen out of the above three so as to maximize the chances of Jater lolding, Let us
asstnne that downward penetration is the default choice here, and consider how to choose
hetween fusion and upward penetration depending upon the local computational context.

Fusion is preferred when the pattern in question — the combination of the two argn-
ment places appears frequently. In some caszes, the current constraint might contain
many mstances ol the same pattern. Suppose that the dependency between p(X, ¥) and
ql¥, ZJ) 15 10 be eliminated, for instance. If vou find that in the present constraint there
are many of the same pattern of dependency between the second argument place of p and
the first argument place of q, then probabiy fusion 1= the best choice. Another type of
cases where fusion 1s preferable is that in which the same pattern of dependency is ex-
pectedd to arise later. For instance, the pattern of dependency between member (A, B) and
append (B, C, D)} will recur when the two literals are unfolded, where member is defined
by (5) and append is defined as {ollows.

(29} append([],Y,Y).
append([A1X],Y,[A1Z]) :- append(X,Y,Z).

This recurrence is detected by looking at the two relevant argument places. In the second
definition clanse of member, the second argument is instantiated to a list and its CDR
part is constrained again as the second argument of member. The first argument behaves
similarly for append.

Upward penetration should be fired when. as mentioned regarding (27). an argument
of the head of a clause is a transclausal variable introduced somewhere higher. This
argument place should be pertaining to a dependency one level higher. Perhaps there
would be other occasions where upward penetration is preferable, but we do not investigate
them any more here.

3 Parsing and Generation

This section demonstrates that efficient computation comes out of the above transforma-
tion strategy. It is shown in particular that standard algorithms for context-free languages

R

emerge, mainly due to npward penetration. Constraints more complicated than context-
free grammars are also processed efficient]ly by extending the present framework.

3.1 Phrase Structure Synthesis

In natnral language processing, sentence parsing is almost the only subdomain for which
there are estahlished algorithms: i.e., parsers for context free languages. It is hence a very
sood demonstration of the efficiency of constraint paradigm. if a process approximaled in
terms of such an algorithm emerges as a part of constraint transformation.

Lot us consider the following extremely simple context free grammar.

(307 P -«
P PP

Sentence parsing under this grammar may be formulated in terms of the following con-

stratnt.

{41y :- p(a”,B), A%=[ala'l, .-, A" '=[ala"].
p(lal®],X).
p(X,2) = p(X,Y), p(Y,2).

Note that the dependency comeerning ¥ in the last clause is vacuous, hecause the second
argiment place of p is vacuous. Thus the only dependency to eliminate now is the one
hetween p(AY, B) and AY=[ala']l. So we oblain the following by downward penetration
of &Y through p{_ﬁ.“l By, which 1s unfolded.

{423 = py(B), A"=[ala']l, ---, A" '=[ala"].
_'DL'l'i-l!:'!-]::'-
pu(Z) :- p[ﬁ.”,‘f), p(Y,2).

TThe only relevant dependency here is the one concerning the first argument of p(&", ¥) in
the bottom clause. This literal is hence folded and replaced with pp(Y). the entire clause
being translormed as follows.

[BEY Pn{z} e P'II{Y)! P':'f,z:' .

Now we have a non-vacuous dependency concerning ¥, because py savs something
substantial about the instantiation of its argument. The head py (A% of the first definition
clause of pp has transclausal variable A” as the arguinent. Since A® has been introduced
in the top clause, upward penetration is applied here, so that the [irst definition clause of
po is replaced by py, .. and a new definition clause is introduced, as [ollows.

{5” Put s
po(Z) := poa, plA',2).
pa(Z) 1= polY), p(Y,Z2).

The last clause of (32) has been replicated while pg (Y) therein has been replaced by py,
plus ¥Y=4&', giving rise to the second clause in {34} above. Note that p(Y) no longer
imposes any restriction on the instantiation of Y. The dependency concerning ¥ in the
third clause here is vacuous and left untouched for the time being,

A problem here, incidentally, is that another top clause as below is created.

4

{3%) :- poa, B=A', A"=[ala'], ---, A" '=[a|a"].

o avoil having two top clauses. we could introduce a new predicate q by which to mediate
between the top clause and the locus of upward penetration:

(36) <= q, A"=[ala'], -, A" '=[ala"].
q = pui, B'=AT
q = Pu{Er)}.

Nest, pCa', 2) in the second clause of (34) is unfolded and a new predicate p; 1s

crealed, &' penctrating downwards:

(370 pulZ) - poa, BtZ).
pilA*).
FI{E} T pl{:‘lrj, F{Y,Z-J.-

Operation proceeds similarly, vielding the clauses below.

(35) poe.
pilZ) = pia, p2(Z).
P 27 Poas Pre-
Pn':z-} = Puzs Pz(z:]-
peC7) o= pe (Y, p(Y,2).

Shown below 1s what is finally obtained.

i3 = g, A"=[ala'], ---, A" '=[alA"].
q :- po(B").
g :- puss BU=AT. (D =i <)
p(2) - py, p@). (0=7<j<n)
p.(Z) - p (YY), pOY,E). (U< <)
Piit- “-] i P '“}
Pik = Piyy Pak- (07 <j<k<n)

Clontrol issues are irrelevant here, becanse (39) 15 obtained by exhanstive elimination of
dependeney and involves no nondeterminism.

Part of (39) amonnts to a well-formed substring table, as in CYR algorithm. Larleyv’s
algorithm [3], chart parser, and so on. For instance, the existence of clanse pigi-pi s,
pi«- means that the part of the given string from position 7 to position & has been parsed
as having category 7 and subdivided at position j into two parts, each having category
F. Note that the computational complexity of the above process is O(n®) in terms of
both space and time. Maoreover, the space complexity is reduced to (n?) if we delete
the literals irrelevant to mstantiation of vanables, which preserves the semantics of the
cemstraints in the case of Horn programs. Thal is, the resulting structure would he:

(10) :- g, A%=[ala'], ---, A" '=[ala].
q :- pa(B").
g = B%=A' (0 <i<n)
pi(Z) - p,(2). (D1 <7 < n)
p(2Z) = p(Y), p(Y,Z). (0 <4< n)
P, 0<1 < <n)

10

Although 1his example assumes a very simple grammar, it is quite straightforward to
extend it to context-free grammars in general. The process illustrated above corresponds
hest to Earley's algorithm. Our procedure may be generalized to employ bottom-up
control. so that the resulting process should be regarded as chart parsing, left-corner
parsing, ctc. Note further that incremental parsing is captured simply by considering
that n increases as more input words are supplied by the input device,

The above parsing process never fall in an infinite loop due to lelt recursion, unlike
DCG of the standard type. If we had A= [b|A'] instead of A” = [alA']. for instance, we
would have the following mstead of (34).

(11 := pa(B), A"=[bIA'], --- .
polZ) = poY), p(Y,Z).

Predicate py lacks a finite proof, and hence is unsatisliable under the minimal interpre-
tation. This is detected by checking each predicate once when it is first given or created.
lulinite loop is avoided in just the same manner also in a more complex case where every
input symbol is a well-formed word but they are lined up in a wrong way.

Sentenee generation is formulated similarly to (31} as follows.

(127 = p(a",B), A"=[_1A"], A'=[1470, -, A '=[|a"].
pllalx],x).
piX,Z) - p{X.YJ), p(¥,Z2).

This also gives rise to (39). Although this is a too simple example, it suggesis that
incremental generation will be nnplemented just the same way as incremental parsing,
with » increasing as more words are required by the output device.

The polynomial complexity bound mentioned above 15 due to transclansal variables,
or upward penetration in particular. If we restrict ourselves to local variables and [usion
operation, the computational complexity for processing context-free languages becomes
exponential. Let us consider the former example of parsing again. Starting from (31),
we first procecd just the same as above as far as (33), provided that A''s are treated as
constants: otherwise the computation would be more complicated. Suppose that predicate
r, is such that r,(X,) is equivalent 1o the following for any assignment to variables,

(437 p(AY, X0 A p(Xo, X0 A - A (X2, X)

po may be regarded as rp. As easily seen. if a definition elause of r, is (44) with 5 = i, then
Iy will be created by tusion of r;(Y) and p{Y, Z), whichever literal might he unfolded,
and a definition clause of riyq will be (44) with j = ¢ + L.

(44) £, (Z) - r, (Y}, p(Y,2).

Note that fusion of r,(Y) or p(Y, Z) with any other literal never takes place, because Y
is constrained nowhere else and the second argument place of p is vacuous. Since (33) is
(44} with 7 = 0, it follows from induction on 7 that r; is created during the current parsing
for 1 = ¢ < m. A similar reasoning will show that exponentially many corresponding
predicates are created when the basic version of DP with only fusion is applied to the
following context-free gramimar.

1

(45) " — a () —«
P—prr Q= PP
P — I'g Q — PQ

The efficient computation shown above has emerged out of a domain-independent
control strategy. In thos counection, Shicher [12] has also proposed a computational ar-
chitecture by which to unify sentence parsing and generation, but his method is primarily
specific to phrase-structure synthesis, A significaut enit of our approach is that it is
not restricted Lo parsing or generation i context-free languages. Also. no additional
mechanism is required to extend the underlying grammatical formalismn so that grammat-
ical categories may be complex feature bundles, as is the case with GPSG, LFG. HPSG.
ete.. rather than wonadic svmbols. In such a more general case, the standard parsing
algorithms are regarded as partially approximaling DP in senlence comprehension,

3.2 Manipulating Compound Structures

The above parsing process is given the surface string as input and svnthesizes the rest
ol the sentence structure. [t should hence be a straightforward business to generalize
this s0 as 1o tailor more complex sentence structures. On the other hand, the generation
- process mentloned above receives the output request and synthesize the sentence structure
cutirely, This b5 anlike the actual sentence generation. in which a semantic or pragmatic
structure is largely given and the rest of the sentence structure is worked out,

Helow we consider grammars much more serivus than context-free, grammatical cate-
gories being complex structures instead of monadic syibols. Now dependency may arise
conceriing not only the surface string but also the internal structures of categories, which
could involve semantic or pragmatic structures, More realistic sentence generation is thus
nnplemented, though the following discussion does not make anvy explicit mention about
parsing ur generalion.

Mainly three issues are considered here. First, it is shown that folding takes place often
enough. which means that local pieces of computation are largely shared, contributing to
the efficiency ol the entire task., Second, in this connection, NP will be shown to have
a nice ternination property regarding sentence processing, in the sense that it avoids
inlinite loops in many cases. Last, we consider how to control the order of computation or
partial computation, and discuss that DP may be extended so as to naturally incorporate
soine control sirategies proposed elsewhere,

Take for instance the following top clause.

(46) :- c(category(H,[]1),5TRO,STR1}, ---.

Now we are gomg to eliminate the dependencyv. Suppose the definition clauses for
inchide the clause below.

(47) c(category(HEAD,CATLIST) ,X,Z) :-
c(CAT,X,Y),
clcategory(HEAD, [CAT|CATLIST]),Y,Z).

CATLIST may be regarded as the value of subcat feature or slash feature in HPSG [10].
Similarly, HEAD is the bundle of head features and the like, which may refer to the semantic

12

ot pragmalic structure. (47} contains the same pattern of dependency as in (46). a
dependency between the first argument of ¢ and the first argument of a binding with
funetor category. Lhose pieces of dependency are hence eliminated by fusion, so that
(16 1= replaced with (48) and (47) gives rise to (49).

1%y :- <0(#,[],STRO,STRL) ---.

(19} cO(EEAD,CATLIST,X,Z} :-
c{CAT,X,Y),
cO(HEAD, [CAT|CATLIST],Y,Z).

I # were further constrained by another atomic constraint in the top clause, then we would
eliminate the resulling dependency by downward panetration to obtain the lollowing.

i) - e1([],STRO,STRL)

{7h) ¢1{CATLIST,X,Z) :-
c({CAT X.Y),
c1 ([CAT|CATLIST],Y,Z) .

Now H lias becowwe a transclausal variable, probably appearing in another definition ¢lause
of c1. H's absence in (31) demonstrates that penetration eliminates dependency by elim-
iating the oceurrence of the relevant variable from a relevant clause.

As for (18, we might have eliminated the dependency with respect to the binding
concerning [J. The reason we eliminated the dependency concerning H instead is that il
enables the aliove folding immediately, as should be evident from {19). This choice can
he a part of general strategy independent of the problem domain. Note that this folding
was made possible because we used fusion when obtaining (48) and (44): otherwise we
would not lave the same predicate in those two clauses.

If there is another alomic constraint on STRO in (16). as is the case with comprehen-
sion, we could have eliminated the dependency concerning that constraimt instead of that
concerning the first argument of ¢, Namely, the following could have been worked out
frani (46) and (47), by letling STRO penetrate down through.

(32} :- dO(eategory(H,[1),5TR1),

{33} d0(category(HEAD,CATLIST) Z) :-
d0{CAT,Y),
c{category(HEAD, [CAT|CATLIST]),Y,Z}.

This would block the folding corresponding to the one we did to obtain (49). If the
dependency about STRO got eliminated in (30) and (51) instead, then we would have:

(31) :- e0(H,[],STR1) - -.

(35) e0(HEAD,CATLIST,Z) :-
c(CAT,STRO,Y),
cO{HEAD, [CATICATLIST],Y,Z).

For the sake of folding about STRO in (53], we could substitute c(CAT, STRO, ¥} succes-
sivelv as follows,

13

(5} e0(HEAD,CATLIST,Z) :-
c0(HEADO ,CATLISTO,STRO,Y),
ChT=category{HEADQ,CATLISTO},
cO(HEAD, [CATICATLIST],Y,Z).

(57) ed(HEAD,CATLIST,Z) :-
e (HEADO ,CATLIST,Y),
CAT=category(HEADO,CATLISTO),
cO(HEAD, [CATICATLIST],Y,Z).

The first substitution here is valid, provided that ¢ eventually instantiales its first argu-
ment to category(.,). which rould be detccied when we worked oul the definition of
0. This new operation might he called fission. in contrast with fusion. Fission may be
execnted as soon as detected possible in the corresponding fusion. Farthermore, the fusion
and the fission in the present example could be finished at the stage of precompilation,
previons o parsing or generation.

Nest et us investigate the termination property. Iu the previous subsection, we have
already seen that DP is not trapped in an infinite loop due to lett recursion which DCG
ol the ardinary sort falls in. DP is shown to avoid infinite loops in other important cases
af sentence processing as well. In the case of Prolog. an infinite loop may arise when a
clanses like (47} is recursively applied on the second literal in its body. In DP. we arc able
to eseape sieh a trap. The dependency in (49} might be eliminated and give rise to the

following.

(531 eO(HEAD,CATLIST,X,Z) :=
c(CAT,X,Y),
f1 (HEAD,CAT ,CATLIST,Y,Z).

{5Y) f1(HEAD,CATOQ,CATLIST, X,Z) :-
c(CAT,X,Y),
£1(HEAD,CAT, [CATOICATLIST],Y,Z).

The tnlinite loop is avoided by unfolding only predicates which are known to be solvable,
ersentially along the line of Tamaki and Sato’s tabulation technique [16], The dependency
about the third argument of £1 in the body of (39} is hence left untouched until £1 turns
sut to he satishable. Since (59) does not contribute to the satisfiability of £1, it turns
out that £1 is satisfiable only when another definition clause is worked out whose body
i« satisfiable. 1f there comes out no such clause, £1 is known to be unsatisfiable and thus
(39 is deleted, provided that CWA is employed. Note that such a control is incorporated
into DI with a verv small cost for markiug each predicate with its satisfiability status.

DP may hence be regarded as having a very mice termination property, though of
course it does not always terminate, because the constraints can simulale arbitrary Turing
nachines. ‘T ensure termination, we should relax the transformation procedure so that
not every dependency be eliminated, at the price of overlooking inconsistencies. Such
partiality of processing is essential in the domain of AL The control of partial processing
is thus a very important issue in every theory of computation for such domains.

So let us finally consider how Lo control partial processing or, almost equivalently,
processing order. In this connection, Hasida [5] has proposed head-driven propagation
(HIDP for short), which gives priority to elimination of dependency ivolving the head in

14

graminatical sense. In (47), for instance, the dependency relating to the second literal ol
the hody s probably eliminated prior to the other dependency, because that literal is the
head in the local tree represented by this clanse. This means that the information in the
head is exploited more readily than that in the non-head category. DY is a goad heuristic
because the reference to the head is ol a greal help in determining the grammatical status,
svntactic or semantic, of the non-head category currently under consideration. Shieber’s
semantic-head-driven generation [13] is a similar strategy, except that it is biased towards
semantic information and primarily restricted to gencration,

Although the details are hevond the scope of the current line of discussion, DT nat-
wrally emerges if we extend the present framework by incorporating spreading activation
7014, 20]. Lhe general idea is that closely related nodes strongly aclivate cach other.
Here we look apon a constraint as a network. The nodes in this network are variables,
atomic constraints, clauses and predicates, and the links are references among them. For
mstance, the node corresponding to a variable is linked with the node corresponding to a
literal which refers ta that variable as one of its arpuments. Two nodes ave closely related
when there are many short paths hetween them. In the above clauses deseribing a local
branching tree, the connection hetween the first literal {the head of the clavse and the
mother in the local tree) and the third literal (the head daughter in the local tree) s
actually stronger than the one between the first two and that between the last lwo. In
(171 that connection includes three different paths running through HEAD. CATLIST and
7. whereas the latter two imvolve one and Lwo paths, In general, the connection between
the mother category and the head danghter is thus locally the strongest, This means that
the head daughter tends to get activated more than the other daughter. so that more
mformation tends 1o be exploited out of the head than ont of the other category, which

is HbP?

4 Final Remarks

A method of transforning logic programs called dependency propagation has been de-
seribed, We have emphasized that sentence processing is carried oul efliciently by a
domain-indepeudent transformation strategy. A tabular method of parsing and generat-
g sentences has shown to naturally emerge as a corollary of our general control strategy.
It has heen also demanstrated that folding often takes place in manipuiation of compoeund
siructures. All of this exemplifies that constraint-hased methods may be as eflicent as
procedural methods, perhaps especially mn the domain of daily rather than artificial prob-
lemns.

We have discussed little ahout heuristic control of partial transformation. What DP as
described above tends to do iz an exhanstive search, which s almost always stupid in the
domain where partiality of information is encountered. Heuristics based on assumption
cost [3] and spreading activation are discussed elsewhere [6], but further investigation is

widelv apen about this 1ssuc,

A cknowledgements

The author received useful comments on earlier versions of the present work from many
colleagues. In particular, thanks go to NAKANO Mikio, NISHIKAWA Noriko, TUDA

15

Hirosi, HAGIWARA haoru, and Prof. TANAKA Hozumi. Suggestions by the unidentified

reviewers were also helpful.

References

1]

12

9]
10]
1)
2]

13

[14]

15)

[16]

Colmeraver, A (1987) An fatroduction {o Prolog [, unpublished manuscript.
Dhincbas, M., Simonis, . and Van Hentenvyck, P. (1988) "Solving a Cutting-5Stock
Problem i Constraint Logic Programming. Proceedings af the Sth [nternational
Confrirace of Logie Programaming. pp. 12-55,

Earlev 1 (1970) *An Elhcient Context-Free Parsing Algorithm.” Convmunicalions of
ACM. Vol. 13, pp. S4-102.

Masida. W. (198G]) Conditioned Unification for Natural Language Processing,” Fro-
cecdings of the 1ith COLING.

Hasida, I avd Ishizaki, 5. (19387) *Dependency Propagation: A Unified Theory of
sentence Comprehension and Generation.” Proceedings of the 100 1ICAL pp. 664-
Ll

Hasida, k. (19897 *A Constraint Baszed View of Language.” manuscript presented at
the STASS Asilomar Conference,

Hasica. I, Tshivakic 5.0 and Tsahara, Ho (1987) “A Connectionist Approach to the
Gieneration of Absiracts.” in Kempen. Gerard (ed.). Natwral Language Ceneration:
New Results on Avtaficial Intelligence, Paychology, and Lingwistics, Martinus Nijlioll
Publishers {Kluwer Academic Publishers), pp. 1449-134.

Hobihs, J., Stickel, M., Martin, P, and Edwards, D, (1988) *Interpretation as Abduc-
tion.” Proceedings of e 2600 Anneal Meeting of ACL. pp. 95-103.

Jatfar, 1. and Tassez, J. (1988 ‘From Unification to Censtraints,” Logic Program-
ming N3 Lecture Notes in Computer Science, Na. 315, pp. 1 15

Pollard, O and Sag. LA (1987} Information-Bazed Syntar and Semantics, Volume
{.USLT Lecture Notes No. 13,

Sakal, I and Sato, Y. (1988) Boelean (frobuer Bases, I[COT Technical Memo No.
Skt

Shieber. S.M. (1988) “A Uniform Architecture for Parsing and Generation,” Procced-
ings of the 12th COLING, pp. 614-619.

Shieber, 5.AL, Noord, G., and Moore, R.C. {1989) “A Semantic-Head-Driven Gener
atwn Algorithm for Unification-Based Formalisms,” Proceedings of the 27th Annual
Mecting of ACL, pp. 7-17.

Sussman, G, and Steele, G., Jr. (1980) *Constraints — A Language for Fxpressing
Almest Hierarchieal Descriptions,” Arfificial Intelligence, Vol. 14.

Tamaki. II. and Sato, T. (1983) ‘Unfold/Fold ‘Transformation of Logic Programs,’
Froceedings of the Second International Conference on Logic Programming, pp. 127
135,

Tamaki. H. and Sato, T. (1984) *OLD Resolution with Tabulation,” Proceedings of
the Third International Conference on Logic Programming, pp. 84-98.

16

i(17] Tuda, H.. Hasida, K., and Sirai, H. (1988} "JP5G Parser on Constraint Logic Pro-
gramming,” Proceedings of the Luropean Chapter of ACL'89, pp. 93-102.

(18] Waltz, D.L. (1975} *Understanding line Drawings of Scenes with Shadows,” in Win-
ston. LH. (ed.} The Psychology of Computer Vision, McGraw-Hill

[19] Waliz, D.L.. and Pollack, J. (1985} “Massively Parallel Parsing: A Strongly Interac-
tive Model of Natural Language Interpretation.” Cognifive Seience, Vol. 9, pp. 51-74.

[20] Ward. N. (1988) ‘Issues in Word Choice.’ Proceedings of the 12th COLING, pp. T26-
VAL

17

