ICOT Technical Report: TR-573

TR-373

Extended Projection Method and
Realizability Interpretation

by
Y. Takayama & S. Hayashi (Oki)

July, 1990

© 1990, ICOT

Mita Kokusai Bldg, 2IF (03) 456-31%L~35

1COT 4-28 Mita 1-Chome Telex 1COT 132964

Minatn-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

To be submitted for publication in Information and Computation

EXTENDED PROJECTION METHOD
AND REALIZABILITY INTERPRETATION
(June 5. 1990)

Yukihide Takayama* and Susumu Hayashi**

*} Electrieal System Laboratory, OKI Electric Industry Co., Ltd.
11-22 Sibaura 4 chome, Minato-ku, Tokyo 108, Japan
takayama@okilab.oki.co.jp
=+ | Department of Applied Mathematical and Informatics, Ryukoku University,
Seta, Otsu, Siga, 520-21, Japan
hayashiGrins ryukoku.acjp

ABSTRACT

A new application of the Kreisel-Troelstra realizability interpretation is gi;-'cn
in this paper. The realizability was originally introduced to give s semantics
of an intuitionistic second order number theory, and has been used to give a
semantics of polymorphism and type theoretic treatment of module structure,
This paper investigates first order Kreisel-Troelstra realizability to generate
redundancy free programs from constructive proofs, and show that the real-
izability gives a good theoretical background for program extraction.

Keywords: constructive logic, realizability, program extraction, proof trans-

formation

1. Introduction

Constructive logics or constructive type theories can be used to describe specifications of
programes as proofs of theorems, to check the correctness of them and to extract programs
from the proofs. For the program extraction from constructive proofs, Curryv-Howard's
correspondence of types and formulas (Howard, 1980) or realizability interpretations (see,
for example, Troelstra, 1973) are used.

One of the main problems in the program extraction is how to extract redundancy-free codes
from proofs. For example, the standard interpretation of the formula 3z 4 i intutiomstic
logic is a pair of a value, ¢, of r and a justification of 4_[t]. However, only the value of r 1=
needed as the extracted program in many cases. Several techniques have heen developed
to refrain from generating the justification of 4,[t], i.e., the redundant code, such as subset

— 1 —

types (Nordstrom & Petersson, 1981; Constable, 1986), rank 0 formulas (Hayashi & Nakano,
1988; type 0 formulas i Hayashi, 1986). Their idea is to introduce new logical constants.
Also, the Caleculus of Constructions with two constants, Prop and Spec (Paulin-Mohring,
1989) has two kinds of formulas: formulas from which computational contents should and
should not be extracted. Another technique called the extended projection method has
been developed by one of the authors (Takayama, 1989; Tukayama 1990). The idea is to
introduce two kinds of logical constants: logical constants with constructive interpretation
and non-constructive interpretation. For example, constructive interpretation of Jr in
Jdr. A is the value of x, but from the formula 3’z 4 with checked 3, 3, the value of r
is not extracted. The disjunction, Vv, is handled similarly. This idea allows fine grained
specification of redundancy. For example, it is impossible to specily in rank 0 formmlas
that only the value of y is unnecessary in J2.Jy.dz A(x,y, z). Another advantage of this
idea 1s that it 15 rather easy to give an algorithm of semi-automatic analysis of redundancy
(Mark). Given a proof of Jz.3y.3z.A(x, y, z). if the formula is changed to a formula with
checked logical constants, 3.3 1.3z 4" (z,y, 2) (A'(x, y,z) is a formula with some logical
constants checked in A(z,y. 2}), the algorithm translates the original proof to a new proof
with the checked logical constants, called a marked proof, from which a redundancy free
program can be extracted. Therefore, the method has the following pleasing property with

proof normalization and execution of extracted programs:

lizat . miark
P?‘Dﬂfu narmalization P!“Dﬂh arking Marked p.’r'ur.;'f
ki LE-“ ,|,NEH
-
g-reduction rojeetion
Cadeg — Code, " 15 Code,

where Ext and NEzt are the program extraction procedure.

This means that execution of programs or program transformation can be described as
proof transformation. However, the proof transformation, Mark, from proofs to marked
proofs is not defined in a constructive logic. A marked proof is actually a proof tree with
anuotation, but the tree itself is not a proof tree. Although Ext performs a realizability
interpretation, N Ext is given at a meta-logical level and does not correspond to any real-
izabilily interpretation.

This paper shows that a constructive logic with a new logical constant, which is interpreted
by Kreisel-Troelstra realizability (Kreisel & Troelstra, 1978), can be used to describe the
program transformation from proofs to marked proofs and the program extraction from
marked proofs. In other words, all part of the following commutative diagram can be

described uniformly in the new constructive logic:

lizat T
P?'Oﬂfu normalizatien Pl" ﬂ'ﬂf[™ PT‘ D'I'sz

[[[

—reduction rojection
Cmfﬂu g "—"'f Code, P J——“ Gﬂdﬁg

VT I

where Tr aud Proof; correspond to Mark and Marked proof in the previous diagram,
and there is no longer a need to prepare two kinds of program extraction.

The structure of this paper is as follows. Section 2 gives an outline of the extended projec-
tion method. Section 3 defines QPCHT which is a first order constructive logic with new
existential quantifier, 3. The realizability interpretation of QPCM" is defined in section 4.
The quantifier, 3, is interpreted by first order Kreisel-Troelstra realizability. The sound-
ness theorem is also proved. The program extraction algorithm based on the realizability
interpretation is given in section 3. The proof transformation rule, Tr, which corresponds
to the Mark procedure in the original extended projection method is defined in section
6. The relation with the original cxtended projection method is formally given in section
7. Examples are investigated in section 8, Comparison with other works is explained in

section O, and section 10 is a concluding remark and the future work.

2. Overview of the Original Extended Projection Method

2.1 QPC and its realizability

The original extended projection method, (Takayama, 89; Takayama, #), 15 given to a
first order constructive logic called QPC {Takayama, 1988). Onc of the unique features of
QPC resides in its realizability interpretation which is a variant of g-realizability (Troelstra,

1973; Beeson, 1985). The realizer of A 1s, or equal to. a sequence of terms:

[_ti1 e ~.tn} q A

and each element, 4;, of the sequence corresponds to the disjnnetion symbol or the existen-
tial quantifiers which occur in the strictly positive part of 4. For example, assume that 4
is dr.1 < 2 < 3 2 (3y.x = yV Iz.x = 2+ 1). Then, the realizability of A 1s in the following

torm:

(i tots) qizl €2 <35 (3yr=yvIsar=:+1)

t, corresponds to V and it is the information indicating which one holds in the formulas
connected by V. 13 and 13 correspond to 3y and 3z, and are values of y and z. Note that
i; is a function that takes a realizer of 2.1 < 2 < 1 as input.

The essential difference from the standard q-realizability is the interpretation of atomic
formulas. Any term can be a realizer of an atomic formula in the standard q-realizability,

but the realizer is restricted to nil sequence, (), in QPC.

- =

2.2 Marking System and Mark Procedure

The realizability induces the notion of length of formulas: If A is a formula, then the length
of A, I(4), is the number of V and 3 in the strictly positive part of 4, and at the same time
it is equal to the length of the realizer of A as a sequence of terms. Any part of the realizer
of A can be indicated by the position numbers: 1,2 ... I{4). Therefore, the powerset
P({1,2,---,1(A4)}) can be used to specify which part of the realizer should be extracted as
a program. An element of P{{1,2,--.,1(A4)}) given to A is a marking of 4. In particular,
a marking given to the end formula of a given proof is called a declaration. If a declaration
18 given to a proof tree, it can he propagated to cach node of the tree from the end formula
to top formulas according to the inference rules used at cach node. This procedure is called
the marking procedure, Mark. The tree made by Mark is called a marked proof tree.

2.3 NExrt procedure

The program extraction from the marked proof trees is performed by the N Exf procedure.
The procedure is obtained by modifying the original program extraction procedure Ext,
and it extracts the part of the realizer of the end formula specified by the declaration.
The ndvantage of the extended projection method hesides the fine grained specification of
redundancy is that it allows extraction of multiple programs from a proof. The marking
procedure ouly attaches additional information to every node in the given proof tree, but
does not change the proof itself, Thercfore, it is easy to extract multiple programs from a
given proof by changing the declaration.

2.4 Marking Condition

The warking procedure can be performed mechanically, but it does not always succeed for
proofs i induction. Assume that the following proof in mathematical induction, and that

a declaration, S, is given:

[A(x — 1)]
b3 T2
Alz) Alrx)

TAyT (ind)

The marking, 5, is propagated to the occurrences of induction hypothesis, A(z—~1). Let T
be the union of the markings attached to all the occurrences of 4(z — 1). Then, if T € §,
N Ext generates, for exumple, the following incomplete mutually defined funetions:

F(X)— £(X,F G, H)

G(X) — ((X,F,G, H)

F and G are indicated by S, while T indicates F, G and H. No definition of H is generated
in this case. Consequently, this case is regarded as a failure of the marking procedure. The

— 4§ =

condition T C § is called the marking condifion. The condition is satisfied when the

declaration is sufficiently large.

2.5 Theoretical Problem

The idea of the original extended projection method is similar to program analysis where
proof trees are regarded as programs. The marking procedure performs an analysis which
is similar to strictness analysis with abstract interpretation. The marking system {marking
and the marking procedure) and the marked proof trees are not a part of QPC. Also, no
realizability interpretation corresponding to NEzt is given. The aim of this paper is to

give a logic which embodies the murking system,

3. The Logic: QPCHT

QPCHET is a constructive logic which is an extension of QPC with a new logical constant
3 deseribing markings. The marking procedure is described as a transformation of 3 to 3
in formula occurrences in a proof tree. The extended projection method is interualized in

QPCET as a part of the logic in this respect.

3.1 The Language of QPCAT

Terms in QPC* T are those of a variant of untyped A-caleulus, and they are used to deserihe

the codes extracted from proofs.

Definition 1: Terms

1) [eonstants] 0,1, .- (natural numbers), le ft, right, any, nil (nil list), T, F (booleans)
Are terms;

2) [individual variables] x,y, =z, - are terms;

3) [sequence of terms) If My, -+, M, are terms | then (M, .- M,) is a term:
() denotes nil sequence. A sequence of variables is often denoted T. any[n| denotes
the sequence (any, -, any) of length n;

4) [A-term] If M is a term and X is a variable or a sequence of variables, then AN M is
a term;

5) [application| If M and N are terms, then ap{M, N} is a term;

6) [if-then-else] If M and N are terms, and if 4 is a (in)equality of terms, then
if beval{A) then M else N 1s a term;

T} [p-term] If M iz a term and Z is a variable or a sequence of variables, then pZ. M is
a term;

8) [let-sentence] If X is a variable or a sequence of variables, and if T and M are terms,
then let X =T in M is a term;

9) [built-in functions] tseq, ttseq, proj and beval are terms.

In the following description, it is assumed that the term structure is suitably extended

by introducing arithmetic operators and list constructor functions. The meaning of these

built-in functions is as follows: Assume that § S (51,---,5,) 15 a sequence of terms of

length n, then
tseqlhk,S) = (5, -, 5,) (1<k<n)

:fSE'?{k1L‘5|]|={5k1”'?'5rﬁ'+]' 1} {]Ski:ﬂ.l'i!‘_:l:'n—k—{-]}}
proj(k,5) =5 (1=£k<n)
beval 15 a function which takes (in)equality as input and returns boolean values, T and F,

according to whether the {in)equality helds or not.

Types in QPCHT are only to specify the domains of universally and existentially quantified

variables and to categorize terms used in proofs.

Definition 2: 'I'vpes

1} 2, nat and bool {primitive types) are types;

2} If 7 and 7 are types, then o % 7 (carlesian product) and ¢ — 7 (funetion spaces) are
types;

3} I e isatype, then L{a) {type of lists over o) 15 a type.

The formulas i QPCHT are ordinary first order formulas plus special formulas called
checked J-formula.

Definition 3: Forulas

1) KM and N are terins and if ¢ is & type, then M = N, M : ¢ and L are (atomic)

tormulas;

2) If Aand B are formulas and & 15 » type, then AnA B, Av B, A > B, Vr € 0.4. and

dr € . A are formulas:

3) [checked formula) If A is a formula and o is a type, then 3r € .4 is a formula.

The typing relation, M : o, is abbreviated to M when ¢ is clear from the context or is not

significant. 3z € .4 means “I do not need the value of r in the extracted code.”

The substitution of a term M to z in an expression, £, is denoted E,[M|,

and E,, ... [My, , M,] denotes simultaneous substitution in the following description.

— [—

3.2 Rules of Inferences

(1) Rules on first order logic

Introduction and elimination rules on Vv, Vv, O, ¥ and 3 are as usual. Equality rules
(reflectivity, commutativity, transitivity, and = elimination rule) and L elimination rule
are also as usual. For the induction rules, there are mathematical induetion and structural

induction on lists:

[r :nat, A [z = 1], 2 = 0] (v Lie),x # nil, A [t 2)]]
A.[0] A A, [nil] A
Vr € nat. A Yr e Lio). A
{2) Rules on 3
[: e, A
M:o A[M], - dr € 0. A C -
- a1 1k
drce A (D) c (3E)

Besides the ordinary side condition for the elimination rle of existential quantifier. (E)
has an additional side eondition: In the proof of z : &, 4 = €, the eigen variable, r. must

not occur in N in the following forms of subproofs:

E-u E] EI:I El
J'\r H Aﬂ"ir i / . .
o By]G” N:o 'ﬁy'E o B
dyeca B By[N]

(VE)

(3) Rules on Term Caleulus

The equality rules for sequences of terms are as follows:
ﬂp“M.,- o 7Mﬂ}11v:| = {ﬂpEMi?*MJr' : ',HP{MH, ﬁ"rj)

AX(My, oo, My) = (AX. My, o+ AX.N,,)

if Athen (M, - . M,) else (Ny,- -, Ny
= (if Athen My else Ny, if Athen My else Ny

let X = Tin (My,-- My)=(let X =T in My, ,let X =T in M,)

The reduction rules on termns are defined as usual, and if a term M is reduced to N in
finite steps then M and N are regarded as equal. A pu-term, p{z;,---,2a).M denotes the
fixed point of M. If M is equal to a sequence of term, (My,---, My), then p(zy, -, 25). M

denotes a solution of the following system of equations:
3l - JFI{f]

. = M,

Let (I1,---, F,) be a solution of the equations: ez My My = (Fy, - Fy)

Then, F; satisfies the following equations:

Fo = pzi M;) WPl B Fi, - Fy) (1€i<n)

L ENREETE B S s

(See, for example, (Barendregt, 1981) page 138, for multiple fixed point theorem.} There-

fore, the followings are the rules for j-terms:
Mz 2) (M, M)
where F; {1 £7 = n)is a solution of the fixed point equation.
pr M = M [y M|

M= (M, - M.} P[:tr-..|3n-].{d-1.flq...!.prn}z{}?l””f‘n}
#{:11"',IHJ.M :‘uzln"H*anl""‘L?FﬂI

{n =2}

For typing rules of terms, the constants, left and right, are of type 2. Other rules are
defined as usual. Finally, the following rule on type structure should be introdueed to

assure the unicity of typing:
T (N) = (0 =) k(7

For example, if ap(M, N} : 7, then M and N should be of type o — 7 and & with some o,
I M = (M-, M,). then ap(M,Nj = (ap{M, ,N},- -+ ap(M, N}, so that M, should
be of type ¢ — 7; with some ;. so that M - (@ = 1) % - x (0 — 7,) and ap{ M, N}
(T3 %% 1,). Therefore, 7 — (2 xmp)=(0 = 1)%x-- x(o = Tn). The type equality

can also be used for the type inference of AX(My, o Moy = (AX My, - AX M),

3.3 QPC and QPCHT

QPC is obtained by removing the checked formulas and the rules on 3 from QPCAT,
QPC is the logic in which proofs are described, and QPCKT iy the extension for Program

extraction with optimization in terms of the extended projection method.

4. Realizability

The realizability interpretation given to QPCHT is called kt-realizability. The realizability
is a variant of q realizability, and is obtained by modifying the realizability given in (Sato,
- 1985) with the feature of Kreisel-Troelstra realizability.

S

4.1 kt-realizability

A new class of forinulas called realizability relations is introduced in QPCAT o define
kt-realizability.

Definition 4: Realizability relation

A realizability relation is an expression in the form of g kt A, where 4 s a formula defined
in section 3 and @ is a sequence of variables which does not occur in A. 7 js called a realizing
variahles of A. For a term, M. M kt A, which reads “a term, M, realizes a forinula, 4",
denotes (@ kt A)z[M], and M is called a realizer of A,

In the following, a formula means onc defined in section 3. A type is assigned for each

forinula,

Definition 5: type(A) Let A be a formula. Then. a type of A, type(A). is defined as
follows:

1) type{ A)isempty, if 4 is atomic;

2) type{ AN B) = type(4) x type(B);

3) typel AV) E 2w type(A) > type(B):

1) type(A D B) < type(A) — type(B);

3) type(Vr € a.4) Lo type(A);

6) type(dz € 0.4) Y & x type(A);

T) type(dr € 0.4) o type{ A).

Proposition 1: Let A be a formula with a free variable z. Then, type(A) = type{ AL [M])

for any term M of the same type as .

Definition 6: kt-realizability

1) If A is a Harrop formula, then () kt 4 4 4.

2)akt A5 BE vhe type(A)(A bkt A5 ap(a,b) kt B)

3) (a,b) kt 3z € 0. A= a0 A A, [l AE Kt A,[a]

4)akt Vo ¢ 0.A Y Vo € o (ap(@, =) kt A)

5) (2,a.) kt AVBE (2= lcft NANTkt A)V (= = right A B A D kt B)
6) (@b kt ANBY Gkt AnF Kkt B

NoktIreoAd® Jae o.(Az[a] A b kt A,[a]) where b does not contain a free.
For the definition of Harrop formulas, see (Troelstra, 1973).

Proposition 2: Let A be any formula. Then, if @ kt A, then & : type(A).

— 9

From the definition of realizability, realizing variables can be determined from the con-

struction of the formulas as follows:

Definition 7: Realizing variables: Ru(A)
1) Ro(A) ™' () ... if A is Harrop
2) Ru(A A B) ™ (Ru(A), Ru(B))
3) Ru(Av B)"™ (2, Ru(A), Ru(B)) (z is a fresh variable)

del

4) tv(A o B) = Rv(B)
5) Ro(¥z € 0. A}S Ru(A)
6) Ru(Tr € o A) ' (2, Ru(A)) (= is a fresh variable)

7) Rv(3z € 0. 4) % Ro(A)

Definition 8: Length of a formula
The length of a formmla 4, I{ 4), is the length of Re{A4) as a sequence of variables.

Proposition 3: A formula A is Harrop if and only if [4) = 0

4.2 BSoundness of ki refﬂizabifit}r

Theorem 1: Soundness of kt-realizability

Asyume that A s a formula. If A is proved in QPC*"'| then there is a term, T, such that
T kt A can be proved in QPCHT, FV(T) C FV(A) and T is equal ta a sequence of terms
of length 1 A).

Proof: The proof is performed by induction on the structure of proof trees. Only the con-
struction of T' is presented. The other part of the proof is easy.

1) If the proof tree is solely the formula A, then let T % Ru(A).

2) If 4 is a Harrop formula, then let T % ().

2) Step case:

Let R be the name of the last rule which is used in the proof Lree of A4,

Case R = (Al): Assume that 4 = B A C. By the induction hypothesis, there are terms,
M and N, such that M kt B and N kt €. Then, let T be (M, N). T kt A can be proved
by (AT).

Case R = (AE);: Assume that A A B is the premise of the R application. Let M be a
term such that M kt A A B, then let T = ttseqi1,I1(A))(M). T" kt A can be proved by
(AE).

Case R = (AE);: Assume that BAA is the premise, Let M be a term such that M kit BAA,
then let T %' tseq(I(B) + 1)(M). T kt A can be proved by (AE);.

Case R = (VI);: Assume that 4 = BV C and B be the premise. Let M be a term such

that M kt B, then let T < (icft, M, any[I(C)]). T kt A can be proved by (VI);.

1o -

Case I = (VI)z: Assume that A = BV C and C be the premise. Let M be a term such
that M kt C, then let T ¥ (right, any[i(B)), M). T kt A can be proved by (V).

Case R = (VE): Assume that B v C is the first premise of the R application. Let L be a
term such that L kt BVC, and M and N be the term which realize A as the sccond and the
third premises of the R application. Note that M and N may contain Ru(B) and ().
Then let T = if proj(1)(L) = left then (let Ro(B) = ttseq(2,1(BYWL) in M) else

(let Ru((') = tseq({{B)+2)(L) in N). T kt A can be proved by substituting
ttseq(2,1(D)) L) and tscq(I{B) + 2)(L) to Ru(B) and Ru(C) in the proof of M kt 4 and
N kt A, and by applymng the (VE) rule and the (= E) rule.

Case B = (D I): Assume that A = B O C and C be the premise. Let M be a term such
that M kt C'. M may contain Rv(B). Then, let T et ARv(B).M. T kt A can be proved
by (Y1, (2 1) and (= E).

Case R = (D E): Assume that ' 5 A4 and B are the premises. Let M and N be terius
such that M kt B 2 4 and N kt B. Theu, let T de! ap{M,N). T kt A can be proved hy
(2 E), (AT) and (YE).

Case [i = (VI): Assume that 4 = ¥r. 0. Let M be a term such that M kt A, then et

T2 \z. M. T kt A can be proved by (V1) and (= £).

Case R = (VE): Assume that N : o, and ¥2.B are the premises. Let M be a tern such
that M kt Va.B. Then, let T ap(M,N). T kt A can be proved by (VE).

Case R = (3I): Assume that A = Jr € ¢.B. Assume also that M - o and B [M] are the

premises. Let N be a term such that N kt B, [M]. Then, let T A (M. N} Tkt A can be
proved by (A7)

Case R = (JE): Assume that 3z. is the first premise. Let M be a term such that
M kt Jr.B and N be a term which realizes 4 us the second premise. Then, let T %
let (r,Rv(B)) = M in N. T kt A can be proved hy substituting proj(1){M) and
tseq(2)(M) to x and Ru(B) in the proof of N kt 4 and replacing the occurrences of
proj(1){(M) and tseq(2)(M) kt I3 as the hypotheses by the proof of M kt 3+, 5.

Case R = (= E): Assume that M = N and A, [M] be the premises. Lot L be a term such
that L kt A, [M]. Then, let 7' L. T kt A can be proved by (= E).

Case A=(LlE): Let T def any[l{A)]. T kt A can be proved by { LE).
Case R = (3I): Assume that A = 3z € ¢. B and that R application is as follows:

T, %,
M:o B,[M]
dr€e B

By the induction hypothesis, the following proof can be construeted:

Y
N kt B,[M]

Then, construct the following proof:

l: E}j
T, B.[M] N kt B,[M]
M:o B.M]AN kt B.[M)]
Ja € 0.(B:[a] A N kt B,[a])

By definition, Ja € a{B.la] AN kt B.la]) = N kt 3r € #. B. Then, let T = N.
Case R = (3E): Assume that R application is as follows:

[x: 0 B
~ El Ez
deea B A

A

By the induction hypothesis, the following proofs are obtained:

' MktIres B TNkt A

The hypothesis, B, used in T, is realized by Ruv(B). By definition. M kt 3z € 0.8 — Ja €
a. (Bela] A M kt B,[a]). Note that r does not oceur in N or A by the side condition of
the (3E) rule. Therefore, the following proof is obtained:

la: o, Bela) A M kt I3]

z Zs
o (let Ro(B) = M in N) = Ny [M] Npwm[M] kt A (= E)
Mkt 3r c o.B (let Ro{B)=M in N} kt A B GiE)

(let Ru(B)= M in N) kt 4

Ys is obtained as follows: First replace the occurrences of Itw(B) kt B as the hypothesis

with
B rRu(B)kt B

Rv(B) kt B

(AE)

and then substitute M to Rv(B) and a to # in ©4. Then, let T L et Re(B)=M in N,
Case R = (L(o) ind): Assume that 4 = ¥r ¢ L{e).B, and A4 is proved as follows:

| # nil A B [tl[(x)]]

by 2!
B, [nil] B
Yre L(er).B

By the induction hypothesis, the following proofs exist:

A T,
Mkt B.[nill NktB

The assumption, z # nil A B:[tl{z)], in £; is replaced by the realizing relation: 7 kt (z #

nil & By[H(z)]) = (2 # nil AT kt B,[tl(2)]) where T %" Ruo(B,[tl(x)]). Let T' % if 2 =
nil then M else N. Note that N generally contains . Then, construct the the following

proof:
Ta =,
_ Omll=M Mkt B[l
= T Tnal] kt B [nil] (= E)
and
x# nil AT kt By[tl(z)] ,
z # nil (AE) 3
_ T = N NEktB -
T = Tkt B (=E)

Let T be a new sequence of variables of length [{ B}, and assume the following equation:

% = Ar.T{ap(Z, tl(z))]

The solution of this equation is the following recursive call function: F e pAcaf r =
nil then M else Nilap(z,tl(z))]. Note that, by the induction hypothesis, M and N
are equal to sequences of terms of length n{dé[I{B)). Therefore, F is equal to a se-
quence of ters Fy,---, F,. Substitute ap{ F,tl(x)) to ¥ in I, to obtain II,. ap{F.x) =
Tl ap(F,tl{x))]| can be proved. Then, an induction proof of Ve € L{a). T4 ap(F,tl{x))] kt I
(= F kt ¥z ¢ L{e). B) can be constructed with [1, and ll;. Therefore, let T = F.

Case R = (nat ind): Similar to the previous case.

Let T % pz.Azaf o = 0then M else Nz|ap(z, £ —1)] where Z is a new sequence of variables
of length I{A).

|

5. Program Extraction Algorithm: EXT

The proof of theorem 1 can be formahzed as a program extractor procedure, EXT. It is
the same as the Ext procedure given in (Takayama, 1990) for the inference besides { I}
and (JE).

Definition 9: EXT (3 part)

1) (3I)
- 22 def z
le: 2
EXT(M:o A,[M]) “ pxT (AI{M])
dJzeeo A
2) (3E)
[z : o, 4]
5 Tp def _ (b) : (Ez)
EXT 3rco A c = left Rv(A)=EXT reod) ™ EXT c
C

R

6. Transformation of QPC proofs into QPCHT proofs

Suppose a proof in QPC is given:

lr”En

Ajfhmmﬂ

W [

First translate B into B' which is made from B by replacing some occurrences of 3 to 3
in the strictly positive subformulas. The proof transformation, Tr, defined in this scetion
takes the proof of B and B' as inputs and returns a proof of ', The proof trees in QPCHT
generated by Tr corresponds to the marked proof trees in the original extended projection

method,

Lemma: Let A be an arbitrary formula in QPCET | and A' be a formula which is obtained
by replacing some of the ocenrrences of 3 in strictly positive part by 3. Then, 4 5 A can
be proved in QPCHT.
Proof: By induction vn the construction of A
Case 1 A is in the form of 3r € 7. B:
Case 1-1: A’ is 3z € ¢.B': Assume that 3z € o B holds. Let # € o be such that B,
By the induction hypothesis, I & B’ can be proved. Then, 3r € .3 can be
proved by (2 EY, (31) and (1E). Consequently, 3¢ € o.B D 3 € o B' is
proved by (O T).
Case 1-2: A' is 3z € ¢.B": Similar to the case 1.1. Use (31} instead of (7).
Case 2 4 is in the for of 37 € 0. B:
Similar to the case 1-1. Use (47} and (3E).

Other cases are similar and easy. g

The following is the definition of Tr:

Tr(A") < 4' (assumption

EN ae & . =
Tr () ef where 4 does not contain 3

A) T 4
(4] '
"5 o])
@A-sr oY FEY

® 4 is the procedure which replaces every occurrence of A' as hypothesis, which was an
occurrence of the hypothesis 4 in (£/B) before Tr, with the proof of A F 4’ given in the
proof indicated in Lemma. Note that because the change of 3 to 3 is restricted to the
strictly positive part of the formula, (4 5 B) = 4 > B

14

HJ’ H]‘
ke 5
DI ¥ hiﬂ(;) ﬂ(;)
i 4-_Bnn) = (AT)
FOT AN B
a2 o]
£
G W T ©) (‘4') (V1)
Yr < o _4.'{) Yreo A
5 b
T L o yp T}(HHEJ
r|l M:o0 Vr. A = M:0 L
vF VE
Ay O oy o)

def

where 4. [M]' = ALIM].

v z
- cheel I'r (l)

A'v B A B

%
x def T"(;;)
rl _B_n| =~ =L

ATV B AV
(4] [B]
Av B
VE
c V&)
del E:|. Eg 33
et TT (_,E"-.-"ﬁ @‘I T'T' Cr ‘I’E TT‘ I:'r EvE)
'
A and B are obtained as follows: Let Al -, A, be the set of vccurrences of 4" as assump-

tion in T+(Zy/C). Note that all the formulas, A, (1 £ { < n), have the same construct
except some occurrences of 3 and 2. Then, 4 is defined as follows:

i A e @A
& iz an associative operator on formulas defined as follows:

— 15

1) Ay & 4, 2" 4,
if 4, and A4, are atcrmic formulas which differ at the most on parameters:
?]{ﬂjﬁﬂl}"l'f‘lzﬂﬂi} (A & By) A (A2 & By)
3) (AL V. By) & (A2 V Bs) = (4, @ 42) V (B @ Bs)
4)(ADB) @ (ADBy) Y (An{ﬂiedsg}}
3)(Vr e o A1) @ (Ve € 0.42) e c oA B Ag)
6) (3r € 0.4,) @ (3r € 0.42) E 3r € 0.(A; @ 4,)

N(Arecod)d(3recd) Y Ircol(d, o Ay)
B is obtuined similarly.

@+ and @ are the procedures which replace the oceurrences of A' and B’ which are made

by Tr from the discharged hypothesis, 4 and B. in £z and By by the proof of AF A and
B+ p.

Example 1: Let 4, % 3,3 Fy.d2.%w. B and 4, = =) dy.3:2.3w.B, where B duc*:-;. not
contain J or 3. Then, 4, & 4, = Jr.3y. 3z Juw.B.

E: E: El T (E?)
T "
Tr| M:o A,[M] (an Y M:o A (MY (an
dr € g, A dreo. A '
oo, A . -
(2 B) e e a) (e (2)

o ar [| [4F ’ QE' ea A A ' ' R
L-r.l l:] C' { :I

where 4 & @B xep X and U is the set of formula occurrences of A' in Tr(T 2/C") which
1s made from 4 in (£,/C) discharged by (3E). @ is 3 if there is a following snbproof in
Tr(Z,/C"), and 3 otherwise.

Ej_ Ez E| E-"_}

M:eo B[H] M:o0 Yyeo B

(3 (r e V(M) (WE {(re FV(MY)
Jy € a.

Also, R=(3E)ifQ =3, and R = (FE) otherwise. ® - is similar to ® - and @5 in the case
of (VE).

b3 P b3 Tr (Ty)
Tr| M:0 A.[M)] L ¥ A (MY
(3z € a. A’ [3”) Ir € 0. A’ .[]I)

— 18 —

T Y » 1 Tr (Yz)
T?. M = hr A;[M-] _ é M= N ""!""'lt'm'ﬂjl —_
(PRGN E}) A:[NY =8

= » z
Tr(L(LE]) - +up)

Ar
[.“'1:[1‘ - 1]]
Tl 40 ‘nat ind)
Vo Al e
w L
def 4 "
= Tr (fl;[ﬂ]') 'I';I‘r:,_l] (TT (‘qu) tind
V. A4 et
[A[tl{z)]]
FFY El EE
1r
A ! :
Ine]‘?}I = 4 (Lie) ind)
5 Ea
def i 1 :
= I (fl;[rai”’) P juco) (Tr (*“’))) i
Yr.A' EL[JJ)

Tr may fail as the marking procedure in the original extended projection method may

fail. The correspondence between T'r and the marking procedure will be given in the next

section.

7. Relation with the Original Extended Projection Method

QPCHAT can be regarded as a logical presentation of the original extended projection
method: 3 and Tr describe the marking and the marking procedure. The program extrac
tion procedure Ext and N Ert are described by EXT. In this section, the correspondence

1s investigated morc formally.

7.1 1 and marking

In the original version of the extended projection method, programmers can specify which
parts of the realizer of a formal specification are necessary by declaring the positions of 3
and V. Similar interface for programmers can be given to QPCH* " system.

Definition 10: Dual Declaration
For a specification, 4, a subset of the finite set of natural numbers, 11, 1(A)}, is called

(dual) declaration to A. Each element of u declaration is called a (dual) marking number.

The difference from the declaration in the original extended projection method is that
the dual declaration specifies which part of the realizer is not necessary in the program

extraction.

The dec procedure, defined as follows, relates a formula in QPC and its dual declaration
to a suitable formula in QPCHT by replacing some oceurrences of 3 to 3. In other words.
the transformation of a formula B to B' explained at the beginning of section 6 can be

performed by giving a dual declaration to B.

Definition 11: dec

Let A be a formula in QPC and I be a dual declaration to A. Then. a formula. deci T, A)
in QPCH*" is defined as follows:

1) dec{d. A) = 4;

2) dec{ S, AN B) E dec{ S(< I{A)), 4) A dee(S(> I(A)) — I{ 4), BY:

3) dec(§, AVE) € dee(S(< (I(A)+1))—1, A)vdee(S(> ((A)+1))~((A)+1), B) if 1€ S:
4) dec(S,A D B) = A > dee(5, B);

5) dec({1} U S, 3z € 0. 4) e dec{ 5 — 1, A);

6) dec(S,3Ir € 0. A) ¥ 3z € 0. dee(S~ 1,4) if 1€ 85,

ThdecS\Wreo. A)=VYr € o. dec(5. A).

where §(< n) &' {r e §|a<n}, S(>n) def freS|le>n),§—n® {fr=n|2¢

Sand 1l < r—mn},and S+ n e {r+n |z e S} for afinite set, §, of positive natural

numbers,

Conversely, the dmn procedure relates a formula with 3 to the dnal declaration. Note tlal
for a formula, A, dmn{A) = ¢ means that 3 does not veeur in the strongly positive part of
4. Also, let A+ — A be the translation which replaces all the strictly positive occurrence
of 3 with 3. Then, the set {1,2,---,I(A)} — dmn(A) is the marking of 4 in the sense of

the original version of the extended projection method.

Definition 12: dmn
Let A be a formula in QPCHY, then a subset of {1, - ,i[.:ij}, drnn A}, 1s defined as follows:

1} dmn(4) e ¢ if A is atomic;

2) dmn(A A B) Y dmn(A) U (dmn(B) + I(A));

3) dmn(Av B) Y (dmn(A) + 1)U (dmn(B) + I(A) + 1);
1) dmn(A > B) ¥ dmn(B);

5) dmn(3z € 0.4) & dmn(4) + 1;

lE..

6) dmn(Vr € 7. A4) L dmn(4);

7y dmn(3r € 0.4) E {1} U (dmn(A) +1).

Proposition 4: Let A be a fornla in QPCRT. Then, dec{dmn(A), A) = A

This means that a formula in QPC"" with 3 in its strictly positive part can be repre-
sented by a formula in QP'C and its dual marking. Note that it is possible to specify the
realizer corresponding to V to be unnecessary in the program extraction in the original
extended projection method. However, the redundancy specification here is restricted to
3. Therefore, the dec procedure fails if the dual declaration has a marking number which

corresponds to V in the strictly positive parl of the given formula.

7.2 Tr and marking procedure
The following theorem means that the T+ procedure succeeds if and only if Mark succeeds.

Theorem 2: Let (£/A) be a proof tree, and A" be a formula obtained by replavcing ome
of the occurrences of 4 in A with 3. Also, let (E/A") denote the tree obtained by replacing
the conclusion A with A" in (Z/A). Then, Tr(E/A4") succeeds if and oulv if Mark(%/{4})

succceds where J (1,00 1(A)) — dmn(a"),

The marking condition of Mark is reformulated in QPCHT as follows. Assume an induetion

proof:
[z # 0, Ay [z —1]]
£ Yo
A 0] A

Vi€ nal.A (nat ind)

Let B P e X and I be the set of occurrences of the checked induction hypothesis.

Az = 1), in Tr(E;/4"). The marking condition is described as B @ A4’ = 4’
7.3 EXT and N Ext
The EXT procedure has similar properties to the N Exf procedure in terms of projection.

Theorem 3: Let [be a dual declaration to a proof tree ($/A} in QPC and J he
{1,+--,1{A)} = I. Then,

- = _ . b
o571 () = (e 3)

if Tr(%/dec(I, A)) succeeds.
Also, the relation between EXT and N Ext is formalized as follows:

Theorem 4: Let I, J, and (L/A) be as in the previous theorem. Then,

Ext (1 (dec{EI,A})) = Nt (Mark ({4};))

if Tr(%/dee(I, A)) succeeds.
8. Examples

8.1 Ewven-Odd Checker Program

Assume the following simple theorem which states that every natural number is even or
odd.
Vecnat.((dpCnatr =2 -p)V(Igenatr =2-g-+1))

This theorem is proved by mathematical induetion on x. The code extracted from the
proof is
iz, 22, z3) Aeaf ¢ =0 then (left,0, any)
elsc af proj(1)ap({z1, 22, 53), 2 — 1)) = le ft
then (right, any, aplza, x = 1))
else (left,ap(z3, 2 — 1) + 1, any)

This mutual recursive call function calculates a sequence of terms of length 3. The first
element is the constant, le ft or right, which corresponds to V. The other two clements are
values of p and ¢ quantified by 3. This code is a function which checks whether r is even
or odd, but the values of p and ¢ are redundant. To generate a redundancy free function.

the theorem is translated to the following:
Wr € nat.((3p € nat.r =2 -pl v lfflq cnatr=2.¢g+1))

The original proof is translated with T as follows:

11, m,

= ind)’
"i-"'.'r-,{{ap,a::2~p]V[3q,1=2-q+1}3(]

D:nat 0=2. D{EII}
Jp0=2.p o V)
(3p0=2-p)v(dg0=2. q+1}

1 _[Lgp.{:r:—ljl=2-p]"u’[3q.[.’r—l}=2-q+l]]l I,
' (Fpz=2-p)v(dgz=2-q+1)

II, =

LW

.1.'--1:2-;]]
[pina] z=2:p+1 5,
Equ—E q+1 1)
_[‘ﬁr!-".'t':"l:'2 f.aPir—E p)"u"'lfqu-_g ']'+1}
e = (3E)
[3?&"“2 P} (ngzﬂ q-{-]]

Hyp = Sp(z—1)=2-p

l[g:nat] |z-=1=2 g+1]

- — .
g+1l:inat =2.(qg+1) (an

My = I'H?’sl'l';‘!]2 [EP-I=2'P}VfE|q.J:=2~g+1}
‘ (pz=2-p)vidge=2-¢+1)

(v}

(3E)

Huyp, def Jg(r—1)=2-g+1

The code extracted from this new proof is

prdraf @ =0 then left
else if aplz,x = 1) = left then vight else left

On the other hand, if the theorem is changed to the followings, Tr fails.
Yrcnat{({dpecnatr =2 p)v I[Elq Enatr=2-g+1j)

and

¥a € nat.((p € nat.x =2 p) v (Ig € nat.r =2 ¢+ 1))

Because the marking econdition is not satisfied in both of the cases, It is in fact,
((Ipenatr—1=2-p)v(Igenatr—1=2.-9g+1))

®((Ipenatr =2-p)V{(Igenatr =2-¢+ 1))
L((Ipecnatr=2-p)v(Igenatr =29+ 1))

in the first case, and

(Spenatz—1=2-p)v(Jg€natr —1=2-g+1))
‘E‘[(EPEHELLI =2-p)V(Igenatxr=2-¢g+1})
aél.'_"[;lp{—_ nat.r =2-p)V(dg € nat.x =2-¢+ 1))

in the second.

8.2 Natural Number Division
A specification for a natural number division program can be written as follows:

Vr€natVycnatiy > 02 dgenat.dr€enalz =qg-y+7 A1 <y)

This specification can be proved by mathematical induction on #. A more elegant proof by
course-of-value induction is given in (Hayashi & Nakano, 1988). The extracted program is

p(zy z9).Ar. if o =0 then Ay.(0,0)
else Ay. if proj(1)(ap(ap(D,(ap(za.x = 1)+ 1)),y)) = left
then (ap(zy, @ — 1),ap(22,2 = 1)+ 1)
else (aplzy, 2 = 1)+ 1,0)

where [is a ter extracted from a proof of Va € nat.¥h € nat.fa < b}V (b < a).
This program caleulates the pair of the quotient and the remainder of given natural numbers

x and y (y > 0). If only the remainder is needed, the specification should be translated to
Ve € nat.Vy € nat{y > 02 3genat.Ir Enatar =g-y+rAr < y)

The following program is extracted by Tr and EXT:

przdrif o =0 then Ay
else Ay, if proj(1Kaplap(D, (ap(z;,2 — 1) + 1)), y)) = le ft
then ap{zs, 2 — 1) 1 clse O

However, it is impossible to extract a program which only calculates the quotient. As can
be observed from the program extracted from the first specification, the value of remainder
at the recursive call step. ap(z3,2 — 1), must be used to calculate the quotient. This can

also be analyzed at proof tree level: First translate the specification to
¥r € nat.¥y € nat.(y > 0D 3g € nat.3r € nat.r = qry+rir<y)

Then, the induction step proof obtained from the original proof by Tr procedure is as
follows:

1
i B lv]' [Hyp —(VE)
b>07 y>0>23¢3ra—l=g-y+rircy
Elq.'-lr.:rtnl——-q-y+r‘.-"-.r'{y

(o F)

- LidE)?
dgdrr =qg-y+rAir<y

= (o 1)
y}D:ﬁjq.';lr.Jr=q-y+rﬁrc':y {‘F’I}l

Vyly > 023 rz =g -y+rir<y)

where Hyp is the induction hypothesis: Vy.(y > 023 Frr—1=g.y+rAr < y).

R
[r*
[r*u’-il:.{lr +"aiag’ !.’Ent:f : ;i ijj:: (VE) VE)
1, = r+layvy<r41 11, H"{UE]

Jg3rz=q-y+rAar<y

22 —

where I3 and II, are proofs of 3¢.3r.2 = g y+ r Ar < y under the assumptions, 7 + 1 < y
and ¥ < r + 1.

Because the eigen variable, r, of the {3E) application in I1; is used in the (VE) application
in [1,, the (3E) is not replaced by (3E). Also, the checked 3 formula is not propagated
to Irx =1=gq-y+rAr<yinll. Consequently, the induction hypothesis, Hyp, is
not changed by the Tr procedure. Then, the marking condition , Hyp & A" = A’ where
A =Yy y > 02 3¢3rxr = g -y +r Ar <y, is not satisfied, so the Tr procedurc fails.

This means that the program cannot be extracted.

9, Comparison with Other Works

Application of Kreisel-Troelstra realizability is not new in computer science. J. €. Mitchell
and G. Plotkin (1985} used a second order existential quantifier with the realizability to
deseribe module structure in constructive logic. J. L. Krivine and M. Parigot introduced «
sccond order predicate logic called AF;, (Parigot, 1988) in which universal quantifiers (botl
first order and second order) are interpreted by the realizability. The main interest iu AF,
is impredicativive second order logic in which various data structure can be defined.

V. Lifschitz (1982) has introduced a formulation of logic similar to QPCFT for another
purpose. Roughly, his logic is QPCRT minus universal and existential quantificrs plus
checked universal quantifier and a predicate K. First order quantificrs are interpreted as in
Kreisel-Troelstra realizability interpretation. Lifschitz defines realizability interpretation
of checked universal quantifier and I as

r realizes Wt iff r =14,

7 realizes Vo A iff Vr.(r realizes A).
The ordinary quantifiers are defined by checked quantifiers and K as

Vr A iff Ve (K(z) D A),
Jz. A ff Jx {K{z) A A).

Note that the realizability interpretation of these defined gquantifiers is the same as the
ordinary one.

QPCHAT must have an cxtra side condition for 3 in this paper, but Lifschitz’s does not.
This 1s because in Lifschitz’s logic existential introduction and universal elimination have

the following logical side conditions:

Alt) K(t) vVed(z) K1)
5z.A(z) Al

In Lifschitz’s logic, K(r} is not a theorem for any variable x. The counterpart of K(#)
in QPCKT will be 3z.(z = #). K(t) is a theorem for any term ¢ in QPC*T. Then, the

additional side condition on the checked existential elimination rule is inevitable. Therefore,
QPCH " is not completely the same as Lifschitz’s. Tt seems that QPCHT is casier to handle
than Lifschitz’s for our purpose.

QPCHT was introduced hy the anthors without any knowledge of Lifschitz’s work. Later,
essentially the same logic as Lifschitz's was suggested to us by J.-Y.Girard, and then G.
Mints pointed out that it had been introduced by Lifschitz.

10. Conclusion and Future Work

QPCHMT was presented in the traditional formulation of logic. This constructive logic is
to give a logical background for the extended projection method developed by one of the
authors. Theorems and their proofs are written in QPC, which is a simple first order
constructive logic. The proof is, then, translated into QPCHT which is a superset of
QPC with a new existential quantifier, 3. The QPCH7 proof obtained by the transiation
contains additional information about which parts are unnecessary to extract redundancy-
free program. The program extractor, EXT, can generate progrumns both from the original
proof and the translated proof, but the program extracted from the translated proof does
not have redundancy. This framework is an application of Kreisel-Troelstra realizability.
QPC"? handles only the existential quantifier, and does not fully give a logical background
for the original extended projection method which also handles redundant code extracted
from digjunction formulas. However, if disjunction is defined, following the traditional
technique in proof theory, with the existential quantifier as AV B % Aefr =02 A)alae #
0 2 B), then QPCHY covers the full version of the original extended projection method. Tf
disjunction is treated as primitive logical constant, it is necessary to introduce two kinds of
disjunction. Assume that a new disjunction symbol, say V, is introduced and realizability
is defined as a kt AVB ' (4 Aa kt A)V (B Aakt B). The introduction rule for ¥ can
be defined as

4 B
AVB AVB

However, there is no decent elimination rule for V. A good formulation of an elimination
rule for V will be found in a framework in which proofs are objcets such as type theories
and Sato’s SPT (Sato, 1989). Also, the additional side condition for the rules on 3 can be
presented more clearly in such a formulation. Moreover, the forgetful semantics used for J
will also be used for other logical constants to obtain new constructive theorics. Research

in this direction is plannecd for the future.

Acknowledgment

We thank J.-Y. Girards and G. E. Mints for helpful suggestions and comuncuts. The
majority of this work was conducted when one of the authors was at I[COT. We thank to

Dr. Hasegawa. chicf of the fifth laboratory of ICOT, for the opportunity for this research.

References

Barcndregt, H. P. (1981), The Lambde Calculus, Is Syntaz and Semantics, Studies in logic

and the foundation of mathematics, Vol. 103, North-Holland.
Beeson, M. (1935). Fesundation of Constructive Mathematics, Springer.

Constable, R. L. (1986), Implementing Mathematies with the Nuprl Proof Development

Systema, Prentice-Hall,
Havashi, 5. Nakano, H. (1988). PX : A Computaitonal Logic. The MIT Press.

Havashi, 5. (1986}, PX: a system extracting programns from proofs, Proceedings of Jrd
Warking Conference an the Formal Deseription of Programming Cencepts, North

Halland,

Howard, W.A. (1980). The Formulas-as-types Notion of Construction, Essays on Combi-
natory Logic, Lambda Caleulus and Formalism, eds. J. P. Seldin and J. R. Hindley,

Acadermnic Press,

Iireisel, G., Troelstra, A. S. (1979). Formal systems for some branches of intuitionistic

analysis, Annals of Mathematical Logic 1.

Lifsehitz. V. (1982). Constructive Assertions in An Extension of Classical Mathematies,

The Journal of Sywbolic Logie, Vol 47, No. 2.

Mitchell, J. C., Plotkin, G. (1983). Abstract data types have existential type, Proceedings
af 12th Annual Symposium on Principles of Programmang Languages, ACNL

Nordstrom, B., Petersson, K. (1981). Programmning in constructive set theory: some ex
amples, Proceedings of 1981 Conference on Functional Programming Lenguage and

Computer Architecture, ACM.

Parigot, M. (1988). Programming with Proofs: A Second-Order Type Theory, Proceedings
of European Symposium on Programming §8, LNCS 300, Springer.

Paulin-Mohring, C. (1989). Extracting F.,'s Programs from Proofls in the Caleulus of Con-
structions, Proceedings of 16th Annual ACM Symposium on Principles of Programaning

Lenguages, ACM.

Sato, M. (1983). Typed Logical Culeulus, Technical Report 85-13, Department of Informa-
tion Science, University of Tokyo.

Sato, M. (1989). Symbolic Proof Theory, manuseript

Takayama, Y. (1088}, QPC: QJ-based proof compiler - Simple Examples and Analysis,
Proceedings of European Symposium on Programming ‘88, LNCS 300, Springer.

Takayama, Y. (1989). Extended Projection — a new technique to extract efficient programs
from constructive proofs, Proceedings of 1989 Conference on Functional Programming

Lungueges and Computer Architecture, ACM.

Takaymma, Y. (1990). Extraction of Redundancy-free Programs from Constructive Natural

Deduction Proofs, Journal of Symbolic Computation (to appear)

lroelstru, A, 5. (1973). Mathematical investigation of infuitionistic arithmetic and analy-

sis, Lecture Notes in Mathematics 344, Springer.

