ICOT Technical Report: TR-571

TR-571

A Forward-Chaining Multiple-
Context Reasoner and Its
Application to Logic Design
by
Y. Ohta & K. Inoue

July, 1990
& 1990, 1ICOT
Mita Kokusa: Bidg. 21F (03} 436-3151—~5
" :D | 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Forward-Chaining Multiple-Context
Reasoner and Its Application to Logic Design

Yoshihiko Ohta and Katsumi Inoue
[COT Research Center
Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F
1-4-28 Mita, Minato-ku, Tokvo 108, Japan
Phone:+81-3-456-2514

{ohta, moue} Gicot.jp

Abstract

This paper presents an extended production systemn architecture which can deal
with forward reasoning in multiple contexts. The proposed architecture consists of
a compiler of clauses and default rules into a RETE-like network, a RETE-based
infcrence engine and the ATMS. The feature of the method is that the inference
engine gives intermediate justifications to the ATMS and stores intermediate de-
pendent assumnptions of two-input nodes in the RETE-like network, allowing faster
multiple-context reasoning. By means of this method, the multiple context reasoner
called APRICOT/0 has been implemented. An experimental result under the logic
design knowledge base shows that APRICOT/0 is about 6 to 10 times faster than a
system with a simple combination of a production system and the ATMS.

Keywords: RETE algorithm, ATMS, multiple-context reasoner. logic circuit
design

1 Introduction

An optimum solution to a given knowledge base may be efficiently obtained by dealing with all
the possible contexts simultaneously. A multiple-contexi reasoner is a useful tool for building
Al systems such as design systems where optimum solutions are often required. It is related
to hypothetical reasoning (7] and default reasoning [11]. However, multiple-context reasoners
usually take a lot of time to obtain solutions because they need to maintain the consistency of
multiple contexts.

Hecently, several multiple-context reasoners [4, 8, 5] have beeu developed by using the
assumption-based truth maintenance system (ATMS) [2, 3]. The ATMS is a general facility
for determining all the possible contexts and maiuntaining the consistency of multiple contexts.
Each of those multiple-context reasoners consists of the ATMS and a problem solver that in-
cludes the domain-dependent knowledge base and an inference engine.

On the other hand, production system architectures age widely used as rule-based problem
solvers when the knowledge bases are expressed as sets of rules. The RETE algorithm [f] was
developed for use in production system interpreters. It is an efficient method for matching
a large collection of objects with many conjunctive patterns. The production system usually
reasons in a single context hecause the inference engine chooses a rule from applicable rules.

In order to use a production system as a problem solver for a multiple-context reasoner, the
knowledge base should be extended to include default rules. Each default rule may be applied by
making a corresponding assumption as long as it is consistent, regardless of application of other
default rules, and thus allowing for multiple contexts. A multiple-context reasoner by [8] is a
forward-chaining system with the ATMS and uses the RETE algorithm. However, this system
separates the ATMS from the RETE network completely, so that there are some overheads
between pattern matching in its RETE network and the ATMS manipulation.

This paper presents a new combination method between a forward-chaining inference engine
and an ATMS for allowing faster multiple-context reasoning. The feature of the proposed
combination method is that the inference engine gives intermediate Justifications to the ATMS
and stores the labels of intermediate ATMS nodes at two-input nodes in the RETE-like network.
This method allows an efficient label-updating process for consistency maintenance as well as
conjunctive pattern matching for the inference engine. By means of this method, the multiple-
context reasoner which is called APRICOT/0 has been implemented on the PSL.II (Personal
Sequential Inference) machine [10] in ESP (Extended Self-contained Prolog) [1]. The efficiency of
APRICOT/0 is confirmed by an experimental comparison with a conventjonal multiple-context
reasoner through a logic circuit design problem that is an example of multiple-context reasoning.

2 Input knowledge base

An input knowledge base of the multiple-context reasoner discussing in this paper, is defined
with F" which is a finite set of Horn clauses and D which is a set of normal default rules,

A Horn clause is a formula,
A A, — B (1)

or
Q‘]J"‘-"‘a"‘\&n—FJ_, {2}

where o, -+, an(n > 0) and 3 represent atomic formulas, 1 represents false, a3 A -+ A a, are
called antecedents, and f is called a consequent. When n # 0, a Horn clause (1) is written in

the following notation:
ID oy, yag— > 4. (3)

When n = 0, a Horn clause (1) is written as:
3. (4)

In this case, 3 is restricted to a ground atomic formula. A Horn clause (2) is written in the

following notation:
ID:ay,an— > 1. (5)

Here, ID is a name identified with the clause.
A normal default rule {11] is an inference rule,

%ﬁ , (6)

where o is restricted to a finite conjunction ey A -+ A an(n = 0) of atomic formulas, and 7 is
restricted to an atomic formula. When n # 0 in (6), it is wrillen as:

ID oy, e ap— > assume(f). (7)
Here, ID is a name identified with the default rule. When n = 0 in {6), it is written as:

assume(). (8)

In (8), A is restricted to a ground atomic formula.

Procedure calls such as input/output built-in procedures and numerical calculations can be
attached between the symbols “ ™ and “— >" of each notation (3);(5);(7). A collection of
procedure calls is parenthesized between “{" and “}” . These procedure calls are evaluated by

built-in and user-defined procedures.

3 ATMS
In the ATMS, the basic data structure called an ATMS node is the following:

Ygarum < datum, label, justi fications > .

Here, the datum is a ground formula given by the inference engine. The notation assume(a(l}))
represents that a datum a(1) is justified by an assumption a(l). Here, the ATMS node corre-
sponding to the assumption a(l), distinguished from v,(1), is represented T'a1). The inference
engine gives the corresponding justification to the ATMS:

Lagr) = Tag1)-

2

A justification corresponds to a Horn clause where the antecedents are conjunctions of ground
atomic formulas and the consequent is a ground atomic formula.

A set of assumptions is called an environment. A conitezt is the set formed by assumptions of
a consistent environment combined with all data which can be derived from those assumptions.
An inconsistent environment is called a nogood. A datum is said to hold in an environment
if it can be derived from environments and the current set of Horn clauses corresponding to

justifications. _
Each datum is labeled with a minimal set of environments in which the datum holds. The

minimal set of environments is called a label of the node corresponding to the datum. The
following is a label-computing algorithm for the consequent node when a justification is given
by the inference engine.

1. Supposing that the label of the consequent node is L and the label of the ith antecedent
node are L;{z = 1,---,n), the ATMS computes the following:

I = {[_'J E:|E; € L;}.

=1

A set L" which is the set removing nogoods and subsumed environments from L'U L.
becomes the new label of the consequent node. If each environment is represented by
bit-vectors, then the union of two sets can be computed by the OR operation of the two
bit-vectors.

2. If L = L”, then this process is finished.

3. If the consequent node is 9y, then all new nogoods are removed from the label of every
nade.

4. If this node is not 4, then this label-updating process propagates all consequent nodes
of this node.

4 Multiple-context reasoner

An architecture of a multiple-context reasoner which inputs a knowledge base written in the
notations shown in Section 2 and outputs all derivable ground atomic formulas with assumptions
where the atomic formulas hold, is considered. The multiple-context reasoner consists of a
compiler of clauses and default rules into a RETE-like network, a forward-chaining inference
engine and the ATMS. The inference engine reasons in multiple conferts provided by the ATMS
without conflict resolution of applying antagonistic inference rules and gives justifications to the
ATMS. The ATMS maintains the consistency of the knowledge base with given justifications in
multiple contexts.

We will describe two methods to combine a forward-chaining inference engine with the ATMS
by considering the following knowledge base as an example:

F={kx=a(X),bY),e(Z)- > d(X,Y,2)}

3

and

D = {assume(a(1)), assume(b(2)), assume{c(3)), assume(e(4))}.

4.1 Simple method to combine an inference engine with the ATMS

Figure 1 shows a configuration of a multiple-context reasoner, where a forward-chaining infer-
ence engine is simply combined with the ATMS. This system is called a simple combination
system(SCS). The following are the ATMS nodes corresponding to the elements of D :

Yaf1) < E{IJ!{{PE[II}L{{Fc{I]}} =,

Yogz) :< B(2), {{Tog2)) {(Te))} >,
Yefa) < C[:EL {{[1¢{3:I'}}1 '[(Fc[a:l_]]' >

and
Yeta) 1< ¢(4), {{lc0 1}, {(Te)) } > .

Inference engine ATMS

J1 2
_}d (x1 Yr Z}. _,—J"‘

yatl: oo

Fig. 1 Configuration of a simple combination between
the inference engine and the ATMS.

B

4

In the initial state, there are eight ATMS nodes with assumption nodes in the ATMS. The
inference engine finds two ground instantiations,

b ={X:=1Y:=22 =3}
and
8 ={X:=1Y:=22:=4},

of the clause k with believed data a(1),8(2),¢(3) and ¢(4) provided by the ATMS. When the
inference engine derives two ground atomic formulas d(1,2,3) and d(1,2,4) from the believed
data and clauses kf; and kfl;, it gives the following justifications to the ATMS:

JL 2 agiys Ta(ans Ye(3) = Vd(1,2.3)

and
T2 Yapry, aia) Veia) = Vd(1,2,4)-

Therefore, the ATMS creates two ATMS nodes,
Y23y < 4(1,2,3), {{Taqn), Dogzps Tamp} J {00y, Wi2p 1e09)) >
and

Yar2,4) < d(1,2,4), a1y Dogays Tepny 1 A (a1 og20s Yot} > -

There are four union operations, {Tam} U {Tsz)} U {Tyy} and {Tapy} U {Tsay} U Ty}, in
these label-updating tasks of the ATMS.

4.2 Method to combine two-input nodes with the ATMS

A multiple-context reasoner implemented by means of the following method, is called APRI-
COT/0. The inference engine reasons by flowing tokens in the RETE-like network. Fach token
is an ATMS node corresponding to the ground formula. Horn clauses written in the notation
(4) and normal default rules written in the notation (8) are passed to the inference engine. The
inference engine has a queue for tokens. In the initial setting, the ATMS nodes correspoading
to the clauses such as the notation (4) and the default rules such as notation (8) are cdded to

the gueue.

Horn clauses writien in the notations (3),(5) and normal default rules written in the notation
(7) are compiled inte a RETE-like network. The RETE-like network consists of a root node,
one-input nodes, two-input nodes and terminal nodes. These RETE nodes are described here:

* A root node has one slot;
— Successors: A set of pointers to all one-input nodes.
¢ A one-input node has four slots:

— Pattern: freeze(S).
-~ Successors: A set of pointers to two-input nodes.

— Terminals: A set of pointers to terminal nodes, if they exist.

WM: A distributed working memory which is a set of ATMS nodes corresponding Lo
ground atomic formulas S where o are ground instantiations of 3.

* A two-input node has five slots:
— Pattern: freeze(a A J), where & is a conjunction of atomic formulas or an atomic
formula and # is an atomic formula.
— Successors: A set of pointers to two-input nodes.
— Terminals: A set of pointers to terminal nodes, if they exist.

— WM: A distributed working memory which is a set of ATMS nodes carresponding to
ground formulas (a A §)Ao where A are ground instantiations of & and o are ground
instantiations of #.

— Predecessors: A set of pointers to the one-input node corresponding to 8 and the
two-input (or one-input) node corresponding to a.

¢ A terminal node #]D works as a module executing the following tasks for a clause or a
default rule named [? when tokens arrive at this node.

— It evaluates the attached procedure calls.
- It gives justifications to the ATMS.
— It adds new derived ATMS nodes to the queue.

Here, freeze(a) is a ground formula substituting new constants(for example, the constant is §)

into all variables included in a.
Figure 2 shows the RETE-like network corresponding to the example and the configuration

of combinations between two-input nodes and the ATMS.

Inference engine
Queue

7am) | 70 | 7@ [7o)

1

a {$} L c {$} 71:!'[1,2.3}' Td{1.2,d}
WM ; WM: o | WM: | |
(2 ($) Ab (8) ———mmm e _ I8
WM : e —————————— ——— ATMS
L J{ I 7 all)7b(2)
t
[a () Ab (8) Ae (8) f—mmmmmmm I8 I8
Wi _J»-:— —————— N —
73t
16, 17

#ri : I

Tdil, 2

Ta i

Fig. 2 Configuration of combinations between
the two-input nodes and the ATMS,

In this method, two-input nodes in the RETE-like network for the inference engine give
intermediate justifications to the ATMS and store the intermediate ATMS nodes. When a
token va,, where) is a ground instantiation of «, arrives at a two-input node whose the pattern

is freeze(a A (), the inference engine gives the following intermediate justification to the ATMS
at the two-lnput node:
Taks Ve = Tanid)re-

Here, o is a ground instantiation of 3. The ATMS node Yss can be obtained by referring to
the distributed working memory (WM) through the predecessor link. After updating the label,
the ATMS returns the ATMS node Yiaagpre t0 the two-input node. When the two-input node
receives the ATMS node, this ATMS node is added to this WM of the two-input node.

Those behaviors are explained with the example in detail. The initial state of the reasone-
15 also shown in Figure 2. The inference engine starts the reasoning by taking the first token
Ya(1) [rom the quene. The token arrives at all one-input nodes through the root node. In the
one-input node a($), for example, the frozen pattern is melted so that the pattern becornes a
formula a(A) substituting new variable A for the symbal 8. The unification between the melted
pattern a(A) and the datum a(1) of the token is tried. As the melted pattern a{A) is unifiable
with the datum a(1), the WM of the one-input node stores the token. The token Ya(1) 15 passed
to the successor a($) A b($).

The inference engine takes the next token Yo7y from the queue. This token is stored in
the WM of the one-input nodc (%), then flows into the successor a(%) A b(8). The two-input
uode, which gets an element 7,1y by referring to the WM of another predecessor a($}, gives the
following intermediate justification to the ATMS:

I3 1 %a1)s To(2) = Yafriabiz)-

The ATMS computes {Tgpy} U {Ts2)} at the step 1 of label-updating process. When the label-
updating process is finished, the ATMS creates the ATMS node,

Ya(uyan(z) +< (1) A B(2), {{Taqn)s Togy } 1 {(vagiys 1oim) } >

The token “a(1)ab(z) Corresponding to this intermediate ATMS node is stored in the WM of the
two-input node, then is passed to the successor a(§) A 6($) A cf3).

The inference engine takes the next token T3y from the queue. This token is stored in the
WM of the one-input node b(8), then is passed to the successor a($) Ab(S)Ac($). The two input
node, which has obtained an element Ya({1)as(z) by referring to the WM of another predecessor
a(8) A b(3), gives the following intermediate justification to the ATMS:

J4 2 Yayanzp Ye@d) = Ya(nab(ziac(z)-

The ATMS computes { Fapips Tazy} U {Tya)} in the label-updating process. Note that the cost
for an OR operation is unaffected by the number of assumptions by using the bit-vectors. When
the label-updating process is finished, the ATMS creates the ATMS node,

Yalu)ns(zjac(a) < a(1) A b(2) A e(3), {{Taqry, Togzys Caizy 1o {(Farrynviays Fetzy) b =

which is stored in the WM of the two-input node. The token Ya(1)ns(2)ne(3) 15 then passed to
the terminal node #k since the two-input node has the terminal node. The terminal node #k
derives d(1,2,3) and gives the following justification to the ATMS:

I8t Yapymsiz)acz) = Vdna.a)-

7

The ATMS creates the ATMS node,
van23) < d(1,2,3), {{Taqys Togaps Tegn } 1 A (vapns@ine)} > -

The terminal node adds the new ATMS node 1.2 to the queue.

The inference engine takes the next token vy from the queue. In the same way as the token
“fea), the new token is stored in the WM of the one-input node ¢($), then the two-input node
a($) A B{E) A ¢(8) gives the following intermediate justification to the ATMS:

JO : Yagr)as2)s Ve(a) = Fa(1)ab(2)Ac(d)-

The ATMS computes {T'5(1y, Fazj } U {T o4y} in the label-updating process, and creates the ATM3
node,

Ya1yas(2)neta) *< (1) AB(2Z) A e(4), {{Taq), Dogays Ueqay } s {(Vataynsiays Teay)} =,

which is stored in the WM of the two-input node. The token a(1)ab(2)ac(a) 15 passed to the
terminal node #k. The terminal node #k derives d(1,2,4) and gives the following justification
to the ATMS:

J7 - Tal(1)nb{2)ac(4) = Tdi1,2.4)+
The ATMS creates the ATMS node,

Yan24) < d(1,2,4), {{Tany, Tagap, Dy 1 A Vaquynbiapacta)} > -

The terminal node add the new ATMS node vy 2.4y to the queue.

The inference engine takes the next token 7423 from the queue, but this token is not
unifiable one for all one-input nodes. The last token y4(1,2,4) is the same as y4 23). As the queue
becomes empty, the inference engine stops. The reasoner outputs the ATMS nodes Yd{1,2.3) and
Ydi1,2,4)

There are three union operations for two sets in all the label-updating tasks in the ATMS.
The number of union operations is less than in the simple combination system when a one-input
node passes to its successor, which is a successor of another two-input node. When the RETE-
like network includes a two-input node shared by some clauses or defauit rules, we can see that
the system with combinations between two-input nodes and the ATMS is also efficient.

4.3 Complexity considerations

The following is a more general complexily consideration for these architectures.
Assume that the number of environments of an ATMS node < a;85,... > is represented by
N [cr,-ﬁ'f-‘]. The sum of the numbers of the environments 1s defined as:

S(ay) = BeN(ai8y), (9)

where each ground substitution 8 is applicable to a;.

On 5CS5, the total number of the OR operation for label-updating for the clause (3) is
=(n-— l]HS{u,-j. (10}
1=l
On APRICOT/0, the total number of the OR operation for label-updating for the clause (3) is

Em]

Co= zz 5{,‘_\ a;) - Sle)}. (11)
Let 1 <7 < n: then
S(/\ e < Tt (12)

because the right hand side may include nogoods. To analyze the worst case, assume that the
set of nogoods is empty. Then,

1 1
Cs _ S(03) - 5(a) - S(ag) * Slaa)- 9(&53' Sla) T T S ag (13)
C, n—1 1 I

Hence, C, < C, when there is at least one o (i = 3,4,---,n) such that S(a;) > 1.
Suppose the input knowledge base includes a clause,

ID" ey, gy Opgy — > 0, (14)

which has all antecedents and the consequent of the clause (3) and coutains an additional
antecedent any,. If labels of < §4,... > derived from the clause (3) have been computed by
the ATMS, the total number of the OR operation for label-updating for the clause (14) is:

Cr = SN\ a;) - S(an). {15)
i=1
On 5CS, the total number of the OR operation for label-updating for the clause (14} is:
C;:“'{HS[“1'}}'S{QH+1]- Ejﬁ}
i=1

Assuming that the set of nogoods is empty,

|r

g; s (17)

Hence, C; < C, when the RETE-like network includes al least one two-input node shared by
some clauses or default rules.

5 Application to logic design

This section demonstrates that APRICOT/0 is an efficient system in multiple contexts through
an application to a logic circuit design problem. In design problems such as logic design, many
alternatives appear on different levels of a hierarchy. APRICOT/0 can deal with those alterna-
tives as assumptions generated dynamically (by rules of the form (7))

The design of logic circuits for calculating the greatest common divisor (GCD) of two integers
expressed in 8 bits by using the Euclidean algorithm, is taken as an example of a logic design
problem. The circuits have to satisfy given constraints on time and area. Constraints on area are
expressed as inequalities in the basic cell count. Constraints on time are expressed as inegqualities
in the delay.

5.1 Representing the design knowledge

The knowledge base contains several kinds of knowledge: datapath design, component design,
technology mapping, CMOS standard cells, and area and time constraints.

¢ Datapath design: The default rule datapath_i represents that the circuit for calculaling
the GCD can be constructed from the following componénts: a control box, an inverter,
two registers, two multiplexers, a comparatoer and a subtracter with two multiplexers.

datapath.l i control.box(X1, N1), inverter(X2, N2),
register(X3, N3), register(X4, N4), multiplezer(X5, N5),
multiplezer(X6, N6), comparator(X7,NT),
subtracter with . MUUX(X8,N8) — >
assumne(calculator of GCD([X1,X2, X3, X4, X5, X6, XT, X8],
N1+ N2+ N3+ N4+ N5+ N6+ NT + N8)).

¢ Component design: The default rule component_design_I represents that a subtracter can
be constructed with an adder and a one's complement.

component.design.] :: adder(X1,N1), ones_complement(X2 N2)
— > assume(subtracter([X1, X2], N1 + N2)).

¢ Technology mapping: The clause technology-mapping_1 represents that an 8-bit adder can
be constructed with two 4-bit carry-lookahead-adder cells (a4h) connected serially.

technology mapping.l :: cell{adh, N1) — > adder([adh, adh], N1 2).

e CMOS standard cells: The clause cell(agh,50) represents that an a 4-bit carry-lookahead-
adder cell {agh) is a CMOS standard cell whose the basic cell count is 50.

s Area and iime constraints:

10

~ Constraints evaluated at the final step in each context: The clause area_constraints
represents the knowledge about evaluating area constraints.

area_constraints = caleulator of GCD(X,N), area_limit(M),
{N>M}->[]

The clause time_consfraints represents the knowledge about evaluating time con-
straints.

time._consiraints :: caleulator of GCD(X,N), time limit{ M),
{: delay(#simulator, X, T),T > M} — > [].

— Area constraints evaluated earlier: To avoid redundant executions of problem-solving
tasks which are shared among mulliple contexts in the ATMS, the knowledge base
includes the knowledge for arca constraints evaluated earlier. These constraints make
earlier pruning of inconsistent contexts possible.

area_constraint_l :: control.boz(X1, N1), inverter{ X2, N2},
register(X3, N3), register(X4, N4), multiplexer{X5, N5),
multiplezer(X6, N6), comparator(XT,NT), arealimit(M),
{N1+N2ENI+Na+ No+ N6+ NT> M) — > [],

There are 44 clauses and 10 default rules in the design knowledge base. The RETE-like
network is partially shown in Figure 3.

» Boxes with melted patterns denote l-input nodes.
¢ Boxes with numbers denote 2-input nodes that have no terminal node.

» Boxes with terminal nodes denote 2-input nodes that have a terminal node.

Fig. 3 Partial diagram of the RETE-like network
corresponding to the design knowledge base.

11

5.2 Experiment and Result

The design process is processed by two reasoners, SCS and APRICOT/0, in the bottom-up
manner. First, all CMOS standard cells are mapped onto all possible subcomponents. Second,
all generated subcomponents are mapped onte all possible components. The components are
generaled as assummptions. Third, all generated components are mapped onto all possible data-
paths after the area constraints on basic cell counts of partial combinations of the components
have been evaluated. The datapaths are generated as assumptions. Finally, the datapaths are
evaluated by both constraints. The datapaths that satisfy the constraints become the solutions.

The result of the reasoning by the multiple-context reasoner is a set of all solutions that
satisfy all given constraints. Therefore, we can pick the best solution of all the solutions.

Both APRICOT/0 and SCS have been implemented on the PSI-II machine in ESP, Tahble 1
shows the result of the experiment concerning reasoning times. When the basic cell count limit
is 500 or 400, APRICOT/0 is about 6 times faster than SCS.

The reason why APRICOT /0 works efficiently for this logic design problem is the following.
First, there are many alternatives for each component such as a comparator and a subtiacter.
For example in Figure 3, many tokens are passed from the one-input node comparator(A, B)
to its successor “10167, that is also a successor of “888". Second, in this problem, the design
knowledge is expressed in a hierarchy. At each level of the hierarchy, especially in datapath
design, there are many knowledge whose components are shared by other knowledge. Therefore,
the resulting RETE-like network contains lots of two-input nodes shared by several clauses or
defanlt rules. Third, area constraints can be evaluaied incrementally, and thus make earlier
pruning possible. When an ATMS node stored in the WM of a two-input node is no longer
helieved (that is, its label becomes empty), the ATMS node does not have to be stored any
more and does not have to be passed lo the successors. Therefore, when the basic cell count
lirmt is 300, this earlier evaluation of constraints works extremery well, so that APRICOT/0 1=
about 10 times faster than SCS.

Table 1 Comparisons between whole reasoning times on APRICOT/0
and data on the simple combination system (SCS).

Circuit constraints Numbef nr!Rnusnning timés Speed=up
Area limit |Time limit|solutions APRICOT.0|SCS Ts./Ta
[cell coumnt] - nsi | Ta f’;] |_T5[s:!

200 ' 60 47 17. 1 106, 1 £

400 | 50 24 16. 0 96, 6]

300 | 40 2 3. 7 36, 1 10

J00 G0 & | 3. 7 36, 3 10

12

6 Conclusion

We have shown a new architecture for multiple-context reasoners, which reduces overheads
between pattern matching in a RETE petwork and the ATMS pracessing.

The experimental result shows that APRICOT/0 is about 6 to 10 times faster than SCS
under the logic design knowledge base. The cost of whole label computations by APRICOT /0
is less than one by SCS in the following cases:

¢ When tokens are passed from a one-inpul node to its successor that is a successor of
another two-input node,

¢ When the RETE-like network includes a two il:lput node shared by some clauses or defaull
rules.

Acknowledgments

The problem domain of the logic design was suggested to the authors by Mr. Kenji Ikoma.
The design knowledge of the logic circuit has been adapted from [9). The implementation of
the design knowledge basce was greatly assisted by the continued efforts of Mr. Hiroshi Ohsaki
and Mr. Makoto Nakashima. The authors would like to thank Dr. Koichi Furukawa for his
useful comments. Finally, they would like to express their appreciation to Dr. Kazuhire Fuchi,
Director of the Institute for New Generation Computer ‘lechnology, who provided them with
the opportunity to conduct this research.

References

[1] Chikayama, T., Unique Features of ESP, Proceedings of the International Conference on
Fifth Generation Cemputer Sysiems, (1984), pp.292-298.

[2] de Kleer, J., An Assumption-based TMS, Artificial Intelligence, 28, (1986), pp.127-162.
[3] de Kleer, J., Extending the ATMS, Artificial ntelligence, 28, (1986), pp.163-196.

[4] de Kleer, J., Problem Solving with the ATMS, Artificial Intelligence, 28, (1986), pp.197-
224,

[3] Flann, N. 8., Dietterich, T. G. and Corpron, D. R., Forward Chaining Logic Programming
with the ATMS, Proceedings of AAAL87, (1987), pp.24-29.

[6] Forgy, C. L., Rete: A Fast Algorithn for the Many Pattern/Many Object Pattern Match
Problem, Artificial Intelligence, 19, (1982), pp.17-37.

[7] Inoue, K., Problem Solving with Hypothetical Reasoning, Proceedings of the International
Conference on Fifth Generation Computer Systems, 3, (1988), pp.1275-1281.

[8] Junker, U., Reasoning in Multiple Contexts, GMD Working Paper No.334 J[1988).

13

[9] Maruyama, I., Kakuda, T., Masunaga, Y., Minoda, Y., Sawada, 5. and Kawato, N., co-
LODEX: A Cooperative Expert System for Logic Design, Proceedings of the International
Conference on Fifth Generation Computer Systems, 3, (1988), pp.1299-1306.

[10] Nakashima, H. and Nakajima, K., Hardware Architecture of the Sequential Inference Ma-
chine: PSI-II, Proceedings of the Symposium on Logic Programming, [1987), pp.104-113.

[11] Reiter, R., A Logic for Default Reasoning, Artificial Intelligence, 13, (1980), pp.81-132.

14

