ICOT Technical Report: TR-568

TR-568

An Impelentation of TMS in
Concurrent Logic Programming
Language; Preliminary Report

by
K. Satoh, N. Iwayama & E. Sugino

July, 1990

©1990, ICOT

Mita Kokusai Bldg. 21F (03) 456-3191-5

‘G DT 4-28 Mita 1-Chome Telex LCOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology



An Implementation of TMS in
Concurrent Logic Programming Language:
Preliminary Report *

Ken Satoh, Noboru Iwayama, Eiji Sugino
Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
email: ksatoh@icot.jp, iwayama@icot.jp, sugino@icot.jp
Kurt Konolige
SRI International, Menlo Park, Stanford, CA, USA

email: konolige@ai.sri.com

April 30, 1990

Abstract

This paper presents an implementation of TMS (Truth Mainte-
nance System) in KL1, & concurrent logic programming language de-
veloped in ICOT. A TMS has been intensively developed in Al com-
munity for nonmonotonic reasoning and hypothetical reasoning. In
this paper, we firstly prove correctness of nondeterministic algorithms
to compute 1'M5. Then, we provide a KL1 implementation of TMS
and give a preliminary resull.

Areas: Reasouing

Key Words: Truth Maintenance System, Concurrent Logic Language, Non-
monotonic Heasoning, Frame Problem

"This work was initiated by Kurt Konolige when he visited in 1C0T from November
20 to Decernber 8, 1989



1 Introduction

lruth Maintenance Systemn (TMS) [Doyle79] has been actively investigated
in Al comimunity for hypothetical reasoning and nonmonotonic reasoning.
Recently, some researches reconsidered a semantics of TMS [Fujiwara89,
Reinfrank89]. However, they have not proved correctuess of any algorithms
for TMS in their papers. This paper firstly shows correctness for such algo-
rithms.

Then, we provide an implementation of TMS in KL1, a concurrent logic
programming language developed in 1CO'L. In this paper, we implement TMS
by translating each justification into processes and we use message passing to
manipulate each justification. This implementation avoids the frame prob-
lem [Genesereth87] because each channel connected with process can be re-
garded as a connection between relevaul information and so, through this
channel, we can change relevant information without looking into irrelevant
information.

Finally, we give a preliminary result for this implementation.

2 TMS

We follow the definition of TMS [Fujiwara8y).

Definition 1 TMS:
A TMS s @ trple D = (N, J,C'Y such that

1. N 15 a finite sel (The clements of N will be called nodes).

o]

o as on o subset of N ox 2V % 2N where 2N denotes the power sel of N
(The elements of J will be called justifications ).

3. (7 is a subset of 2V (The elements of € will be called nogoods ),

Nodes represent a basic statement in agent’s belief. Justifications represent
a relation between those basic statements. Nogoods prohibit certain combi-
nations of hasic statements in ageul’s beliel.

Let j be a justification of the form (n,I,0). Then, n is called the con-
sequent node of j, I is called the infist of § and O is called the outlist of

I



A justification means that if every node in its inlist is in agent’s belief
and if no node in its outlist is in her belief, then a consequent node is in her
belief.

Let S be a subset of N. We say a justification j = (n, I, 0) is applicable
with respect to a state S if for every node n! € I, n' belongs to S and there
is no node n? & O which belongs to 5.

We would like to define a rational state of belief with respect to justifi-
cations and nogoods. In a rational state of belief, a node is believed (called
in) if there must be some reason to believe the node, otherwise a node is not
believed (called out). The following definition formalizes this intention.

Definition 2 Well-Founded Proof:

Let ) = (N, J,C) be a TMS and 5 be a subset of N. A finite sequence
of nodes (ny,..n;} is called a well founded proof of n with respect to J in 5
if and only if the following conditions are satisfied.

I.ng=m.
8 For every n; in the sequence, iy belongs to S,

4. For everyn; in the sequence, there is a justification (n;, T, O} € J such
that for every node n' € I, n' 15 one of (n,, v Ttioy) and there ts no
node n® € O which belongs to S.

Note that well-lounded prools have next properties.

1. A prefix of a sequence of a well-founded proof is also a well-founded
proof of the last element of the prefix.

2. A concatenation of well-founded proofs in § is alse a well-founded proof

in S.

3. For every well-founded proof p of n in 5, there is a well-founded proof
of n in S such that every node n in the proof occurs once at most. If a
proof p is (nq,... N, . 0500, R, 4, ., ) and n; and n; are same
nodes, a proof {ny,.., %, .., 7 1,M541,...,7) is also a well-founded
proof of n in 5. We call this proof nermalized proof of proof p.



4. For a well-founded proof (P e M Mg o Mg M gy, e B} DS,
there is a justification j, for n, such that every node in its inlist is one of
(#1,...in;-1} and no node in its outlist belongs to S. I every node in j,’s
inlist is one of (ny, ..., n:}, asequence (ny, ..., ;. Tjs ik ly vees T 13 Ty gy ey M)
15 also a well-founded proof in S.

Lhe above definition prohibits believing a node by circular arguments such
as “if p is in agent’s beliel, then she believes p.”

Definition 3 Well-Founded Admissible State:
Let I = (NJ,C) be a TMS and S be a subset of N. Then 5 is o
well-founded admissible state of the following conditions are satisfied.

L. If there is an applicable justification j = (n,1,0) € J wrt. S, n € 5.
2. For any nogood ¢ & (', ¢ is not a subscl of 5.

3. Every node n € 8 has a well-founded proof with respect to J in §.
(And, every node n has a normalized well founded proof w.r.t. J in §.)

The third condition above is somewhat different from the original definition in
(Fujiwara39] aud similar to the definition of finite groundedness in [Doylesd],
but it is actually equivalent. The above condition is more direct to onr
intention because it states that if a node is believed, then there is a set of
supporting justifications to the node without circular arguments.

Although this definition provides a condition to check if a given set S is a
well-founded admissible state, it does not directly provide a non-deterministic
algorithm to compute it. In this paper, we give such a procedure as follows.

A Non-deterministic Algorithm to Compute a Well-Founded Ad-

missible State
Let [) = (N, J,C) be a TMS and S5 be 0 (an empty set) and J, be § and
e =1 . ’

Step 1: If there is an applicable justification w.r.t. S; which is net in .J,, go
L Slep 2, otherwize output S;.

Step 2: Take one applicable justification j; = (n,/,0) & J; w.rt. S.
"jrfl'l = J: L '[_.i'q}



Siy1 =5, U {n}

Check if there is no nogood ¢ € € such that ¢ is a subset of 54, and
every justification in J..q is applicable w.rt, Sy, fso, i :=¢+ 1 and
go to Step 1, otherwise fail.

We say that a sequence of justifications (jy, ..., i)} ouiputs S in the above pro-
cedure if a sequence of justifications is {71,.... o) When the above procedure
outputs 5.

Note that step 2 in the procedure involves a non-deterministic choice
of applicable justificalion. Since a set of justifications is finite, we can itry
this procedure exhaustively with respect to choices of applicable justification.
However, sinee in cach loop, the number of justifications which can be checked
is decreasced by 1, we nead an exponential time for an exhaustive try. If there
is no output in the cxhaustive scarcly, then there is no well-founded admissible
state.

Example 1 (Computing a Well-Founded Admissible State)
Let D) = Hp*‘?}! {jh}li]-ﬂ} where jl - {p.{;v}.’ﬁ} and Ji1= {(I:w1 {P” Then

there is only one well-founded admissible state {g}. lu the above procedure,
only the sequence (j;) outpuls {q}. O

The following Theorem states soundness (the procedure outpuis only well-
founded admissible states) and completeness (if there is a well-founded ad-
inissible state, the procedure outputs by appropriate choices of justifications)
of the procedure.

Theorem 1 There 5 a sequence of justifications which outputs S in the
procedure if and only if S is a well-founded admussible state.

Froof:

(Soundness) Suppose there is a sequence of applicable justifications {j1, ..., %)
which oulputs 5 in the procedure. We check 5 satisfies three conditions of
well-founded admissible state. Let J; be a set of (used) justifications when
the procedure outputs 5.

I. Suppose there is an applicable justification 7 w.r.t. §in .J. This justi-
fication must be in J; because there must be no applicable justification

5



w.r.l. §in J—J, when the procedure outputs §. From the construction
ol 5, the conseguent node of 7 isin 5.

2. From the construction of S. no nogood ¢ € (7 is a subscl of S,

3. Let (my.....n;) be a sequence of nodes each of which is a consequent
node of jy..... 7 respectively. Then, this sequence of nodes is a well-
founded proof of n,. Since this scquence has every node in § and any
prefix of the sequence is a well-founded proof of the last element, every
nade in 5 has a well founded proof.

(Completeness) Suppuse there is a well-founded admissible state S. Then
every node n in S has a well-Tounded proof. We construct a normalized
well-founded proof from well-founded proofs in the following algorithm.

Let Ny :={} (empty sequence) and 7 := 0 and S := §,
Repeat

Take a node n; € 5; from &

Let a well-founded proof of n; be (n},...,u").

Ny o= Ne-{nl o onl™) (- is a concatenalion operator.)

S = S;u{nl, L n}

ti=14
until 5, = &
Each N, is a well-founded proof in &, let (n!, ™} be a normalized proof
of an output proof N, of the abuve ileration. There is a justification j*
for each n* such that every node in its inlisl is one of (n',...,n*1) and no
node in its outlist belongs to 5. Let J be a concatenation of a sequence
of justifications 3'....,j™ and any arbilrary sequence of (unused) applicable
justifications w.r.t § which are not in §', ..., j™.

Then we can easily check that J ontputs §. O

Although the above procedure is correct, it has some redundancies. For
example, if we decide n to be in. then we do not need to check any other
justification whose consequent node is . The following algorithm is due to
Kurt Konolige. It reduces those redundancies.

An Enhanced Algorithm to Compute a Well-Founded Admissible
State
Let 1) = (N, J ") be a TMS and Sy := 0. 7, := @ and 1 := 0.



Step 1: Find an applicable justification j = (n,1,0) w.r.t. 5, such that n
is not in 5. Tf it is not found, output S; else go to Step 2.

Step 2:
5P = 5, U {n}
T:=T,JO
k=10
Repeat
SEHL.= S5 [n|n € S5F and

3% = (n,1,0) s.t.

(a' e I onl e S5y a(vn? e O o n® £ T} (1)
THY = 4*% U {nln ¢ TF and
Jee (st Yt € cln® #n=a° & §F)} (2)
I SHYATHY 2§, then fail. (3)
H3ecistb. cC 5':‘“, then fail.
k=k+1
until (S5 = S5 and TF = T51)
Sipr = 8}
T =TF
1i=1+41

Go to Step 1.

In the above procedure, TF expresses a sel ol nodes which are decided to
be oul. Therefore, Operation {1} expresses an addition of nodes which are
newly founded to be in, Operation (2} expresses an addition of nodes which
are newly founded to be out. The node must be out by operation (2} because
all nodes except the node in nogood ¢ is in. Operation (3) checks if every
used justification is still applicable.

Thearem 2 The above procedure outpuls S by appropriate choices of justi-
fieations if and only if § is « well-founded admissible state.

Proof:

(Soundness) Same as soundness part of theorem 1.

=



(Completeness) Suppose there iz a well-founded admissible state 5. We
construct a normalized proof (n', ... n™} in the same way of comleteness part
in theorem 1. There is a justification j* for each n® such that every node
in its inlist is one of (n',...n*"!) and no node in its outlist belongs to S,
By following way we can rearrange the proof, and, at the same time, the
sequence of justifications. We move all nodes n with cach used justification
7= {n. 1,0} after (n',....n") such that {n', ... n'} is Lthe shortest sequence
which satisfies next two conditions.

L. Every node in [ is ane of {n', . ni).

2. Every node in O belongs to any outlist which is one of {77, .., 7}, or the
node belongs to any nogood such that each node in the nogood except.
the node is one of {n', ..., n').

Then we can check the rearranged sequence of justifications cutputs 5 in the
previous algorithm. O

honolige gives further refinement for his algorithm. He regards a nogood
¢ as a justificalion whose consequent node is L (special node which expresses
contradiction) and whose inlist 15 ¢ and whase outlist is @. So, it is sufficient
to consider only a sel of justifications by this transformation. Also, in his
refined algorithm, a set of justifications is changed every time when a state
ol a node is decided so that we can check if justification is applicable or not
without checking states of nodes which has already been decided.

A Refined Algorithm to Compute a Well-Founded Admissible State
Lt D= {(N.LC) bea TMS and S5 := 0 1y :={L}, Jo:=J and i := (.

Step 1: Find a justification j = (n, 0, ) in J,. it 25 not found, output 5;
clse go Lo Step 2.

Step 2:
S50 := 8 U {n}
TP =100
JY— J;
IND . {n}
OUP =0
b =10



Repeat
INML QU THY JMY 2 propagate(INE, OUTE, J¥)
SEFY = INF L SF
T = oUTHOTE
IEINFT O TE 4 () then fail.

k=k+1
until (INF = and OUT® = )
Siyy = 5k
Ty = Tz'k
Jir = J;k
1:=1 1

Go to Step 1.

propagate{ AN, OUT..JT)
begin
NewIN =10
NewOU'T .=
J =10
Repeat
Take a node n in TN,
For each j = (n',1,0) ¢ J do
Ifn' = norn & O then do nothing
else if I = {n} and O = @ then add n’ into NewlN
else if n' = L and I = {n,n"} then add n" into NewOQUT
else if n € I then add j' = (n', T = {n},0) into J'
else add j into J'.
until {we check every node in IN)
NewJ =1
Repeat
Take a node n in OUT,
For each j = (0" 1,0} € J' do
If n € I then do nathing
else if I = 0 and O = {n} then add »n' into NewlN
else if n € O then add j' = (n', 1,0 — {n}} into NewJ
else add ;7 into NewJ,



until {we check every node in OUTY)
Return NewfN, NewOID'T, Nowd
end

This algorithm gives same output as the enhanced algorithm because each
5% and TF is the same as the enhanced algorithm.

3 Implementing TMS in KL1

3.1 KL1

In this subsection, we briefly explain KL1, a concurrent logic programming
language developed in 1CO1 [Chikayama#8], KL1 consists of the following
form of guarded Torn clauses,

1”1 ; "—Gr||.....G[g]|B[l...., B]!.:.
Hg ' _{}:3“”” ﬁg;,._.l!jm,..., ”'j.._,.

'“T.-. : {.-;,q].-.-.-.(.:n_y“.ﬁnh vana H_.-“h“.

where each H,, B is an atomic formula and we call them head, body goal
of a guarded Horn clause respectively, and ;15 a bult-in predicate such as
unification or comparative operator and we call it guard goal of a guarded
Iorn clanse. We call '|” between guard and body a commil operator and we
call the part befare the commit operator guard part and the part after it body

part.

An execution of program is provoked to call the following form of goal.

1— B, ... B

Then, an execution proceeds as reducing this goal to further goals in
parallel. One reduction of a goal B; is done as follows, Fiestly, we check if a
guard part of a guarded Horn clause succeeds in matching H;. This is done
by unification. [lowever, if unification exports variable bindings outside, it
will be suspended. Guard part succeeds if every unification succeeds without
exporting variable bindings outside. Then, we replace [i; by the body part
of the clause. 1f we find two or more matched clanses, then we choose one of

Ly



them non determinmstically and replace H,. If there is no more goal, then it
ends the execution.

By this procedural semantics, we can represent asynchronized concurrent
processes in the language. Each goal 8; can be regarded as a process and a
cominon variable over goals can be regarded as a process channel over those
processes, Lhis property is common among concurrent logic programming
languages [Shapiros83].

3.2 Implementation

In this subseciion, we discuss implement issues of Konolige's refined algo-
rithm. It is very important to investigate how to represent objects of TMS
in his algorithm. In a naive implementation, we nse a list structure to rep-
resent a set of justifications where each justification is an element of the hist,
[However. in the naive implementation, we have to check all the justification
in the list to propagate a state of a node. If a number of justifications are
It and an average occurrences al a node in a set of justifications are 5, then
this implementation becomes inefficient as g/ j {accurrence rate for relevant
justifications for a node) increases. And we also need to copy most part of
the list to change justifications. This problem can be regarded as a kind of
frame problem in that we can not change a large structure data efficiently in
declarative logic language.

Howoever, we can avoid this prablem by changing a representation of jus-
titications in kL1 or other similar concurrent logic languages. Qur approach
is lo translate each node in a justification nto processes and relevant nodes
are connected each other by process channels represented as common vari-
ables su that when a state of node is decided, we can propagale this state
through this channel to relevant justifications direcily. Fven if we could use
indexing scheme to access the relevant part of the list, there is still a problem
of changing the content of the list where we have to copy maosi of the list.
The problem also can be avoided by this implementation because changing
the state of the process corresponds with changing the justification and this
change does not affect any irrelevant processes.

We explain Lhis idea by an example.

Consider a TMS D = ({p.q,7 s}, {51, 72,53}, 0) where 3, = (p,{q}.{r}).
jr = Ag A b dr}) and ga = (s, {r} {})-

11



We firstly compile this justifications into processes {Figure 1). The conse-
quent node of a justification is translated into a con_node process and nodes
of its inlist are translated into in_node processes and nodes of its outlist are
translated into ouf_node processes. Nodes in the same justifications are con.
nected each other (horizontal arrows in the figure, we call them Justification
channels), and also the same nodes are connected each other (thick arrows in
the figure, we call them node channels), and a control process and con_node
processes are connected {vertical arrows in the figure, we call them control
channels).

Firstly, the control process tries to find an applicable justification through
control channels. In this example, j, is found and control process provokes
J2 and lets r out and registers r as out.

J2 becomes (g, {}, {}) and g is found to be in and this fact is reported to
control process through control channels. Then, information of r js propa-
gated through node channels. j, becomes (p, {q}, {}} by removing v from its
outlist. j3 is removed because r is in its inlist {(Figure 2). These deletions of
nodes are accomplished by terminating corresponding processes.

Then, from a consequent node of j,. information of ¢ Is propagated
through node channels. 3; becomes (p, {}.{}} and p is found to be in via
justification channel and this fact is reported to control process (Figure 3).

And finally, j; is removed and execution is halted becausc there is no
applicable justification and there is no contradiction(Figure 4)

12



out:{}

con_node{p)

tn_nodelq)

S

l.//

con_node(q)

. aut-nade(r]

out_node(r) l—

-

con_node(s)

in_node(r)

Figure 1: Initial State of Processes,

13



I a
Control m:{}
out:{r}

con_node(p) in-nods(q)

N

oot odel g )

Fignre 2: A State of Processes after Letting r out.

14



in:{g}
out:{r}

Control

— con_node( p)

Figure 3: A State of Processes after Letting g in.

ir]:{p,q}
out: {r}

Control

Figure 4: A Final State of Processes.
4 Preliminary Result

We compare our implementation of process representation of justifications
with naive implementation of list representation of justifications in Konolige’s
algorithm.

We use a A-yueens problem. TMS representation (N, J, C} for A'-queens
problem 1s as follows.

1. N consists of a position of queens.
N = '['?nm|1 <n<AN,1<m E,ﬂuf_}

2. J consists of a set of the following rules.
(11 {}1 {-‘5'1?1‘113;‘114}}
{‘Tﬂ: { }ﬁ {Ql] R FER '5'14}}
{q]ﬁs {}, {Q‘u s 12, G4 ))
{mh{}-{"hnm::qm”

15



{q‘l-i.- {}' {'?4I~*i’¢?~. q43}}
Each rule expresses that il a queen iz not in the position in outlist, the

guecn must be in the position of consequent nade.

3. € consists of a combination of positions of two quecns such that those
queens check each other (two quecens are in the same column or the
queens are put diagonally,

(qi1. g21)
(@102
{g44+ g3}
(g11+ G2z}
(411 Gaa)

;:*;‘:34.- §a3)

Andd we use a random function to choose an applicable justification. Since
we use the same function for the implementation by process and the naive
implementation hy list, order to choose an applicable justification is same in
both implementations.

Figure 5 shows the comparison. We measure an execution time to find
the first solution for A'-queens problem by a simulator of KL1 on Svmmetry
Machine.

As N increases, effect of process representation increases. This is becaunse
the rate of relevant justifications for a node decreases as A increases and
therefore, implementation by list has to do more checks which are irrelevant.
However, we find the {ollowing defects for implementation by process,

1. Theoretically speaking, we should achieve an effect of an inverse of
occurrence rate, that is, for example, the implementation by process
should be about 100 times as fast as the implementation by list be-
cause occurrence rate is about 1%. However, the result shows the
implementation by process is 7 times as fast as the implementation by
list. Although we have not done close scrutiny of the implementation
by process vet, a reason may be an overhead of process manipulation,
that is, overhead of suspending processes and resuming processes.

16



= 100 scc

150 T
i o @ Implementation by list
¢ : Implementation by process
100 +
al =

Figure 5: A-queen

17



2. The implementation hy processes need much more memory than the
implementation by list hecanse each node is represented by process
instead of symbols. [lowever, the rate of memory increase is constant.

5 Conclusion

We prove correctness for algorithms of caleulating a well-founded state for
TMS and provide an implementation by process representation of justifica-
tion in K11,

As future work, we are planning to do the following.

. We would like to reduce overhead of process manipulation. This may
be done by letting node processes in a justification into one process.

2. To parallelize the implementation, we execute the same preblem in
parallel with a different random function for each processor so that
different search pass is explored. An analysis of probabilistic algorithm

will he needed.

Acknowledgments

We are grateful to Katsumi Inone and Nobuyuki Ichivoshi from 1COT for
helpful discussions on an earlier drafts of this paper.

References

[Chikayama88] Chikayama, T., Sato, H., and Miyazaki, T.: Overview of
the Parallel Inference Machine Operating System(PIMOS),
Proc. of Filth Generation Computer Systems 1988
(FGCS'88), pp. 230 - 251 (1988).

[DoyleT9] Doyle, J.: A Truth Maintenance System, Artificial Intelli-
gence, 12, pp. 231 - 272 (1479).
[Doylesd] Noyle, J.: The Ins and Outs of Reason Maintenance, Proe.

AAAL-83, pp. 349 — 351 (1983).

18



[Fujiwara®9]
[Genesereth87]

[Reinfrank89]

IShapiro33]

Fujiwara, Y. and Honiden, 5.: Helating the TMS to Au-
toepistemic Logic, Proc. IJCAI-89, pp. 1199 - 1205 (1989).
Genesereth, M. R., Nilsson, N. J.: Logical Foundations of
Artificial Intelligence, Morgan Kaufmann Publishers (1987).
Reinfrank, M., Dressler, O. and Brewka, G.: On the Rela-
tion between Truth Maiutenance and Autoepistemic Logic,
Proc. IJCAI-88, pp. 1206 - 1212 (1989).

Shapiro, E. and Takeuchi, A.: Object Oriented Program-
ming in Concurrent Prolog, New Generafion Computing, 1,
pp. 25 — 48 (1983).



