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Abhstract

This paper presents a fixpoint semantics of fat GHC programs. The framewark is
parallel to the fixpoint semantics of Prolog programs. First, instead of an atom and a
Herbrand interpretation, an afom behavior and o behavivr interpretation are considered,
where an atom behavior is a finite set of atom pairs (As, A7), and a behavior interpretation
is a set of atom behaviors, Next, instead of the conjunction and the implication for atoms,
the parallel conjunction and the guarded poplicetion for atom belaviors are introduced. A
transformation T for behavior interpretations associated with a GHC program is defined
using those twoe notions. Then, the semantics of a GHC program is defined as the least
fixpoint of the transformation T. The relations to an operational semantics of GHC programs
and to the semantics of Prolog programs are discussed as well.
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1. Introduction

Guarded Horn Clauses (GHC), as well as Concurrent Prolog and Parlog, is a program-
wing language originated from the attempts for designing Prolog-like languages suitable for
parallel execution [31),[33]. As is well known, two remarkable features brought by the notion
of guard distinguish GHC from Prolog.

One remarkable feature of GHC is the suspension (and synchronization) mechanism in
the guards by prohibiting the instantiation of the variables appearing in caller goals. Because
of this mechanism, the execution of a goal consisting of several atoms proceeds by importing
and exporting the instantiation information, so that some goal can succeed when other goals
co-exist, even if it never succeeds as a single goal. In general, some goal behaves in a quite
differcnt manner according to the behavior of co-existing goals, hence, if only the final form of
the execution as a single goal is considered, the exeention result of the goal is not necessarily
svnthesized from the execution results of the individual atoms in the goal (ef. Section G).

The other remarkable feature of GHC is the committed-choice mechanism by throwing
away alternative courses at passing the guards. Because of this mechanism, once we have
found a clause to which the execution of a goal is committed, there cccurs no backtracking.
So. even if there exist several solutions Lo a goal, only one of them is obtained as its solution.
Murcover, even the same initial goal with the same final form might succeed, fail or be
suspended depending on to which clanse the execution is committed.

To clarify the semantics of the (so called) parallel logie programs, which share the same
featnres in greater or lesser degree, several attempts have been made [2],[11],[15],[16],[22],
[24],[25],[26],[27],[28],[30],[32]. (Besides, several attempts for reasoning about GIIC programs,
e.g., verification [13],[23], transformation [7],{8],[9},[15],[35], and debugging [12],[17],[18],[20],
[21].[29], have been made as well based on those semantics.) It has been sometimes said
that the search incompleteness due to the second feature is the most important difference
that makes the semantics of GHC programs extra-logical. The semantics in this paper is,
however, concerned with all the possible computation, so that we will pay more atlention to
the first feature (and ignore the problems of each specific computation), just as the semantics
ol Prolog assumes appropriate nondeterminism (and ignores the backtracking mechanism
to consider all the possible suecessful computation.

This paper presents a fixpoiat semantics of flat GHC programs. The framework is
parallel to the fixpoint semantics of Prolog programs, First, instead of an atom and a
Herbrand interpretation, an atom behavior and o behavior interpretation are considered,
where an atom behavior is a set of pairs (Ae, A7), and a behavior interpretation is a set
of atom hehaviors. Next, instead of the conjunction and the implication for atoms, the
parallel conjunction and the guarded implication for atom behaviors are introduced. A
transformation T for behavior interpretations associated with a GHC program is defined
based on those two notions. Then, the semantics of a GHC program is defined as the least
fixpoint of the associated transformation T. The relations to an operational semantics of
GHC programs and to the semantics of Prolog programs are discussed as well.

The rest of this paper is organized as follows: Section 2 explains flat GHC programs and
their execution. Section 3 introduces an operational semantics of flat GHC programs based
on the notion of computation tree, and Section 4 a fixpoint semantics based on the notions
of atom behavior, behavior interpretation and transformation of behavior interpretations.
Then Section § shows the equivalence of those two semantics. Section 6 gives an explanation
to the famous Brock-Ackerman’s anomaly. Last, Section 7 compares our semantics with that

1



of Prolog programs, and Section & discusses the problem of the truly paraliel execution and
the non-deterministic sequential execntion,

2. Flat GHC

This section explains GHC mostly following the explanation of Ueda [34]. Symbols
beginning with uppercase letters are used for variables, and ones beginning with lower case
letters for constant, function and predicate symbols, following the syntactic convention of
DECsystem 10 Prolog [3].

{1) Program

A clause 15 an expression of the form:
H'.—G'_..Gz....,GmlB-|,BQ,....,H,1_ [m,n:_JD],
where I, &%s and Bj's arc atoms (1 £ i< m,1 € j < n). H is called a clause head, the
G's are called guard atoms. and the B;’s are called hody atoms. The symbol “|” is called a
cominitment opergfor. The part of a clause before “|" is called a guard, and the part after
“I" is called & hody. (When m = n = 0, %" and *|® are omitted. Note that the clause head
is included in the Euard.]

One pnimitive {infix} binary predicate “=" for unifying two terms is predefined by the
langnage. Other primitive predicates are predefined using a (possibly infinite) set of clanses
such that

o each clause is of the form “H - |By, Bq,...,B," (n > 0),

e ff is not unifiable with the head of any other clause in the set, and

o each body atom H; is an eqnation of the form “s; = ;7 (1< 7 < a).
The primitive predicates used in practice are not excluded by this condition. Atoms with
primitive predicates are called primitive atoms.

A clause is called a flat clause when each guard atom G is a primitive atom (1 < 1 < m).
A program is a finite set of flat clauses.

Example 2.1 Let P be the set of the following flat clanses:

Corr p1(X.Y,Z) := |
double(X,XX), double(Y,YY), merge(XX,YY,¥), one-by-one(W,Z).
Cﬂ;r: PZ{;,sz} i
double(X, XX}, double(Y,YY), merge(XX,YY.W), two-at-oncei(W,Z).
Cga: doublef0,Ad) :- | Ax=[0,0].
Cpy: double(l,Ad) :- | AA=[1,1].
Cos: merge([A[Xs],¥=,23) :- | Zs=[A|Zs1], merge(Xs,¥s,Zs1).
Cpre: merge{Xs,[A|Y¥s],Zs) :- | Zs=[AlZa1], merge(Xs,¥s,Zsl).
Cor: merge([ ],Ys,Zs} :- | Za=Y¥s.
Cpa: merge(Xs,[ ],Zs) := | Is=Xs.
Cos: one-by-one([AIW],Z) :- | Z=[A|Z1], next-one(¥,Z21).
Cio: next-one([B|W],Z) :- | Z=[E].
Cyy: two-at-once([A,BIW],2) :- | Z=[4|2Z21], Zi=[E].
Cia: complement([012],Y) :~ | V=1.
Cia: complement([112]1,¥) :- | ¥=0,



Then, P is a program. Here, “double” is a predicate to duplicate its input element (either 0
or 1} and make a list consisting of the two elements, and “merge” is the predicate for non-
deterministically merging two input streams into one output stream. The only difference
between “pl1™ and “p2" is that “one-by-one™ invoked from “p1” pulls out first two elements
from the merged stream one by owre as soon as each element appears in the merged stream,
while “fweo-at-ence” invoked from “p2” pulls out first two elements from the merged stream
ouly when two elements appear in the merged stream. “complement” is a predicate to return
the complement of the head element 0 or 1. (This is a slightly modified version of the program
in {4]).

(2) Goal

A poal is an expression of the form:
"o Ay, Az, ... Ag (k> 0).
A poal i= called an empty goal when k is equal to 0.

Example 2.2 The following are GHC goals.

7= pl1{0,Y,Z}, complement(Z,Y).
- p2(0,Y,2), complement(Z,Y).

{3) Execution

The execution of & GHC goal with respect to a given GHC program tries to solve the
goal, i.e., reduce the goal to the empty goal, using the clanses in the GHC program in the
same way as Prolog but possibly a fully parallel manner provided that the following “rules
of suspension™ and “rule of commitment™ are observed.

Rules of Suspension

(a) Unification invoked directly or indirectly in the guard of a clause € called by an atom
i (i.e., unification of &7 with the head of € and any unification invoked by solving the
guard atoms of ') cannot instantiate the atom .

(b} Unification invoked directly or indirectly in the body of a elause C called by an atom &
cannot instantiate the guard of € or G until € is selected for commitment (see below).

A piece of nnification that can succeed only by causing such instantiation is suspended until
it can succeed without causing such instantiation.

Rule of Commitment

When some clanse €' called by an atom G succeeds in solving its guard, that clause C
tries {o be selected for subsequent computation of G. To be selected, € must first confirm
that no other clause in the program have been selected for G. I confirmed, C is selected
indivisibly, and the execution of G is said to be committed to the clause C.

Example 2.3 The execution of goal
?- pil0,Y,Z), complement(Z,Y)
in P succeeds with answers

p1(0,1,[0,0]),complement ([0,0],1),
pl(0,1,[0,1]1),complement ([0,1],1},

while the execuntion of goal



7- p2(0,Y,2), complement(Z,Y)

in Fsncceads only with answer
p1(0,1,[0,0]1) ,complement([0,0],1).

(4) Success, Failure and Suspension

Let A be an atom and O be a clause called by A. When the guard of C is solved with
answer substitution, say ¢, for the variables appearing in the gnard of C without instantiating
A, then the execution of A iz said to sweeeed in the guard of clause © with substitution &,
Otherwise, the execution of A is said to be suspended in the guard of clawse C. {The latler
case includes two ecases. One is the case when the unification invoked, either directly or
indirectly, in the guard of C instantiates the atom A. The other is the case when the goard
cannot be solved even if the instantiation of 4 is permilied. We will not make a distiction
between them hercafter.)

Note that, due to the restriction on the primitive predicates, the execution of atom A
ran succeed in the guard of a clawse © with snhstitution # by committing to appropriate
clauses in the guard, if apd only if the exccution of atom A does succeed in the guard of ©
with @ by committing to any committable clauses in the guard. Similarly, the execution of
goal A can be suspended in the guard of clause C, if and only if the execution of goal A is
suspended n the gueard of clause .

An atom A is said to succeed immediately in program P when
o A iz an eqguation for two unifiable terms, or
o there exists a clause C with no body atoms in F such that the execution of A succeeds
in the guard of C.
An atom A is said lo be suspended immediately in program F when the execution of A is
suspended in the gnard of any clause in P. An atom A is said 1o fail immediately in program
P when A ds an equation for two non-unifiable terms,
Notice the difference between the suspension in the guard of a specific clause and the
immediate suspension in a program. Note also that the execution of non-primitive atoms
can be still pon-deterministic, though the execution of primitive atoms is deterministic.

Example 2.4 Let A be an atom of the form
merge([0,0], Y, W).
Then, the execution of A succeeds in the guard of clavse Cpy, while the execution of A is
suspended in the guards of clauses Cyg, Cpy and Cys.
Let B be an atom of the form
two-at-once([0|W1], Z).
Then, the execution of B is suspended in program F.

3. An Operational Semantics of Flat GHC Programs

This section introduces an operational semanties of flat GHC programs. First, the
aciual computation process of an atom is represented by a tree, called a computation tree,
based on the non-deterministic sequential execution. Next, a more abstracted aspect of the
computation process is represented by a set of atom pairs, called an atom behavior. Then,
the operational semantics of a flat GHC program is tepresented by a set of atom behaviors.
(Note that, though we will use the non-deterministic sequential execution to formalize the
necessary notions, most of the final notions formalized are independent of the sequentiality.
See Section 8 for the details.)



The following sections assume familiarity with the basic terminology of first order logic,
such as term, atom (atomic formula), formula and so on. Syntactic variables are X, ¥, 2 fur
variables; #, ¢ for terms; C for clanses, possibly with primes and subscripts, “=" is used 1o
denote the syntactical identity of two expressions,

A substitution is defined as usual, and denoted by
< Xq=1, X =1q, S YR8
where X, Xo, ... X} are distinct variables. The set of variables {X;, Xo, ... X)) is called
the domain, and the set of variables appearing in #,,42,. .., 1 is called the range of the sub-
stitution. A substitution is called a renaming substitution when it assigns a distinct variable
to cach varlable, Substitutions are denoted by e, 7,4, 8,9, and the cipty substitution is
denoted by < =,

An atom is defined as nsnal. Atoms are denoted hy 4, B, possibly with primes and
subscripts. T'wo atoms are considered identical when they are identical up to renaming of the
variables appearing in the atoms, An atom A is said to be less instantiated than or equal to
atom B, and denoted by A < B, when there exists a substitution & such that A# is identical
to B. An atom A4 i= said to be less instantiated (han atom B, and denoted by A < B, when
A< Hand B £ AL

A goal s a multiset of atoms. Goals are denoted by I') A, possibly with primes and
subscripts. Two goals are considered identical when they are identical up to renaming of
variahles appearing in the goals. The relations € and < between poals are defined in the

game way as those between atoms. -
3.1 Computation Tre=

In this section, we will introduce the notion of computation tree. (CL. [14].)
(1) Labelled Tree

A computation tree is a special labelled tree. Hereafter, we will assume that
o each clawse in program P is assigned a distinet clauvse identifier C; (1 > 0),
o a unit clause “X = X" (not in program F) is assigned a clause identifier Cp, and
» a special clause identifier O is prepared.

Definition Labelled Tree
A tree T is called a labelled tree when
» the nodes of T are labelled with pairs of an atom and a clause identifier, and
o the terminal nodes of T are marked “success,” “failure” or unmarked.
The atom part of the root node label of T is called the root atom of T. Labelled trees
are dencted by T, possibly with primes and subscripts, Two labelled trees are considered
identical when they are identical up to renaming of the variables appearing in the labels.

Example 3.1.1 T; below is a labelled tree. The superscript “o” denotes the “success” mark.
(The failure marks are denoted by superscripts “s.”)

&



merge([0,0],[1,1],[0]W1])
Cos
/ \
[0|W1]=[0|W1]° merge{ [0],[1,1],W1)
Cy s

T below, consisting of only one root node, is also a labelled tree.

merge([0,0],[1,1], W)
Cy

(2} Extension of Labelled Trees

By modelling the non-deterministic sequential GHC execution, the extension of labelled
trees is defined as follows:

Definition Immediate Extension of Labelled Trees
Let T and T' be labelled trees. Then, T' is called an immediate extension of T in

program P when T is obtained from 7 by the following operation:
Case 1 : When there exists an unmarked terminal node v in T labelled with (3 = 1, C4),

# teplace the label of the node with (s = 2, Cg).
When # and ¢ are unifiable, say by m.gu. 8,

» modify the label {A',C") of each node in T to (A'4,C"), and

s mark the node v “suceess.”
In this case, T is called an immediate extension of T with substitution 8, When 5 and 1 are
not unifiable,

o mark the node ¢ “failure.”
In this case, 7' is called an immediate extension of T with substitution <>,
Case 2 : When there exist an unmarked terminal node v in T labelled with {A,Cy) and a
flat GHO clanse O in P of the form

H:-Gy, Ga..., G | By, Bo, ..., B,. (m,n = 0)

such that the execution of A succeeds in its guard with substitution #, then let o be an
instantiation of # to 4, and

¢ replace the Jabel of the node v with (A,C),

# add = child nodes of v labelled with ( Byn#, C:),{H2n8,C2),...,(B.n8,C:) 16 v, and

# if n =0, mark the node v “success.™
In this case, 7' is called an immediaie extension of T with substitution @.

Definition Extension of Labelled Tree
Let T and T' be labelled trees. Then, T is called an extension of T with substitution

o in program P when there are labelled trees 7o, Tq,..., Tg (€ > 0) such that

» Tpis 7,

¢ T; is an immediate extension of T,_; with substitution &, in P fori =1,2...,k,

o Ty is T', and

* 718 lﬁ'.ﬂg---ﬂ;.
In particular, T' is called a proper extension of T when k > 0.

Example 3.1.2 Labelled tree T) below is an immediate extension of the labelied tree Tp of
Example 3.1.1 in the flat GHC program P.



merge{[0,0],[1,1], W)
Cos
/ \
W=[o|w1] merge([0],{1,1),W1)
G e

The labelled tree To of Example 3.1.1 is an immediate extension of Ty in P, so that bolh T;
and 75 are extensions of Ty in P

{3) Maximal Labelled Tree

Extending a labelled trce as far as possible corresponds to applying GHC execution as
far as possible.

Definition Maximal Labelled Tree
A labelled tree T is called a maximal labelled tree in program P when there exists no
proper extension of T in P.

Example 3.1.3 The labelled tree Tz below is a maximal labelled tree.

merge([0,0],[1,1].[0,1.1,0])

Cos
! A
{0,1,1,0=[0,1,1,0)° mecge([0],[1,1].1,1,0])
Cy Cas
/ Y
[1,1,0}=[1,1,0]* merge([0],[1],[1,00)
Cy COE
! \
[1,0]=[1,0]° merge([0],[ ].[0])
CID COG
|
[0)=[0]°

Co

{4} Computation Tree
A computation tree models the GHC execution applied to an atom.

Definition Initial Tree
A labelled tree is called the initial tree of atom A when it consists of a single unmarked
node labelled with {4,C).

Definition Computation Tree
A labelled tree is called a computation tree of atom A with solution A# in program P
when it is an extension of the initial tree of A in P with substitution .

Example 3.1.4 The labelled tree Ty of Example 3.1.1 is an initial tree, so that T; and T; are
computation trees in P. The labelled tree Sy below is an initial tree.

T



merge([0,0],YY, W)
Chs

Hence, 8- below is a computation tree in P.

merge([0,0],YY,[0]W1])
Cos
! 5
[0|W1j=[o|W1]° merge({[0],YY,W1)

Cu C?‘
(5) Success Tree, Failure Tree and Suspension Tree

Depending on how the terminal nodes are marked, maximal computation trees are
classified into success iree, failure tree and suspension tree.

Definition Success Tree, Failuge Tree and Suspension Tree
A maximal computation tree T in program P is called
® a success (ree in P when all the terminal nodes in 7 are marked “success,”
# a failure tree in P owhen some terminal node in 7 15 marked “failure,”
e o suspension tree in P otherwise,
A maximal computation tree is said to have an uncommitted root when the clause part of
the oot node label is €, and said to have a committed root otherwise.

Example 3.1.5 Tg is a success tree in P. The computation tree below is a suspension tree
in FP.

one-by-one(]0]¥W1),[0|Z1])
Cos
/ M
[O]Z1]=[0]Z1]° next-one(W1,21)
Oy Cs

1.2 Computed Atom Behavior
In this section, we will define a more abstracted aspect of the GHC execution [21].
(1) Extension Ordering between Computation Trees

The definition of computation tree naturally introduces a partial ordering refation
hetween computation trees. (Intuitively, this ordering means that computation tree T can
be extended to 7' when additional instantiation @ is applied to all the node labels of T.)

Definition Extension Ordering between Computation Trees

Let T and T' be computation trees in program P. Then, T is said to be extensible to
T" and denoted by 7 < 7' when there exists a substitution # for the variables in the root
atom of 7 such that 7" is an extension of T8 in P, where T# denotes the tree obtained from
T by applying # to the atom part of every node label.

Example 3.2.1 Ty of Example 3.1.3, and $;, S» of Example 3.1.4 are computation trees in
F,and & < 83 = Tz holds.



(2) Maximal Subextension

Definition Maximal Subextension
Let 7 and T' be compulation trees in program P such that T is extensible to T'. A

computation tree 7" is called a maximal subextension of T in T' when
fa) T" is an extension of T in 7,
(b} 7" s extensible to 7', and
(e} there exists no other compntation tree which satisfies (a), (b) and is 1 proper extension
of 7" in P.

Example 3.2.2 8s is the maximal subextension of 8, in Ts.

(3) Computed Atom Behavior

Definition Computed Atom Hehavior

Let A be an atom of the form p( X, Xa, ... X, ) where X;, X2,..., X, are distinct
variables, and 7 he a maximal computation tree in P whose toot atom is Ar. Then, (Ar, A1)
is called an atom pair of T in P, when the following conditions are satisfied:

(a) A < Ar < Aw.

(b} Let Ty be the initial tree of Ae. Then, there exists a maximal subextension of 7y in T

with salntion Ar.

(¢} There exists no other pair (Ae’, A7') satisfying (a)(b) and Asr' < Ao, Ar < A7
The set of all the atom pairs of T is called a computed atom behavior of T. A computed
atom behavior is called a computed success (resp. failure, suspension) atom behavior when
it is a compuled atom behavior of & success (resp. failure, suspension) tree.

Example 3.2.3 The sel of atom pairs
(merge{[O[X 1), Y'Y, W), merge([0|X1], YV, [0|W 1]},
(merge([0[X1).[1|Y 1], W), merge([0].X 1], [1|¥1], [0, 1|W2]),
(merge([0[X1],]1,1|Y2], W), merge([0|X1],[1,1]¥2], [0, 1, 1{W3]),
(merge([0[X1]),[1,1], W), merge([0|X1],[1,1], [0, 1, 3| X 1]},

15 the computed atom behavior of Ty,
3.3 Computed Behavior Interpretation
(dur operational semantics is as follows:

Definition Computed Behavior Interpretation

T'he set of all the success atom behaviors in program P is demoted by M, (), or simply
by M,. The set of all the success atom behaviors and suspension atom behaviors in P is
denoted by Ma(P), or simply by Ma. The set of all the computed atom behaviors in P is

denoted by Mg F), or simply by M. t

Example 3.3 Let P be the program of Example 2.1. Then M(F;) includes a success atom
behavior of merge([0,0],[1,1],[0,1,1,0]) of Example 3.2.3. M3({FP) includes
{ (one-by-one([0|W 1], Z), one-by-one([0}W 1], [0]Z1])) }.

! The semantics formalized in our previous paper [14] is substantially M,. The semantics
used for the diagnosis in [21] is M;.



4. A Fixpoint Semantics of Flat GHC Programs
4.1 Atom Behavior in General
{1) Goal Behavior

Suppose that a given goal I'p is executed together with other goals. Then, the variables
in the goal might be instantiated by the execntion of the goal itself. (The goal exports the
instantiation to the other goals.) Or, the variables in the goal might be instantiated by
the execution of the other goals. (The goal imports the instantiation from the other goals.)
Suppose that the initial goal has succeeded or been suspended with the form ['w possibly
after the interactions with the other goals, where we assume ['p < Tv. Then, let o be 2
goal such that I'p < To < L'p, and let us execute the goal T'e as far as possible separately
ftom the other goals along the same course as the execution of ['p mentioned first. Then,
since 'z cannot import the instantiation from the other goals, it would reach a goal I'r such
that I'r < I'v, and stop there. Then, the pair (e, I'r) denotes an interval the goal can pass

cautonomously. Tet us collect all the intervals (I's, I'r) such that I'e < I'r and there exists no
other such interval subsuming it. Then, the set will represent some structure of the execution
of ['p mentioned first,

Definition Goal Pair

A pair of goals (Te,I'r) is called a goal pair when ['e < I'r. Two goal pairs are
considered identical when they are identical up to renaming of the variables appearing in the
pairs,

Definition Goal Behavior
A finite set B of goal pairs is called a goal bekavior of 'y when

¢ for any goal pair (U, I'r) in B, there holds Tr < Te, and

o B is marked “snccess,” “Tatlure” or “suspension.”
A goal behavior is called a success goal behavior (resp. failure goal behavior, suspension goal
beliavior) when it is marked “success™ (resp. “failure,” “suspension”). Goal behaviors are
denoted by Bp,, possibly with primes and subscripts, when it is necessary to explicitly show
v, and simply by 8 when I'r is ohvions from the context.

Definition Reduced Goal Behavior and Non-Reduced Goal Behavior
Let B be a goal behavior. A goal gehavior is called a reduced goal behavior of B when
it is oblained [rom B by applying the following operations as far as possible. (We will omit
the uniqueness proef of the final goal behavior to be obtained.)
o Eliminate a goal pair of the form (I'e, I'e).
» Replace goal pairs (Tey, T'ry),(Taa, I'ra) with (Tey, Tr),(Toz, ['7) when there exists ['#
such that ey < T# < T'ry and Ty < T8 < I'ry, where I'ris an mg.u. of 'y and T'ry.
» Eliminate a goal pair (I'e’, ['r) when there exists another goal pair (I's, I'r) such that
e <Te'.
A goal behavior B is said to be reduced when B and B’s reduced goal goal behavior are
identical, and non-reduced otherwise. Hereafter, we will denote reduced goal behaviors by
the term “goal behaviors” otherwise specified.

Though a goal behavior is, in general, a partially ordered set, most of the goal behaviors
in this paper are totally ordered. Hereafter, success goal behaviors are depicted by arranging
their component pairs lengthways (upside down w.r.t. the instantiation ordering, hence the
lower a goal is located, the more it is instantiated), and by surrounding them with doubled
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lines. Similarly, failure goal behaviors are surrounded with thick lines, and suspension goal
behaviors with dotted lines. For example, they are depicted as below:

T‘ﬂ'l ra_l E—: ----- f"' .;.:;. ...... .:
fr: | FTI E PT[
rl-’-rl‘ ; FEI'-}_ _,; l"u-_j
r-".r Frj : rﬁ
row |l Lo | Tow
2 I ol

Figure 4.1 Success, Failure and Suspension Goal Behaviors

Example 4.1.1 B helow is a success goal behavior of goal
double(0,[0,0]), double(1,[1,1]), merge([0,0], [1,1],(0,1,1,0]), one-by-one([0, 1, 1,0], [0, 1]).

! _ {douhi-;[lj,!{:ﬁ}.douhle{‘f,‘r":’},merge{X}l,=W,“-‘}.unp hy-one( W 2)}
{double(0,[0,0]),double( Y, YY ), merge([0,0],YY,[0[W1]), one-by-one( [0|W1],[0]Z1])}
' fdon ble{ X,[0]XX1]),double( Y, YY), merge([0XX1],YY, W), one-by-one(W,2)}
{double( X,[0[XX1]) double( Y, YY), merge([0|XX1],YY,[0]W1]), one-by-ane([0|W1],[0|Z1])} |
- |

{double( X, XX),double(1,YY),merge( XX, YY ,W},one-by-one(W,Z)}
[double( X, XX),donhle(1,[1,1]),merge(XX,[1,1],W), one-by-cne(W . Z)}

{double( X, XX) double(Y, YY) merge(XX,YY [D|W1]), one-by-one([0|W1],Z)}
{double(X,XX) double(Y,YY),merge{ XX,YY [0[W1]}, ane-hy-one([0|W1],[0|Z1]})

[double(X,XX),double(Y,YY),merge( XX, YY,[0|W1]), one-by-onc{[0|W1].2)}
{double(X XX ).double(Y,YY) merge( XX, Y'Y J0,1|Wa)), _ﬂn&hy—nne[[ﬂ,l [W2],[0.1])}

B

(2) Atom Hehavior

Similar notions for atoms are defined by reducing them to those for singleton goals.

Definition Atom Pair

A pair of atoms (Ag, Ar) is called an atom pair when ({Ac} {A7}) 152 goal pair. The
goal pair ({Ac}, {A7)) is called the goal pair corresponding te the atom pair {Aa, A7), The
vrdering between two atom pairs is defined according to the ordering between the two goal
pairs corresponding to the atom pairs.

Definition Atom Behavior

A finite set B of atom pairs is called an atom behavior of Av when the set of goal pairs
obtained from B by replacing each atom pair with its corresponding goal pair is a goal pair
of {Av}. A success (tesp. failure, suspension) atom behavior is defined in the same way as a
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success (resp. failure, suspension) goal pair. Atom behaviors are denoted by B, H, possibly
with primes and subscripts.

Similarly to goal behaviors, sucecess {resp. failure, suspension) goal behaviors are de-
picted by arranging their component pairs lengthways (npside down w.r.t. the instantiation
ordering), and by surronnding them with donble lines (resp. thick lines, dotted lines).

Example 4.1.2 By, B+, By below are success atom behaviors of
double(0,[0,0]) , double(1,[1,1]) , merge([0,0],]1,1],00,1, 1,0]).
By helow is a guceess atom behavior of
one-by-ome([0, 1,1,0]. [0, 1]},
while [ is a suspension atom behavior of
twe-at-once{[0|W 1], Z).

: danhle(0,XX) ; double(1,XX)
| donble(0,[0,0]) double(1,1,1])
B, Ba

merge([0[X1),YY, W)
merge([0]X1],Y1,[0|W1])

merge((0]X1},{1{Y 1,W)
merge( [0]X1],[1]Y1],[0,11W2])

B,

onemne{[ﬂﬁ‘ﬁ],ﬁ}
one-by-one( [0]W1],[0|Z1}) i

one-hy-one{[0,1]W2),Z) ‘
one-hy-one( [0,1|W2],[0,1])

By By

4.2 Behovior Interpretation in General

A behavior interpretation is intended to play the same role as a Herbrand interpretation.
Definition Behavior Interpretation

A behavior interpretation is a set of atom behaviors, and denoted by I. An atom

behavior is said to be true in J when it is in 1. Dtherwise, it 15 said to be false in [.

4.3 Parallel Conjunction and Guarded Implication
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To interprete the two constructs “” (in the body part) and - &, Ga, ..., Gy |” lor

atom belaviors and goal behaviors, we will introduce two notions, parallel conjunction and
guarded implication, for them.

(1) Parallel Conjunction

Suppose that atom bebaviors By of By are given for ¢+ = 1,2,...,n. Then, what
behavior does the exvecution of goal { By, Ba, ..., By} shows, when each atom B, is executed
along the course of computation represented by B7

Definition Parallel Conjunction
Let & be a goal {8y, Ba,..., By}, B; be an atom behavior of Byw for 1+ = 1,2,...,n,
and & be a goal behaviar
{ (A, A7) | (Bie, Byr)isin B; forsome 1 = 1,2,...,n }.
Then, & reduced goal behavior of Av is called the paralle! conjunction of By, B4, ..., B,,, when
it satisly the following two conditions:
{a) Tv consistz of all the goal pairs in B's reduced goal hehavior.
(L) It is a success goal behavior when all 8, 8,5, ..., 5, are success atom behaviors, a
failure goal bebavior when some B; is a failure atom belavior, and a suspension goal
belavior otherwise,

Example 4.3.1 The goal hehavior B of Example 4.1.1 15 the parallel conjunction of By, By, By,
By of Example 4.1.2,

(2) Guarded Implication

Let “ff - T' | A" be a flat clause in program P, and suppose that a reduced goal
behavior I which represents some execution of A is given. Then, what behavior does the
execution of the head A will show if the execution is committed to this clanse and the body
is executed according to BY For obtaining an atom hehavior for the head H using the elanse
and the goal belavior B, the following problems need to be taken into consideration:

o BEven il Ar < Ar, the instantiation ordering # e < Hr does not necessarily hold, ie.,
He might be identical to Hr, because N does not necessarily contain all the variables
in A so that the substitutions for some variables in A are ignored.

o Even if the execution of iy succeeds in the guard of the clanse with #, goal Anf is
not necessarily more instantiated than or equal to Ae, because ¢ might instantiate the
variables in A but neither in 7 nor in T,

Definition Guarded Implication
Let € be a flat clavse “H :- T | A” in program P, and (Ae, A7) be a goal pair. Then,
an atom pair (H g, 1) is called the guarded implication of (Aa, Ar) wsing © when
(a) the execution of My succeeds in the gunard of C with # (without instantiating the
variables in Hnj, where % is a substitution for the variables appearing in H,
(b) Ae < Agf < Ar, and
(c) there exists no other Hq'¢ satisfying (a), (b) and more general than Hnd.
Let B be a reduced goal behavior of Ar, and H be the set of all the guarded implication
of goal pairs in B using C. Then, H’s reduced atom behavior (of Hv) is called the guarded
implication of B using C. :

13



Note that, due to the restriction on the primitive predicates and flat clauses mentioned
in Section 2, the guarded hnplication of a goal pair {if exists) is unique up to renaming of
variables. (See Appendix.)

Example 4.3.2 Becall the clanse Cyy of Example 2.1 as below:

p1(X,¥,2) := |
double(X,XX), doublelY,YY), merge(XX,¥YY,W), one-by-one(W,Z}.

Then, atom behavior
{{p1(0, Y, 2), p1{0, Y, [0]Z1]), (p1(0, 1, Z), p1(0.1,[0, 1])}
is the guarded implication of B of Example 4.1.1 using Coq.

4.4 Transformation of Behavior Interpretations

Using the two notions defined in the previous section, we will introduce three transfor-
mations, Ty, T2 and Ty,

Definition Basic Transformation
The basic transformation T of behavior interpretations associated with program P is
defined as below:
Toll) = {M] P contains a clause " of the form “H - Gy, G, ..., (G | By, Bo, .. B,
I contains atom behaviors 6,, 8., ..., B, of Byw, Baw, ..., B, v, respectively,
H iz the gunarded implication of the paralle]l conjunetion of 5;, B5,..., B,
using € }.

Definition Base Behavior Interpretation for Immediate Success, Suspension and Failure
Let Bi=; be the set of all the equation pairs (s; = $7, 5 = 5) such that
(a) 51 and s2 are unifiable, but different terms,
(b} £ 15 a most general nnification of them, and is more general than or equal to {, and
{c) there exists no other equations (s} = s4, 5 = s) satisfying (a),(b) and more general
than {5 = #5,8 = 3],
and let By, -, be an empty atom behavior of “f; = 2™ for different terms 1), (2. Then, the
behavior interpretations Iy, [y and Iy defined by
I = {By—¢| tis a term },
I3 = {{ }al| A is suspended immediately in P },
I3 = {By,=,| t; and {3 are non-unifiable terms }
are called the base behavior interpretation for immediate success, suspension, and failure,
respectively,

Definition Transformations of Behavior Interpretations

Let Ty be the basic transformation associated with program P, and [y, I5, [3 be the base
bahavior interpretations for immediate success, suspension and failure, respectively. Then,
the transformations T3, 75, Ty of behaviors interpretations defined by

Ty(T) = I, UTo(I),

T2(I) = L LI UTH(T),

Tg_{I] = Il UJr-_i 4] f;;UTQ[‘f]
are called the transformations associated with P.

4.5 Least Fixpoint of the Transformation
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The three transformations Ty, Ts, T3 of behavior interpretations are obviously mono-
tonic w.r.t. the set inclusion ordering of behavior interpretations, ie.,

if 1€ Jthen T2(1) C Ty(J),

if I CJ then Tu(I) C To(J),

if 7 C J then 15(1) C Tul(J).
Hence, from Knaster-Tarski's fixpoint theorem, theie exist the least fixpoints of 7,75, T5.

Definition Least Fixpoint of 77,74, T4
Let Ty, T, Ty he the transformations of bebavior interpretations associated with pro-
gram FP. Then, the least fixpoints of 73,72, Ty are denoted by {fp(Ty) dfp(Ta) LFp(T5),

respectively,
&. Eguivalence of the Operational Semantics and the Fixpoint Semantics

We have introduced an operational semantics in Section 3, and a fixpoint semantics in
Section 4. In this section, we will show that those two semantics are equiv~lent.

Theorem 5 Fquivalence of the Operational Semantics and the Fixpoint Semantics
Let P be a flat GHC program. Then, My = Ifp(T1), Mz = Ifp(T2) and My = 1 fp(T3).

Proof. Due to space limit, we will show only the proof of the first equivalence. (Other two
cases are proved in the same way.) The proof is divided into two parts, the “Left Inclusion”
part aud the “Right Inclusion™ part.

Left Inclusion: M, C [fpT).

Let B be an atom hehavior in M, and T be the corresponding computation tree. Then,
the inclusion relation is proved easily by induction on the structure of computation trees.
(This proof implies M, = |J;_, TF(0).)

Right Inclusion: M, 2 ifp(T,).
We will prove the continuity of T3 directly, i.e., for any chain of behavior interpretations
JiehC-wCJCe
there holds
T2 (Ugag J2) = UrZo Tal ).
One direction Ty (Ui, Je) 2 Ui Tal Ji) is easy to prove. The other direction T U Ji)
2 &, Ti(Ji) is proved as follows: Suppose that H is in T1(U;Z, Ji). Then, from the
definition of T,
{(a) P contains a clause C of the form “H = T'|By, By,..., B,
{b) Ui, Ji containsn By, Ba,..., By, and
(c) H is the guarded implication of the parallel conjunction of By, By,..., By unsing C.
Then, for some 2,
(b) oo J& containsn By, Ba, ..., By,
which implies that H is in {Jj _o T*(Ji), hence, H is in Ui, T*(Js). (Note thal, since we
have not yet fully developed the model theoretical semantics e.g., the relation between the
models and T, the model intersection property, etc., we cannot proceed along the same line
as van Emden and Kowalski [5], in which the continuity was not referred directly.)

6. An Example — Brock-Ackerman’s Anomaly —
Recall the flat GILC program of Example 2.1.

Coy: pl(X,Y,2) :- |
double(X,XX), double(Y,YY), merge(XX,YY,¥), one-by-cne(W,Z).
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Coa:  p2(X,Y,2) = |
double(X,XX), double(Y,YY), merge(XX,YY,W), two-at-once(W,Z).

Crg: double{0,44) :- | A&=[0,0].

Cpy: double(1,a8) :- | a&=[1,1].

Cps: merge([A|X=],¥Ys,Zs) :- | Zs=[Al|Zs1], merge(Xs,¥s,221).

Cos: merge(Xs,[Al¥s],Ze) :- | Zs=[Al|Z21], merge(Xs,¥s,Z=21).

Cor: merge([ ].,¥s,Zs8) - | Zs=Ya.

Cos: merge(Xz,[ J,Z2) := | Zs=Xs.

Cpo: one-by-one([A|W],Z) :- | Z=[A|Z1], next-one(W,Z21).
Cia: next-one([BIW],Z)} :- | Z=[B].

1 two-at-once([A,B|W],Z) := | Z=[alZ1], Z1=[E].

Cio: complement ([01Z1,Y) :- | Y=I.

130 complement([11Z].,¥) := | ¥=0.

Then, the atom behavior of “p1(0,1,[0,1])" in A (F) is a set consisting of two atom pairs
{ (p1(0, Y. Z),p1(0,Y, [0|21])), (p1(0,1, Z),p1(0, 1,0, 1])) },
while that of “p2{0, 1,[0, 1])" in M,(F) is a set consisting of only one atom pair
{ (p2(0,1,2),p2(0,1,[0,1])) }.
Hence, the conjunction of atom behaviors of “pl1(0,1,[0,1])" and “complement([0,1],1)"
includes a goal pair
({pU0 Y, Z), complement{ Z, Y )}, {p1(0,1,[0, 1]), complement([0, 1], 1)} ),
while that of “p2(0,1,[0,1])” and “complement([0,1],1)" does not.

7. Comparison with the Semantics of Prolog Programs

Suppose that we identifly any Prolog elause of the form
“pltyta, ooyt ) - By, Ba, ..., ByF
with a GHC clause of the form ,
X1, Xareo o Xmd o | Xy =00, X2 =tay .., Xon = ton, By, Ba, ... By
and compare a Prolog program with the GHC program consisting of such converted clauses.

As for the original Prolog program, the semantics of the program is usually defined by
M(P) = {Av|{dv is a ground atom which succeeds in P }
of, a little more generally, by
M.o(P) = {Av]Av is an atom which succeeds in P }
Intuitively, this is the sct of all ground (or not necessarily ground) atoms that is provable
from program P [1],[5],[19]).

As for the converted GHC program, as far as the predicate of an atom is not undefined,
the execution of the atom in such a GHO program is never suspended immediately, since
there always exists some clause to which the execution is committable. Therfore, the following
holds for such a GHC program:

* A success atom behavior always consists of a single atom pair of the form
(p(X1, Xa,.oo, Xa), P8, 2, 1)),
where Xy, Xy,..., X, are distinct variables. (Hence, the first element of the pair gives
no information to us.)
¢ A suspension atom behavior is always for the atom with an undefined predicate, and
is an empty set. (Usually, undefined predicates are of no concern to us.)
Hence, let us define the semantics of the program as below:
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M) = {(Ar, Ap)|{{ Az, A7)} is a success atom behavior of ground atom Awin P |}
or, a little more generally, by

Moei( 1) = {{ A7, Av)|{{ Az, A7)} is a success atom behavior of atom Aw in Pl
Intuitively, this is the set of all atom pairs (A7, Av} such that the ground (or not necessarily
ground) atom Awp is provable from F, and it is provable in the same way even if it is as
general as {universally quantified atom) Ar. (Cf. [6].[10].)

8. Discussion — Truly Parallel v.s. Non-deterministic Sequential —

Recall that we have formalized the notion of computation tree based on the non-
deterministic sequential GHC execution, in which the instantiation cansed by the extension
at one node is propagated immediately to all the other nodes. { Let us call such execution ron-
deterministic sequential.} At first glance, it seems unnatural, since we cannol guaraniee that
the instantiation is propagated in such a way. If nodes are assigned to different processors,
the extension at some node might be done before the instantiation caused at other nodes
has been propagated. {Let us call such exccution truly parallel) For example, consider the
following program:

Cy: a—and-b{X) :— | alX), b(X).

Co: alX) = | X=a.

i b{X) :- | ¥=b, X=b.

Suppose that the substitution < X 4=a > cansed by the execution of *X = a” is propagated
before the extension at the left node labelled with “X = &, but after the exteusion at the
right node labelled with “X = b7. Then, we will have the tree below, which is not our
maximal computation tree.

a-and-bia}
)
/ N

afa) bia)

C? GE

| ) 5

a=a’ a=hb" h=h"

Oy Ch Ch

However, note that, if we can assume that the instantiation caused at ecach node is
eventually propagated to all she other nodes, we can say that
» a labelled tree is 2 success tree by non-deterministic sequential execution if and only if
it is a success tree by truly patallel execution, and
e u labelled tree is a suspension tree by non-deterministic sequential execution if and
only if it is a suspension tree by truly parallel execution.
Hence. the notions of snecess tree and suspension tree do not depend on the non-deterministic
sequential execution mechanism we have employed in Section 3.1. Moreover, once a max-
imal computation tree (by non-deterministic sequential execution) is given, any maximal
subextension in it, hence its atom behavior, is also independent of the sequentiality.

9, Conclusions

We have presented a fixpoint semantics of flat GHC programs. Further refinement and
logical formalization of the semantics are left for future.
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Appendix. The Well-definedness of Guarded Implication
In Section 4.3, we have defined the guarded implication as follows:

Definition Guarded Implication
Let O be a flat clanse “H - T | A” in program P, and (Ae, A7) be a goal pair. Then,
an atom puir (Hy, Hr) is called the guarded implication of (A, AT) using  when
{z) the execution of Hy succeeds in the guard of € with @ (without instantiating the
variables in Hq), where 5 is a substitution for the variables appearing in I,
(b) Ar < And < A7, and
{c} there exists no other Hq'¢' satislying (a), (b) and more general than Hgé.
Let B be a reduced goal behavior of Ap, and H be the set of all the guarded implication
of goal pairs in 8 wsing €. Then, #’s reduced atom behavior (of He) is called the guarded
implication of B using C.

Then, under what conditions does the guarded implication of a goal pair using a clanse
exist, and is it unique if it exists?

First of all, if the guarded implication of (Ae, Ar) using C exists, the execution of Hr
must be committable to clause C, hence

{A) Hr must succeed in the guard of C.

Since the guard atoms are all primitive atoms, when Hr succeeds in the guard of C, the
execution of an instance of each guard atom pl8y,82,...,8,) of C is committed to some
clause of the lurm
plti,ta, ... 1) - | E,
where E is a sct of equations. Let £ be the union of the set of all the equations
{sa=t,s2=1,... 8 =,}UE
w.r.t. all the guard atoms of C, and 5 be the most general unifier of £. Then, Hyp can
succeed in the guard of C in the same way as M r, and moreover, is most general among such
atoms.

Definition Most General Atom for Commitment
Let " be a flat clanse of the form
H : Gy, Ga, ..., G | By, By, ..., Ba,
Hr be an atom such that the execution of Hr succeeds in the guard of €. Then, an atom
H1y is called the most general atom for commitment when
{a) Hmng succeeds in the guard of C in the same way as H 7, and
(b) there exists no other Hn; satisfying (a) and more general than Huy.

Suppose that the most general atom Hyny for commitment succeeds with suhstitntion
fy. (The domains of g5 and f are disjoint.) Let 5 and # be the substitutions in the definition
of the guarded implication of (Aes, Ar). Then,
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(a) Anally < And,

(b) Ar < Al < Ar, and

(¢} there exists no other Hy'f" satislying (2) and (b) and more general than Hpd.
Then, let V he the set of all the variables appearing in A but not in the gnard part. Since
7 has no relation with the variables in V, & mnst not have a relation with the variables in
V from (b} above, hence

(B) The variables in V' must not appear either in the domain or the range of .
Suppose that o satisfies the condition above. Then, Aqfis an m.gu. of Ar and Angfp from
(a),(L) and (c) above, hence,

{C) 5 is the restriction of an m.g.u. of & and Nofln to the variables in 7.

Then, it is obvions that the three conditions (A),(B).(C) are sufficient for Hy to satisfy the
definition of the guarded implication of (Ae, A7). Hence, the guarded implication of a goal
pair is unique up to renaming of variables when it exisis.
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