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Abstract

Recently, several bottom-up query evaluation methads for logic datahases, e.g., magic
set, Alexander method, Magic Templates, ete., have been developed. Given a logic program
and a top-level query, “Alexander Templates (AT)" by Seki, which is the most refined of
such guery evaluation methods, onee transforms the program and query, and then evalu-
ates the transformed program and guery in the bottom-up manner. This query evaluation
method is proved to be as powerful as the top-down evaluation methods with memao-ization,
ez, OLDT resolution, SLD-AL resolution, Extension Tables, etc. On the other hand, sev-
eral unified framewotks for abstract interpretation based on those top-down methods with
memo-ization have been developed as well. Given a logic program and a top-level guery.
this approach analyzes various run-time properties by approximately execuling the guery
in some abstract domain using the top-down evaluation with memo-ization. Ulilizing the
correspondence between AT and OLDT resolution, this paper presents a framework for ah-
stract interpretation based on AT, and, in particular, shows the relation to Mellish's abstract
interpretation.
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1. Introduction

Recently, several hottam-up query evaluation methods for logic databases, e.g., magic
set [1], Alexander method [16], Magic Templates [15], ete,, have been developed. Given a
logic program and a top-level query, “Alexander Templates (AT} by Seki [17],[18], which is
the most refined of such query evaluation methods, once transforms the program and query,
and then evaluates the transformed program and gquery in the bottom-up manner. This
query cvaluation method is proved to be as powerful as the top-down evaluation methods
with memeo-ization, e.g., OLDT resolution [19], SLI-AL resolution [20], Extension Tables
(5], ete. On the other hand, several unified frameworks for abstract interpretation based
on those top-down methods with memo-ization have been developed as well, Given a logic
program and a top-level query, this approach analyzes various run-time properties by ap-
proximately execnting the query in some abstract domain using the top-down execution
with memoe-ization. This paper presents a framewerk [or abstract interpretation based on
“Alexander Templates” utilizing the correspondence between AT and OLDT resolution, and,
in particular, shows the relation to Mellish’s abstract interpretation,

The rest of this paper is organized as follows: Section 2 introduces “Alexander Tem
plates (AT)" by Scki, and Section 3 shows the [ramework for abstiract interpretation based
on it using a mode inference prohlem as one of its examples. (Extracting a gencral frame-
work and instantizting it to other abstract domains is immediate.) Section 4 points out the
relation te Mellish’s abstract interpretation, and discusses the correspondence betwaen the
two frameworks for abstract interpretation, one based on AT and the other based on OLDT
resolution.

2. Alexander Templates (AT)

This scction introduces a slightly modified version of “Alexander Templates™ by Seki [17)
starting with its naive version in Section 2.1 and shifting to its refined version in Section 2.2
In the following, a pregrasm is a finite set of definite clauses, and a query is an expression of
the furm “7- B.” where B is an atom. We do not make a distinction hetween a set of atoms
and a set consisting of their variant atoms.

2.1 Naive Alexander Templates
(1) Outline of Naive Alexander Templates

The naive version “AT07 receives a program F and a query ¢ and returns a set of
atoms. In “AT0" » subprocedure “trans form0” is first applied to P and Q to obtain a pair
of a program P and an atom @, and then a subprocedure “evaluate0” is applicd to P and
Q to obtain the result. The subprocedures “transform0” and “evaluate0” are explained in
the following subsections.

Example 2.1,1 Let P be a program as helow:

reach(X,Y) := reach(X,Z), edge(Z,Y).
reach(X,X).
edge(a,b).
edgela,c).
edge(b,a).
edge(b,d).



The first clause of “reach”™ says that node V is reachable from node X if node 7 is reachable
from X and there is an edge from Z to Y, while the second clause says that any node is
reachable from itself. The unit clanses of “edge” give the edges of the directed graph of
Fignre 2.1. (This program is a typical feft recursive program.)

Let @ be u query “%- reach{a, Z5)." Then, the execution of “reach(a, Z5)” immediately
calls “reach{a, Z,)" recursively at the leftmost in the body of the first clause to repeat the
execution of the goal of the same form.

This program and query were used by Tamaki and Sato to explain their OLDT reso-
lution in [19]. We use them thronghout Section 2 te explain “Alexander Templates.”
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Figure 2.1 Graph Reachability Problem
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In the following, we assume that each clause in P is assigned a unique natural number,
called the clause number. For example, the six clauses in program £ ahove are assigned
clanse numbers 1,2, 3,4, 5, 6, respectively.

(2) Naive Transformation of Program and Query

A given pair (P, Q) is first transformed to another pair {.E',ifj}_. where the predicate
symbols appearing in (P, @) and those appearing in (P, Q) are disjoint. For each predicaie
“p" in (P, Q), we prepare the following iwo types of predicates:

» predicate “eall p” with the same arity as “p,”

» predicate “sol p” with the same arity as “p.”
The predicates with prefix “call.” are called call- predicates, while those with prefix “sol " are
called sol-predicates. Similarly, the atoms with call-predicates are called call-atoms, while
those with sol-predicates are called sol-atoms. When an atom A is of the form pliy, 2, ..., 1, ).
we denote call p(ty, 12, ..., tg) by call_A, and sol p{t, tu,. .. ,1.) by g0l 4.

Let C be a clause in P, say of the form
Ag = Ay, Aa, o Ay,
The top-down execution using this clause proceeds as follows.
» Il an atom unifiable with the head atom is called, then the first body atom under the
m.g.u. is called.
¢ If an atom unifiable with the head atom is ealled, and the first body atom under the
m.g.u. 13 solved with some answer substitution, then the second body atom under the
composed substitution is called.
o lfan atom unifiable with the head atom is called, and all the body atoms are solved with
some answer substitution, then the first alom is solved with the composed substitution.
If we simulate the behavior of the top-down execution by the hottom-up reading of another
definite clauses, the new definite clauses corresponding to the behavior above are as below:
call Ay - call_Ag.
call_As :- call_Ag, so0l_A;.



call_ An - call A, sol_ Ay, ... 50l Aoy
sol_Adg - call_dg, 80l Ay, ..., 80l Ay 80l A,
Taking this correspondence into acconnt, the snbprocednre “trans form0” is as below:

Algorithm *transform0”

Ilnput @ a program & and a query Q.
Output @ a pair of a program and an atom (P, Q).
Proceduare : Let ) be of the form 7. B
step 0: Initialize P to @.
step 1: For each clause in #, say of the form
“hp = Ay Ao Am” (m > 0),
add the following m + 1 clauses to P.
call 4y - eall_An.
call_Aa - call_Ap, 50l 4.

el Am - eall Ay, sol Ay sol Aa, L 0l Ap oy
sol_Ap = call_Ag, sel_ Ay, 50l da, ..., sol_ Aoy, 80l A
step 2 - Lev O be “call B.7
step 30 Return {f",{j}.

Example 2.1.2 Let P and @ be as before. Then, “trans form0® applicd to (P, Q) returns a
pair of the program and alom below:
F: call_reachi(X,Z) :- call_reach(X,Y).
call edge(Z,¥Y) := call_reach(X,Y), sol_reach(X,Z).
sol.reach(X,¥) :- call_reach(X,¥), sol_reach(X,Z), sol_edge(Z,Y).
sol_reach(X,X) :- call_reach{X,X).
sol_edge(a,b) :- call_edgela,b).
sol_edgela,c) :- call_edge(a,c).
sol_edge(b,a) :- call_edge(b,a).
sol_edge(b,d) :- call_edge(b,d).
f}: call_reach(a,Z).

{3) Naive Evaluation of the Transformed Program and Query

Let C be a clause in P, and I be a set of atoms. Then, atom B# is said to be generated
from I' using C when
o B is the head atom of C, and
¢ there exists a sequence of atoms in ' unifiable with the sequence of the body atoms of
C, and # is the restriction of an m.g.u. to the variables appearing in the head atom.
Then, the subprocedure “evaluate0” is as below:

Algorithm “evaluateQ®

Input : a program F and an atom @.
Output : a set of atoms.
Procedure : Let @ be of the form “call B



step 0: Initialize " to Ty, where Ty is {rall B}.

step 1: Update T to ["UTy, where T is the set of all the atoms generated from T using some
clause in P. Repeat this step until I' does not increase.

step 2: Heturn the set of all the atoms B' such that sol_H"is in T and B’ iz an instance
af A,

Example 2.1.3 Let P and @ be as before. Then, “evaluate0” generates the atoms below at
flep 1:

Oth Repetetion: call reach(a, 7).

Ist Repeletion: sol reach(a,a).

2nd Repetetion: call edge(a, ¥').

3rd Repetetion: sal edge(a,b), sol_edge(a, c).

dth Repetetion: sol reach(a.b), sol_reach(a, ¢},

Sth Repetetion: call edge(b, V), call_edge(c, Y).

Bth Repetetion: sol_edge(b,a), sal_edge(b, d).

Tth Repetetion: sol_reach{a, d).
Then, atoms reach{a,a), reach(a,b), reach(a,c), reachia.d) are returned at step 2.

2.2 Refined Alexander Templates
(1) Outline of Refined Alexander Templates

The refined version “AT1” is the same as the naive version *ATQ" excepl that “trans-
form1” and “evaluatel” are used instead of “trans form0” and “evaluated.”

(2) Refined Transformation of Program and Query

Let € be a clause in P, say with clause number n of the form
o Aa s Ay Ag Ay
and Cp, Oy, ... O be the cotresponding clauses in P of the form
call_ Ay - call A,
call Ay - call_Aq, sol A,

call A, - call_Ag, sol Ay, ... a0l Ap_,.
sol Ao - call_Ag, s0l_Ay,... sol A, _,. sl A
Theu, for two atom sequences
call Ao 50l Aq, ..., sol Ay,
call_ Ag,s0l Ay, ... 50l A;_y,.. . sol Aj_y
in the body of the clauses in P, the same combination for the first sequnce must be checked
for the second sequence aver again in the “evaluation™ phase (3 < 7). To save the information
about the same combination, we nead to specily
* the sequence “call_Aq, 50l A4, ... cool_A; " and
* the binding of the variables when the sequence “call_ 4y, 80l Ay, ..., 50l A;_," is unified
with a sequence of atoms in [
To specify the sequence, we need the location of atom A; in the clause . To specify the
binding of the variables, we need the list of all the vatiables in “eall_Ag, sol Aq,..., 50l A;_y,"
o1, more precisely, the list of the variables necessary for another such sequences,

To store the information, we employ a binary predicate “cont” as follows:
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o Its first argnment is the list with two elements [n,i] to denote the location of the
occurrence of atom A; in the clause with clause number n. ( For example, the location
of reach( X, Z) in the first clanse in the program before is denoted by [1,1].7)

o lis sccond argument is the list of variables I, ; to denote all the variables that oc-
cur among both “Ag, Ay, ..., 417 and *A;, Aigq,. .., A, A" simultaneously in the
clause with classe number . {The variables in the list are assumed to be ordered
according to the order of textual appearance in the clauze.)

Atoms with predicate “cont™ are called cont-atoms. (The predicate “cont™ is used in [17] o
stand for “continuation.”™)

The subprocedure “frans form1™ is as below, where a clause with two head atems
.'—1.,-_|1 .ﬁi.::, - 4'1.1, .."1.2, " ,A’J‘
is just a convention of writing two clanses
Ap - Al.}fl.'__:..-..,:‘ii.
zl:_, o= A|.A?\...,AE.

Algorithm “transform1”

[nput © a program F and a query Q.

Output : a pair of a program and an atom { P, Q).

Procedure : Let @ be of the form “7 B®

step 0: Initialize P to 0.

step 1: For each clause in P, say with clause numhber n of the form
“ldp - A Aa, L ART (m > 0),

add the following m + 1 clauses to P.
call Ay cont{[n,1],1, 1) = call_Ag,
call_Ag, cont([n, 2], I ) = cont([n, 1], 1), sol_A;,

call A cont({lm om] Iy o) - cont([n,m — 1), 4 oy ) g0l Ay,
sol_Ay - cont([n,m], Iy m), 50l Ay

step 2: Let (f? be “call B.”

step 3: Return (£,0).

Note that each clause in P obtained by “transform1” possibly has two head atoms,
but at most two hody atoms.

Example 2.2.1 Let P and @ be as before. Then, “transform1” applied to { P, Q) returns a
pair of the program and atom below:
F: call_reach(X,2),cont{[1,1],[X.Y]} :- call_reach(X,¥).
call_edge(Z,Y),cont([1,2],[X,Y,2]) :-
cont([1,1],[X,Y]),=20l_reach(X,Z).
sol_reach(X,¥) :- cont([1,21,[X,Y,Z]},s0l edge(Z,¥).
sol_reach{X,X) :- call_reach(X,X).
sol_edgela,b) :- call_edge(a,b).
sol_edge(a,c) :- call_edge(a,c).
sol_edge(b,a) :- call_edge(b,a).
sol_edge(b,d) :- call_edge(b,d).
@ call_reach(a,Z}.



(3) Refined Evaluation of the Transformed Program and Query

According to the refinement of the transformation phase, we need to generalize the
evaluation phase to use clauses with two head atoms. In addition, we adopt the “semi-naive”
bottom-up evalnation. {In the following definition, A, .. is vsed o keep the set of atoms
generated just one step before.)

Let € be a claunse in f:', and A and A, be sets of atoms. Then, atom B# is said 1o
he generated from (A AL, ) using ¢ when

¢ Bisin the head of C, and
e there exists a sequence of atoms in A unifiable with the sequence of the hody atoms of
fj_. at least one of the atoms in the sequence is in Apqy, and the sobstitution @ is the
restriction of an m.g.u. to the variables appearing in the head atom.
The subprocednre “evafeatel” is as below:

Algorithm “evraluate1™

Input : a program P and an atom Q

Cutput : & sel of atoms.

Procedure : Let @ he of the form “call B.”

step 0 Initialize A and AL, to {Q}

step It Update A to A" U A, where A" is the set of all the atoms generated from (A, A,y )
using some clause in P. Update A,,,, 16 the difference beiween the new A and the previous
AL Repeat this step until & does not increase,

step 2: Return the set of all the atoms B' such that sol_ #' isin A and B is an instance of
B

step 1:
Oth Repetetion: call_reachia, 7).
1st Repetetion: cont([1,1}, [a, ¥]), sol_reach({a,a).
Znd Repetetion: call_edge{a, Y}, cont([1,2],[a, Y, a]).
3rd Repetetion: sol edge(a,b), sol edge{a,c).
4th Repetetion: sol reach(a,b), sol reach(a,c).
Sth Repetetion: call_edge(b, V'), cont([1,2], [a, Y. B]), call edge(e, Y'), cont([1, 2], [a, Y, c]).
Gth Repetetion: sol edge(b, a), sol_edge(b, d).
Tth Repetetion: sol_reach{a,d).
Then, atoms reach{a, ), reach{a,b) reachia,c) reach(a,d) are returned at step 2,

2.8 Correctness of Alexander Templates

“Alexander Templates” simulates how the top-down interpreter calls atoms and solves
them by generating call-atoms and sol-atoms. It just avoids repeating the same computation
in the top-dewn interpreter by utilizing atoms already generated so that, for any top-level
query, AT generates atoms call A and sol B if and only if the top-down interpreter calls A and
solves with answer B. In particular, the “if™ part is the basis of our abstract interpretation.

Theorem (Correctness of Alexander Tem ?]a_tes]l
Let P be a program, @ be a query, and ( P, Q) be the result of “transform1({F,Q)."

G



(a) An atom Ao appears at the lefimost of a goal during OLD resolution of @ using 7, if
and ouly if “evaluatel( P, Q)" generates call Ar. (Correctness for Calling Patterns)

(b) An atom is solved with solution Ar during OLD resolution of @ using P, if and only
if “evaluatel{ P, Q)" generates sol Ar. {Correctness for Exiting Patterns)

Proof. The proof of the “if” parts is by induction on the number of steps required to generate
the atoms. Due to space limit, we will omit it. The proof of the “only if” parts is similar to
that of the correctness of abstract interpretation based on AT, See Appendix.

Though all solutions were found in the example of Section 2.1 and 2.2, this is not always
the case, that is, the generation at step 1in “evalnate]” might continuc forever. The reason
15 that there might he generated infinitely many different atoms, (However, when this AT is
applied 1o an abstract domain with finite elements, it alwayvs terminates. See Section 3.3)

4. Abstract Interpretation based on Alexander Templates
3.1 An Example of Mode Inference based on AT
{1) Mode Inference Problem

Suppose that a program

reverse{[X|L] M)} :- reverse(L,N), append(N,[X] M).
reverse(| J,[ 1).

append ([YIN],K,[YiIH]) :- append(N,K ,M).

append([ J,K,K).

is given and a top-level query “7- reverse{ Ly, Mg)” is executed with its first argument Lg
instantiated to a ground term. Then, the first argument of “reverse” invoked from the
top-level goal is always a ground term at calling time, and the second argument is always a
ground term at exiting time. Similarly, so are the first and second argnments of “append”
at calling time and the third argnment at exiting time. How can we show it mechanically?

{2) Transformation of I'rogram and Query

Let us transform the given program and query in the same way as “Alexander Tem-
plates.” As for the program, the transformed program /7 is as helow:
call_reverse{L,N),cont([1,1],[X,L,M]) := call_reversze([X|L].M}.
call_append (N, [X] M), cont([1,2],[X,L,H,N]) :-
cont ([1,1],[X,L,M]), 501 _reverse(L, N).
sol_reverse{[XIL],M) :- cont([1,2],[X,L,M,N]), 501l append(N,[X] M),
sol_reverse([ ]1,[ 1} :- call_reverse{[ ],[ 1).
call_append(N,K,M),cont([3,1],[Y,N,K,M]) :- call_append([YIN],K,[YIM]).
sol_append([YIN],K,[YIM]) :- cont([3,1],[Y,¥,K,M]),scl append(N K M),
sol_append([ 1,K.K) :- call_append([ ],K,K).
As for the query, however, instead of each query “?- reverse(t, )" with its first argument
t ground, we consider a pair of a query and a mode substitution
P reverse(L, M) < L & ground >.

Hence, the transformed query Q is as below:
call_reverse(L, M) < L < ground >.

(3) Evalunation in the Domain of Modes

7



Let us evaluate the transformed program and query in the same way as “Alexander
Templates.” Then, similatly to the transformed query, we need to consider pairs of an atom
and a mode substitution

call_ A u,

sol A p,

cont(fn, 2], 1,;) A
to denote the mode information of the variables in the atoms call_ A, sol A, cont([n, 1],y ;)
where g, v, A are mode substitutions. In the following, sol Au is called the corresponding
mode-abstracted sol-atom of call_ Ap. Then, the bottom-up evaluation proceeds as follows:

Before the repetetion at step 1 in *evaluatel,” A is initialized to a singleton set
{eall reverse(L. M) < Le=ground>}.
At the 1st repeletion, using the first clanse in P, new pairs
call reverse(L, N) < L& ground >,
cont([1, 1], [X, L M]) < X, Lf‘-ﬂi@_fi?—*
are obtained, because, when call reverse([X|L], M) and call reverse(L', M), are unified
under the condition that L' be ground, X and L are ground. {eall_reverse(L' M") < L'~
ground > is a variant of call reverse{L, M) < [ < ground > in A, and used to avoid tuc
variable names conflict.)
Similarly, using the fourth clanse in P, a new pair
sol_reverse{ L, M) < L, M <ground >
is obtained, because, when call_reverse([],[]) and call_re verse( L', M') are unified under the
condition that L' be ground, and when sol_reverse(L, M) and the head sol_reverse([ ],[ ]}
are unified under the condition that L be ground, I and M are ground. {sol_reverse(L, M)
< L «<=ground > is the corresponding mode-abstracied sol-atom of call_reverse(f, M) < L«
ground> in A, and used to re-form the mode-abstracted sol-atoms generated.)
The evaluation proceeds similarly to generate the following pairs:
2nd Repetetion: call append(N,[X], M) < X, N < ground >,
cont([1,2] [X. L, M, N]) < X, L, N =ground >,
3rd Repetetion: call append(N K, M) <N, K < ground >,
cont((3 1], [V, N, K, M]) <Y, N, K < ground >,
sol_append(N,[X], M) <N, X. M <=ground >
4th Repetetion: sol append(N, K M) <N, K, M = gronnd >,

3.2 A Formalization of the Mode Inference based on AT

Let us formalize the notions used in the previous example. Because our purpose is th-
explanation of the framework for the abstract interpretation based on AT, here we consider
the simplest mode structure to make our explanation as simple as possible.

(1) Mode

A maode is one of the following 3 sets of terms:
any : the set of all terms,
ground : the set of all ground terms,
@ : the empty set of terms.
The instantition ordering of modes is the ordering < depicted below:

8



A mode sobstitution 15 an expression of the form
<Xie=my, Nosms,... Xijesm>,

where my, ma, ..., m; are modes. Mode substitutions are denoted by g, w, A, We assume that
a mode s submlulmn amgns any, the minimum clement w.r.t. the instantiation ordering, to
variable X' when X is not in the domain of the mode substitution explicitly,. Hence, the
cinpty mode subsiitution <> LELT4 E any to every variahle.

The joined mode substitution of two mode substitutions g and v, denoted by p v v, is
the substitution such that (p v v}{X) is the least upper bound of a( X} and w{ X) w.r.t. the
instantiation ordering,

(2) Mode-abstracted Atom

Let A be an atom and p be a mode substitution of the form
<Xie=my, Noemg, . Xyesm >

Then Ap is called a mode-abstracted atom, and denotes the set of all the atoms obtained
by replacing each X in A with a term in m;. (Hereafter, we consider only the restriction
of g to the variables in A when Ay is considered.) A mode-abstracted atom Aw is called an
instance of a mode-ahstracted atom Ag when there exists a mode substitution A such that
Avis A(pv A). A mode-absiracted atom By is called a variant of » mode-abstracted atom
Ap when B is a variant of A and v is obtained from p by renaming the variables in the
domain of g accordingly.

{3) Unification of Mode-abstracted Atoms

Two mode-abstracted atoms Ap and Br are said to be unifiable when Apn By £ 0.

Let A be an atom, X, X2, ..., Xi all the variables in A, & a mode substitution
{:.'l{]_ =1 ,A’:#E;,.. .,Xk {Z:_k,--.},
B an atom, ¥1,Y5, ..., ¥ all the variables in B, and » 2 mode substitution

<Yies, Yo, Ve, >
Then, how can we know whether Ap and By are unifiable, that is, whether there exists a
unification of Ao in Au and Br in Bu? And, if there exists such a unification, what modes
of terms are expected to be assigned to ¥;,Y5,.... ¥ by the unifier?

When two mode-abstracted atoms Ap and By are unifiable, two atoms 4 and B must
be unifiable in the usual sense. Let 5 be an m.g.u. of 4 and B of the form
Xy ety Xo=mta,. .. Xy =i, 1) =5, Yo =8, ... e,
The mode information of  is propagated Lo the variables in B through 5. Let's divide the
mode propagation through v into two phases, inwards mode propagation and outwards mode
propagation.

When a term { containing an occurrence of term # is instantiated to a term in m, a mode
containing all instances of the occurrence of term s is called an inwards mode propagation
of m from t to s, denoted by s/ <t«<m >. (Exactly speaking, some notation denoting the
occurrence of s should be used instead of the term s itsell.) It is computed as below:

9



sf <lsemz=m

Example 3.2.1 Let ¢ be [X|L] and m be ground. Then
X[/ < [X|[]«=ground >= ground,
L < [X|L]=ground >= ground.

When each varizble & in term s is instantiated to a term in A 2), 2 mode containing
all instances of 5 is called an owtwards mode propagation of A to &, and denoted by /A Tt
is computed as helow:

f, AA ) =0 for some X in s
Al =) when s iz a variahie;

s/ = ground, when A(X) = ground for every variable X in s;
any, otherwise,

Example 3.2.2 Let s he [X[L] and A be < X <= ground, [ < ground >. Then
sfA = ground.

Let A0 XN X, 0, w BUY Y5 0 Y and v be as before. Then, we can overesti
mate the unification of Ap and Be as follows:

1. First, we can check the unifiability of Ap and Be by the unifiability of 4 and B. If 4
and B are not unifiable, Ag and By are not unifiable. Otherwise, let 5 be an m.gu. of
A and B of the form

<Ayt Aos=to, o =10, Y =8, Yoma, o Y s=a .

2. Next, for each oceurrence of a constant in {y,1s,. .. .1k, we can compute the mode
assigned to the occurrence using the inwards mode propagation of g. Similarly, for
each occurrence of variable 7 in 1), 42, ..., 14, we can compute a mode containing all
instances of the occurrence using the inwards mode propagation. By taking their least
upper boond wor.t. the instantiation ordering for all the occurrences of 2 in f, we can
compute a mode containing all instances of £. If

# the mode assighed to some occurrence of a constant is @, or

s the mode assigned to some varable is @,
Ap and Hy are not unifiable. Otherwise, we can compnte the mode substitution A for
all the variables in &4, ..., Iy by collecling these mode assignments for the variables.

3. Then, we can overestimate the mode n; assigned to £; using the outwards mode prop-
agation of A, hence, we can obiain a mode substitution ¥’ of the form

< Yie=n, Yoenh, Ve >
by collecting the modes for all the variables Y1, Ys,..., Y in B,

4. Last, Au N By is overestimated by B{v v '),

The mode substitution # V¢’ is called the propagated mode substitution from p to v through
1, and denoted by *p L ovor 4w i

(4) Transformation of Program and Query

The subprocedure “trans form1” receives a program P and a mode-abstracted query
@A, and returns a pair of a program and a mode-abstracted atom (P, Q@A) in the same way
as in Section 2.2.

{5) Evaluation in the Domain of Modes
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In the bottom-up evaluation of AT in Section 2.2, if a new sol-atom sol_A" is generated
at some repetetion, then there always exists a call-atom rall 4 in A generated at some
previous repetetion such that A’ is an instance of A and call_A is the initial source of the
generation of sol A" As for the bottom-up evalvation in the domain of modes, a mode
abstracted atom generated is defined in the same way as AT except that, when a new mode-
abstracted scl-atom sol_A'p is generated, it is re-formed to the mode-abstracted sol-atom
sol_AM to conform to the call-atom call Aw already in A,

Let C be aclanse in P, and A, A,... be sets of mode-abstracted atoms. Then, a mode
substitution g is said to be generated from (A AL.,) using the body of € when either of
the following conditions are satisfied.

1. The body of € is “cali_A,” and
o there exists a mode-abstracted atom call_A'p" in Ay, such that call A" is unifi-
able with eall_4, say with m.g.n. &
s uis g g,
2. The body of € is “eont([n, ), Iy i), 30l A;," and
» there cxists a mode-abstracted atom cont{[n, 1), I, ;v in A,
o there exists w mode-absiracted atom sol_Alp' in A such that sol A! is unifiable
with sal A;, say with m.g.u. 4,
 pis Y (g E—{}L
» al least one of cont([n. o], lq v and sol Alp is in AL,

Let € be a clause in f’, &, Qipew be sets of mode-abstracted atoms, p be a mode
substitution generated from (A, A, ) using the body of €. Then, a mode abstracted atom
BAis said to be generated from (A, A, ) using € when one of the following conditions is
satizsfied.

1. Bis a call-atom in the head of C, and A is the restriction of g to the variables in H.
H is a cont-atom in the head of C, and A is the restriction of g to the variables in H.
B’ is a sol-atom in the head of €, and there exists a mode-ahstracted call-atom Be in
A such that B' and B are unifiable, say with m.g.u. n, and 3 is v — I

1o

The subprocedure “evaluate” receives Pand QX, and returns a set of mode-abstracted
atoms in the same way as Section 2.2,

3.3 Correctness of the Mode Inference based an AT

This mode inference is safe, i.c., it does not miss any atoms at calling time and exiting
time during the top-down execution. More precisely, the correctness is stated as below. The
proof of the theorem crucially depends on the fact mentioned before that B{pg ™ v) is &
supersel of Aun He.

Theorem (Correctness of the Mode Inference)
Let F be a program, @A be a mode-abstracted query, and (P, @A) be the result of
“transform1( P, Q)"
{a) If an atom Ac appears at the leftmost of a goal during OLD resolution of & query
in QX using P, then “evaluatel(P,QA)" generates call_4p such that Ac is in Au.
(Cotrectness for Calling Patterns)

11



(b) If an atom is solved with solution Ar during OLD resolution of a query in QXA nsing
P, then “evaluate1( £, Q)" generates sol_4w such that Ar is in Ar. {Correctness for
Exiting Patterns)

FProof. See Apendix.

Note that, because the set of modes is finite, there exist only finite mode-abstracted
atoms, hence the repetetion at step 1 in “evaluatel” always terminates,

4. Discussion
4.1 Classification of Prolog Abstract Interpreters

In the abstract interpretation of Prolog programs, what we would like to analyze are
the run-time properties of a given query when it is executed using the usual top-down Prolog
interpreter. However, if we try to execute the query in the abstract domain asing the usual
top-down interpreter, we will immediately enconnter the problem that the interpreter is more
likely to enter a non-terminating computation loop even if the program is not left-recursive.
Hence, it is more appropriate to start with an interpreter that has some correspondence to th ¢
usual top-down interpreter and that is less likely to enter a non-terminating computation loop
when executed in the abstruct domain, In particular, to avoid a non-terminating computation
luop, some operation that is bottom-up in rature is inevitable. According to how the bottom-
up operation is integrated, the frameworks of abstract interpretation are classified into the
following three:

The first one is the pure bottom-up abstrace interpretation approach, in which the
bottom-up interpreter, ie., hypet-reselution, is directly applied 1o a given program in the
abstract domain (without any pre-processing of the program). Though the bottom-up in-
terpreter is simple, it does not take the given top-level goal inte consideration so that it is
likely to waste time working on goals irrelevant to the top-level goal and ignore the precise
tun-time behavior of the top-dewn interpreter. This approach was applied to type inference
by Kanamori and Horinchi [6], and generalized by Marriott and Sendergard [12].

The second one is the two-phase hybrid abstract interpretation approach, in which si-
multaneous recurrence equations for the sets of goals at calling time and exiting time during
the top-down execution of & given top-level goal are derived, and a superset of the least solu
tion of the simultanecus recurrence equations is obtained using a bottom-up approximation.
The reason for the separation into two phases, simulating the top-down execution and solv-
ing by the bottom-up approximation, is two-fold. One is that, by simulating the top-down
execution, we can focus our attention on just the goals relevant to the top-level goal and
capture the precise run-time behavior of the top-down interpreter. The other is that, by
solving by the bottom-up approximation, we can obtain solutions without entering a non-
terminating computation loop. This approach was proposed by Mellish [14] in order to give
a theoretical foundation to his practical techniques for analyzing detcrminacy, modes and
shared structures [13]. The correspondence between Mellish’s approach and our AT-based
approach is discussed in Section 4.2,

The third one is the one-phase hybrid abstract interpretation approach, in which a
given query is executed in the abstract domain using some top-down interpreter with memo-
1zation. The top-down interpreter with memeo-ization proceeds in the same way as the usual
top-down interpreter except that the solutions already obtained are memo-ed and utilized to

12



solve the same goal without repeating the same execution. (The utilization of solutions cor-
responds 1o the bottom-up interpretation.) Hence, it is less likely to enter a non-terminating
computation loop (than the nsual top-down interpretation) and wastes less time working on
goals irrelevant to the top-level goal (than the usual bottom-up interpretation) so that the
corresponding abstract interpreter achicves the same effects as Mellish’s approach without
the separation into two phases. This approach was investigated by Kanamori, Kawamura,
Maeji and Harinchi [7], [10], Bruynooghe [2], Debray [4] and Mannila and Ukkeonen [11]. The
correspondence between this approach and our AT-based approach is discussed in Section
4.3

4.2 Correspondence to Abstract Interpretation by Mellish

Mellish’s paper [14] first explains a framework that derives simultaneous recurrence
equations for input (the set of atoms at calling time) and output (the set of atoms at exiting
time) and obtains some supersets of their least solutions using the bottom-up approximation,
and then later refines the framework by partially evaluating the simultaneous recurrence
equations to make them more convenient for computing the superscts of input and output

The latter framewark of his approach is closely related to the naive version of our
approach. First of all, deriving the partially evaluated shmultancons reenrrence equations
cortesponds to our “frans form0.” Second, obtaining the supersets of their least solutions in
some abstract domain by botlom-up approximation corresponds to our “cvalunted” applied
to the abstract domain. Note that, due to the use of cont-atoms, our refined version with
“trans form1” and “evaluate]” in Section 2.2 is mare time-saving than the naive version
with “trans form(" and “cvaluate0™

4.3 Correspondence to Abstract Interpretation based on OLDT Resolution

OLDT resolution is one of the top-down interpreters with memo-ization {27]. Given
a top-level query *7- B”, OLDT resolution initializes the computation by generating a tree
consisting of a single root node labelled with B, called initial OLDT tree. In generzl, each
node of an OLDT tree is labelled with a sequence of atoms, and the atoms are processed
from left to right to generate the labels of child nodes. Once the lefimost atom of a node
is solved (and an instance of the atom sequence excepl the leftmost atom appears al the
leftmost of a descendant node), the solution is memo-ed in a table. At each step, OLDT
resolution extends the OLDT tree at all the possible nodes
* either in the same way as the usual top-down interpreter {OLD resolution} as far as
the lefimost atom of the label has net appeared befare,
= or by utilizing the already obtained solutions in the table to solve the leftmost atom of
the same form.
One-to-one correspondence between the behaviors of AT and OLDT resolution was estab-
lished by Seki [17],[18].

Theorem (AT and OLDT)
Let P be a program, Q be a query, and (P, Q) be the result of “transform1(P,Q).”
* An atom call_ A is generated at the k-th repetetion in evaluatel( P, Q) if and only if
a node with leftmost atom Ag is generated at the k-th extension of the initial OLDT
tree of ¢ using F.
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s An atom sel At is generated at the k-th repetetion in evaluatel{ P, Q) if and only if
a node with solution A7 is generated at the k-th extension of the initial OLDT tree of

&} wsing P.

Proof. Seki’s oxiginal AT [17][18] dves nol generate an atom when it is an instance of an
already generated atom in the bottom-up interpretation phase. In addition, Seki’s original
proof [17],[18] has shown the correspondence between his AT and slightly modified SLD-AL
resolution [20]. The proof, however, goes in the same way for the correspondence between
our modified AT and OLDT resolution. See Seki [17],[18] for the details.

The OLDT-hased abstract interpretalion executes a given query in the abstract domain
using the OLDT resolution [7],[10]. The correspondence above immediately implies the one-
to-one correspondence between AT-hased abstract interpretation and OLDT-based abstract
interpretation.

Theorem (AT-based and OLDT-based Abstract Interpretations)
Let P be a program, QA be a mode-abstracted query, and (P, Q3) be the result of
“trans forml{ P, QA"

* A mode-abstracted atom call_Apu is generated at the k-th repetetion in cvaluate 1| P, Q1)
if and only il 2 node with leftmost atom Ag is generated at the b-th extension of the
initial OLDT tree of QA using P.

e A mode-abstracted atom sol_Av is generated at the k-th repetetion in evaluatel{ P, QX)
if and only 1f a node with solution Aw is generated at the k-th extension of the initial
OLDT tree of @A using P.

Proof. Immediate from the theorem above.
5. Conclusions

We have presented a framework for logic program analysis based on “Alexander Tem-
plates™ with its applications to mode inference, and shown the relation to Mellish’s abstract
interpretation.
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Appendix Proof of the Correctness of the Mode Inference based on AT
(1) Definitions for OLD Resolution

Let us first formalize the top-down interpretation. In the following, a goalis a (possibly
empty) sequence of atoms. Goals are denoted by G, H, and the empty goal is denoted by O,
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Definition OLD Tree

An OLD tree is a tree such that each node is labelled with a goal, and each edge is
labelled with a substitution. An OLD tree of atom A is an OLD tree whose root node is
labelled with a goal consisting of only one atom 4. When a node in an OLD tree is labelled
with “4y, 45, ..., AL." the atom A, is called the head atom of the node.

Definition OLD Resolution

A terminal node of OLD tree T labelled with “A. Az, ..., A." 15 said to he QLD re-
solvable using program P when there is some definite clause “F - By, Bsy .. B," (m>0)
in P such that A and B are unifiable, say by an m.g.u. 8. The (possibly empty) goal
(B, Bz By, Az, Ag)07 s called the OLD resolvent, and the substitntion & ie called
the substitution of the OLD resolution.

Definition Initizl OLD Tree
The initial OLD tree of atom A4 is the OLD tree Ty consisting of only the root node

labelled with A.

Definition Extension of OLD Tree
An immediate extension of OLD tree T using program P is the result of the followisg
operations, when a node » of OLD tree T is OLD resolvable using P,

o Let €y, Ca, o0 O (k2 1) be all the elauses with which the node v is OLD resolvable,
and 7y, Ga. ..., G be the respective OLD resolvents. Then add & child nodes labelled
with €7y, Ga, .., Gi to v. The edge from v to the node labelled with G, is labelled with
8. where 8, is the substitutivn of the OLD resolutjon with ;.

An OLD tree T, is an extension of OLD tree T using program P if 7.., is obtained from
T through suceessive application of immediate extensions using F.

Definition OLD subrefutation and OLD Partial Subrefutativn
An OLD subrefirtation of an atom and an OLD subrefutation of a gual are paths in
an OLD tree (not necessarily starting from the root node) which are simultanecusly defined
inductively as folluws:
{a) A path with length mare than 0 starting from a node is an OLD subrefutation of an
atom A« with solution A7 when
e theinitial node is labelled with a goal of the form “Ag, Ge.” the initial edge with
a substitution &, and the last node with a goal of the form “&r.” and
= the node next to the initial node is labelled with a goal of the form “{4;, 4a....,
Ay )8, Gef” and the path except the initial node and the initial edge is a sub-
refutation of “(4;, 4, ..., 4.)8" with solution Ay, Aayony Agdy (> 0),7 and
® Tis o
(bi) A path with length 0, i.e., a path consisting of only one node, is an OLDT subrefutation
of *07 with solutior “0.7
(b2) A path with alength more thun 0is an OLD subrefutation of a goal “(A,, Ay, . ... A, )
with selution A Az, AR (2 > 0} when
o the initial node is labelled with a goal of the form “(A4,, A5, ..., A )e, He " and
the last node with a goal of the form “Hr.”
= the path is the concatenation of a subrefutation of Ay with solution A;em, 2
subrefutation of Asoy, with solution Azemna, ..., asubreflutation of A oq, 5, --- I
with solution A,on,9,---9,_,m,, and
* Tis Tz "NMn—1Tn.
In particular, a subrefutation of A is called a unit subrefutation of A,



A path in an OLD tree starting from a node with head atom A is called a partial
subrefutation of 4 when it does not contain any subrelutation of A as its prefix.

(2) Definitions for Alexander Templates

As for the notions of “Alexander Templates,” some of the following definitions overlap
with the contents of Section 2. We have repeated them to make clear the correspondence
between the notions of OLD resclution and those of AT. Hereafler, P and ¢ denote the
result of “translated( [/, ¢})."

Definition Atom Set
A set of atoms is called an atom set when it consists of call-atoms or sol-atoms.

Definition Generaied Atom
Let € be a clanse in P, and T be a set of atoms, Then, atom B is said to be generated
from T using € when
e His the head atom of ', and
o there exists a sequence of atoms in I' unifiable with the sequence of the body atoms of
C, and # is an m.g.n.

Definition Initial Atom Set
The initial atom set of “call_H” is the set of atoms {call B}

Definition Extension of Atom Set
An immediate extension of atom set T in P is
["w .
where I" is the set of all the atoms generated from T using seme clause in E, and I'y is an
initial atom set. An atom set [',., is an extension of atom set ['in P if [, is obtained from
[' through suecessive application of immediate extensions,

The notions {or the mode inference based on AT are defined similarly.
{3) Proof of the Correctness

The following Lemma A1 reduces the correctness of the mode inference based on the
refined “Alexander Templates™ to that on the naive “Alexander Templates,” which is in turn
guaranieed by the following Lemma A2, Let P be a program, @ be a query, and fJT_‘Q_. b
the result of “trans formO{ P, Q)."

Lemma Al
Let I'c and A be the set of all the mode-abstracted call- and sol-atoms generated

by the naive “Alexander Templates” and the refined “Alexander Templates,” respectively.
Then, I'; and A are identical.

Proof. Obvious by induction on the number of steps tequired to generate the atoms.
The theorem in Section 3.3 is restated as follows:

Theorem (Correctness of the Mode Inference)
Let BA be a mode-abstracted atom, Tp be the initial OLD tree of an atom in B, and
Ag be the initial mode-absiracted atom set of call_BA,
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(2} If some extension of Ty contains a node with head atom Ar, then some extension af
Ag contains a mode-abstracted atom call Ay such that Ae is in Ax. (Correctness for
Calling Patterns)

{b) If some extension of T, contains a subrefutation with solution A7, then some extension
of &g contains sol Aw such that A7 is in Aw. (Correctness for Exiting Patterns)

The theorem is an immediate consequence of the following lemma:

Lemma A2
Let T be an extension of an initial OLD tree, and T be an extension of an initial

mode-absiracted atom set.

(2) If T contains a partial OLD subrefutation of 40 whose last node has leltmost atom
Br, and T contains call_Ap such that Ae is in Ay, then some extension of [ contains
call_ By such that Bris in Be.

{(b) If T contains an OLD subrefutation of As with solution A7, and T contains call_4p
such that Ae is in Ap, then some extension of I' eontains sol Av such that A7 is in
A

Froof The proof is by simultaneous induction on the length of (partial) subrefutations.
Proof of Part {a):
Let # be u partial subrefutation starting from node u and ending with node v.
Base Case: If the length of r is 1, then “Br” is identical to “Ae,” henee, from the assump-
tion, “call_Ap" is in T,
Induction Step: If the length of r is greater than 1, there exists a clause, say of the form
CAp e Ay, de, L ALY
with which u is resolvable. Let wy he the immediate child node of u labelled with resolvent
(1 TR; O T T S
Let the path from uy to v be divided into
ry @ subrefutation of “A,8," with solution “4,8,8,,”
rz + subrefotation of “A.0,8," with solution “A.6,8,8,,"

ri—1 ¢ subrefutation of “A; 1056185 - - §; 2" with solution “A,_, g0 8- 0;_,."
ri : partial subrefutation of “A;8,8,8; --- 8, " with length shorter than r.
Because the clanse
call_Ay - call_Ag
isin P, the immediate extension of I includes call_A;p containing eall_A4, # due to the prop-
erty of the mode propagation. From the induction hypothesis for part (b), some extension
of I includes sol_ 4, containing sol_4,8p8,. Similarly, some extension of I’ includes
“eall_Aaps™ containing “call_Az808,,”
“sol_Azpg” containing “sol A308:6,,”

“eall Ai_ypiq” containg “call A;_ 88,85 -8,_,"

“g0l_A;_q ;" containing “sol A;_,0,8,8,---8,_,7

“eall A;p™ containing “call A;0,0,05---8;_,."
Then, from the induction hypothesis for part (a), some extension of T includes “call_Bv"
containing “call Br."
Proof of Part (b):

Let r be a subrefutation starting from node u and ending with node v.
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Base Case: If the length of r i5 1, there exists a unit clanse, say of the form
uﬂn:l:l
with which u is resolvable. Becanes a clanse
sal_Ap - call_Ap
is in P, the immediate extension of T includes “sol_Agr” containing “sof Ar" due to the
property of the mode propagation,
Induction Step: If the length of r is greater than 1, there exists a clause, say of the form
“.»‘1.4_1 e A]_. J‘!:| vaay “lmn
with which u is resolvable. Let np be the immediate child node of » labelled with resolvent
(A Az, .o, Am o, . ..
Let the path from 25 to v be divided into
ry ¢ subrefutation of “4,8;" with solution “A, 8,0,
r2 ¢ subrefutation of “A0:0," with solution “ 48,88, "

tm - subrefutation of “A,, 68,82 -- -, " with solution “A,, 80,8, ---8,,."
Because the clause

f:ﬂ”_,‘h = (.‘llfLr-lg .
is in 7, the immediate extension of I' includes “call A, 1," containing “call A,8;.7 From
the indunction hypothesis for part (b}, some extension of I' includes “sol_A;1q” containing
Y50l A 8.0," due to the property of the mode propagation. Similatly, some extension of T
includes

Feall Agiry™ containing “call_Aqfpd "

“sol_Agwa™ containing “sof A28, 8"

“eall, AmVmo" containing “call A, 8o 8y Fpy”

“sol_ Amvy” containing “sol A, 0,0,8,-..8,,."
Then, hecause the clause

sol_Ag = eall_Ag, sol Ay, ... sol A,
is in P, some extension of I" includes “sol Au" containing “sel Aff 8, -8, Le. “sol_ATT
due to the property of the mode propagation.
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