ICOT Technical Report: TR-548

TR-548

Alexander Parser

by
T. Kanamori (Mitsubishi)

April, 1990

©1990, ICOT

Mita Kokueai Bldg. 21F (03] 456-3191--5

IG DT 4-28 Mita 1-Chome Telex ICOT J32%64

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Alexander Parser
Tadasht KANAMORI

Central Research Laboratory
Mitsubishi Electric Corporation
8-1-1, Tsukaguchi-Honmachi
Amagasaki, Hyopo, JAPAN 661

Abstract

This paper presents a hybrid {i.e., bi-directional) parser using the bottom-up interpreter
of logic programs, called Alexander Parser. The algorithm once translates a given context
free pramunar into a logic program, and then interpretes it in the botlom-up manner. Not
only reflects the translation the behavier of top-down parsing but also the bottom-up inter-
preiation avoids the infinite loops due to left-recnrsive rnles. This algorithm is an adaptation
of Seki’s query evaluation method in deductive databases, called “Alexander Templates,” to
parsing algorithms as well as a refinement of Fuchi’s description of Earley’s parsing algorithm
within the framework of logic programming.

heywords: Parsing, Context Free Grammar, Logic Programming.
Contents

1. Introduction
2. Context Free Grammar (CFG)
3. Alexander Parser
3.1 Naive Alexander Parser
3.2 Refined Alexander Parser
1.3 Correctness of Alexander Parser
4. Discussion
&, Concilusions
Acknowledgements
References
Appendix. Prool of the Correctoess of Alexander Parser

1. Introduction

This paper presents a hybrid (i.e., bi-directional) parser using the bottom-up inter-
preter of logic programs, called Alexander Parser. The algorithm once translates a given
context free grammar into a logic program, and then interpretes it in the bottom-up manner.
Not only reflects the translation the behavior of top-down parsing but also the bottom-up
interpretation avoids the infinite loops due to left recursive reles. Moreover, the similarity of
the bottom-up interpreter to the database operations provides a possibility of massive parsing
with a large database of words, This algorithm is an adaptation of Seki’s query evaluation
method in deductive databases, called “Alexander Templates,” to parsing algorithms as well
as a refinement of Fuchi’s description of Earley’s parsing algorithm within the framework of
logic programming.

The rest of this paper is organized as follows: Scction 2 briefly explains the context
free gammars {CFGs) we consider in this paper. Section 3 presents our “Alexander Parser”
starting from its naive version and then shifting to its refined version. (The correctness of the
algorithm is proved in Appendix.) Section 4 discusses the issue of the degree of disagreement
between the control of CFG parsers desired and the control of logic program interpreter used
for implementation, and the degree of sophistication in the translation frum CFGs to logic
progragus by examining other translators known so far.

2. Context Free Grammar (CFG)

We consider the following class of context free grammars. (Familiarity with context
free grammars is assumed so that the detailed definitions are omitted.)

Graminar Rule:

A grammar rule is an expression of the form

Co = €1 €2 -~ Cm (m > 0),
where ¢g,¢1,62,...,6m are non-terminal symbols. Such a grammar rule means that the
sequence of grammatical categories ¢y, ¢3,.. .,y is generated from the grammatical caleg,u:r}'

cn. Finite sets of grammar rules are denoted by P.
In the following, we assume that each grammar rule in P is assigned a unique natural
number, called the rule number,

Example 2.1: The expression below is & grammar rule.
s — np vp.

Dictionary Rule:

A dictionary rule is an expression of the form
C— u,
where ¢ is a non-terminal symbol and w is a terminal symbol. Such a dictionary rule means
that the terminal symbol w is of the grammatical category c. Finite sets of dictionary rules
are denoted by 0.
In the following, we assume that the size of the set of dictionary rules is much larger
than the size of the st of grammar rules.

Example 2.2: The expressions below are dictionary rules.
np — “john”

vp — “walks” .

Input Rule:
An input rule is an expression either of the form
oo wy Wp v Wi (k=10)
or of the form
0 — oy wa s Wy {k}U}T
where ¢ is & non-terminal symbol, © is a variable denoting a non-terminal symbol, and
wy, Wa, . .., wy are terminal symbels. The first expression is a question whether the sequence

of non-terminal symbols is generated from the grammatical category ¢, while the second ex-
pression is a question from what grammatical category the sequence of non-terminal symbols
is generated. Tnput rules are denoted by [T.

In the following, we consider only the input rules of the first form. The generalization
to include the input rules of the second form is immediate.

Example 2.3: The expressions below are input rules.
s —r I.I.jﬂhn?:' il:w.‘lksh .
C — “john” “walks” .

3. Alexander Parser
3.1 Naive Alexander Parser

The naive “Alexander Parser” receives a set of grammar rules, a set of dictionary rules
and an input rule. [t first translates them into a set of definite clauses, a set of unit clauses
and a (singleton) set of atoms, and then interpretes them using the bottom-up intertreter.

In the “translation™ phase, we introduce the following 3 predicates.

e “parsing({C, X,Y)” means that we are now parsing the sequence from X to ¥ to
grammatical category €. (The pair of X and ¥ denotes a difference list.)

s “parsed{C, X,Y)" means that the sequence from X to Y has been parsed to grammat-
ical category .

o “dictionary({w,c)” is used to retrieve the dictionary rule “c — w” from database. (It
i5 always used with ene-way matching.)

The “translation” phase is described as below:

Algorithm “translate0™

Input : a set of grammar rules P and a set of dictionary rules D.
Output : a pair of program and database (P, D).

Procedure :
step 0 : Initialize P to 0.
step 1 : For each rule in P, say of the form
“Eg = €1,62, - Cm " (m > 0),
add the m + 1 clauses below to P:
parsing(e;, Xo, X1) - parsing(co, Xog, Xm)-
parsing(cz, Xy, X3) - parsing(co, Xo, Xm), parsed(c;, Xo, X1)-
parsing(cy, Xg, X3) - parsing(co, Xo, Xm), parsed{e,, Xo, X1}, parsed(ca, X1, Xa).

2

parsing(cm, Xm—1, Xm) = parsing(co, Xo, Xm), parsed(cy, Xo, X1),
parsed(ez, X1, X3), ..., parsed(cm—j, Xm—2, Xm—1).
parsed{co. Xp. X) - parsing{co, Xa, Xm), parsed(cy, Xo, X1), parsed{cz, X1, Xz), . ..
parsed(cm-1, Xm—2, Xm=1), parsed{cm, Xm_1, Xm}.
step 2 : Add the clause below to P
parsed(C [W|X], X) - parsing(C,[W|X], X), dictionary(W, C).
step 3: Lot I be the set of unit clanses “dictionary{w, ¢)” such that dictionary rule “c — w”
isin [J.
step 4 : Return (P, D).

Algorithm “translate-input™

Input : an input rule [,

Qutput : a set of atoms [.

Pracednre : Let T be of the form ®c — wy wy --- uy.” Let I be
{parsing(c, [wy, wy, ... w]. []}
Eeturn {.

Example 3.1.1 The CFG before is translated as helow by this translator:
Program and Database:
parsing(np,X,¥) :- parsing(s,X.Z).
parsing(vp,Y,Z) :- parsing(s,X.Z), parsed{np,X,¥).
parzed(s,X,2) :- parsing(s,X,Z), parsed(np,X,Y), parsed(vp.Y,Z).
parsed (C,[W|X1,X) :- parsing(C,[W|x].X), dictionary(W,C}.
dictionary(jehn,npl.
dictionary({walks,vp).
Set of Atoms:
parsing(s,[john,walks],[1).

Let P be a program, [be a set of atoms, € be a clause in P, and @ be a subsiitution
for the variables appearing in the body atoms of €. Then, atom A0 is said to be generated
from T using C when _

s atom A is the head atom of C| and
s [contains instances of the body atoms of C by 8.
The “interpretation” phase is described as below:

Algorithm “interprete0™

[nput : a program P, a database D, and a set of atoms 1.
Qutput : a set of atoms,

Procedure : o

step 0: Initialize T to Ty, where Ty is T D,

step 1: Update I' to [" U Ty, where I is the set of all the atoms generated from I' using
some clause in P. Repeat this step until I' does not increase.

step 2: Return the set of all atoms of the form “parsed(c, Iy, l2)” in I'.

3

Example 3.1.2 For the translated program, database and set of atoms hefore, the naive
bottom-up interpreter generates the atoms below step by step at step 1.

Repetition 0: parsing(s, [john, walks],[]).

Repetition 1: parsing(np, [jokn,walks], Y.

Repetition 2: persed{np, [john, waiks), [walks]).

Repetition 3: parsing(vp, [walks],[]).

Repetition 4: parsed(vp, [walks],[]).

Repetition 5: parsed(s,[john, walks],[]).

L R

3.2 Refined Alexander Parser

When atoms

parsing(co, Xo, Xm), parsed(cy, Xo, Xy), ... parsed(c;, X;_, X;)
are in the body of more than two caluses in P, the same combination of the sequences must
be checked for more than two clauses repeatedly in the “interpretation” phasze. To save the
same combinations to a table, the refined “translation” phase utilizes a predicate “table” as
below, where a clause with two head atoms

_.-l.:h."‘l.'lc, He ﬂl,A]u,... r.a"‘l.j
is just 2 convention of writing two clanses

A[;. - 4“1, .4-1_.., . ,.u‘!j;

AL - A]) J'lg Ak .

Algorithm “translatel”

Input : a set of grammar rules P and a set of dictionary rules D.
Output : a pair of program and database (P, D).

Procedure :
step 0 : Initialize P to 0.
step 1 : For each rule in P, say with rule number n of the form
Beg €1, Cy e B (m >0),
add the m + 1 clanses helow to P:
parsing(cy, Xo, Xy), teble([n, 1], [Xo, Xy, Xm]) - parsing(cg, Xo, Xm).
parsing(cz, Xy, X2), table([n, 2], [Xo, X2, Xm]) -
table([n, 1], [Xy, Xy, X)), parsed(ey, Xo, X,).
parsing(cy, Xy, Xg), table([n, 3], [Xo, X3, Xn]) -
table([n, 2], [Xq, X2, X)), parsed(cq, X, X3).

parsing{cm, Xow_1, Xm), table([n, m), [Xo, X, X1n]) -
Tﬂ.bff([ﬂ, m - lls [XDr Xm—h Xm”':?"i”ﬁd(ﬂm—is Xm—?: xlu—l)-
parsedico, Xo. Xim) - table([n, m], [Xo, Xmm, Xin]), parsed(cm, Xm—1, X).
step 2 : Add the clause below to P:
parsed(C, [W|X], X) - parsing(C, [W|X], X), dictionary(W, C).
step 3: Let [be the set of unit clauses “dictionary(w, ¢)” such that dictionary rule “c — w”
isin .
step 4 : Return (P, D).

Example 3.2.1 The CFG before is translated as below by this translator:
Program and Database:

parsing(np,X,Y), table([1,1],(X,Y,2Z]) :- parsing(s,X,Z).
parsing(vp,Y,Z), table([1,2],[X,Z,Z]) :-
table([1,1],[X,Y,2]), parsed(np,X.Y).

parsed(s,X,Z) :- table([1,2],[X,Z,2]), parsed(vp,Y,Z).
parsed(C,[WIX],X) :- parsing(C,[W[X],X), dictionary(¥,C).
dictionary{john,npl).
dictionary(walks,vpl).

Set of Atoms:
parsingis, [john,walks] [1).

According to the refinement of the “translation” phase, we need to generalize the
“interpretation” phase to use the clauses with two head atoms. In addition, we adopt the
“semi-naive” bottom-up interpretation,)

Let P be a program, & and Ag.. be sets of atoms, € be a clause (possibly with two
head atoms) in P, and @ be a substitution for the variables appearing in the body atoms of
. Then, atom A is said to be generated from (A, An..) using C when

o alom A is in the head of €7 and i
e A and A, conlains instances of the body atoms of C by #, and at least one of the

instances is in A

The refined “interpretation” phase is described as below:

Alporithm “interpretel™

Input : a program f_', a database I:h and a set of atoms [.
Output : a set of atoms.

Procedure :

step 0: Initialize A and Apaw to fU D,

step 1: Update & to A"UA, where A" is the set of all the atoms generated from (A, Apew)
using some clause in P. Update A, ., to the difference between the new A and the previous
AL Repeat this step until A does not increase.

step 2: Return the set of all atoms of the form “parsed(e, Iy, [2)" in AL

Example 3.2.2 For the translated program, database and sel of atoms before, the refined
bottom-up interpreter generates the atoms below step by step at step 1:

Repetition 0: parsing(s, [john, walks],[]).

Repetition 1: parsing(np, [john, walks], Y), table([1, 1], [[John, walks], ¥, []]).

Repetition 2: parsed(np, [john, walks], [walkas]).

Repetition 3: parsing(vp, [walks], []), table(]1, 2], ([Fokn, walks],[],]]])-

Repetition 4: parsed(vp, [walks],[]).

Repetition 5: parsed(s, [john, walks],[]).

3.3 Correctness of Alexander Parser
The correctness of “Alexander Parser” is stated as below:

Theorem {Correctness of Alexander Parser)

Let P be a set of grammar rules, D be a set of dictionary rules, | be an input rule
of the form “c — w; we --- ws,” (P, D) be the result of “translatel{ F, D),” I be the the
result of “transfate-input(I)." Then, the sequence of terminal symbols “wy, wao, ..., we"

5

is generated from the grammatical category ¢ using P and D if and only if the result of
“interpretel(P, 1), 1)” includes “parsed(c, [wy, wa, ..., we], []).”

Proof See Apendix.
4. Discussion

“Alexander Parser™ is a (breadth-first) hybrid parser using the (breadth-first) bottom-
up interpreter. The translator is nol very naive, because it needs 1o jump over the gap
between the comtrol of the desired parser and the control of the interpreter. In general,
the degree of disagreement between the control of parsers and the control of interpreters
coincides with the degree of complication of the translators. {More generally, the degree of
disagreement between the control of the desired computation and the control of the given
interpreter coincides with the degree of sophistication of program transformation.) Let us re-
examine the parsers in the framework of logic programming known so far from this viewpoint,

(1) Top-down Parser Using the Top-down Interpreter

The parser by Pereira and Warren for Definite Clause Grammar {DCG) is a (depth-
first) top-down parser using the (depth-first) top-down interpreter [5]. Their translator is
relatively simple and direct as below, where we have slightly modified their original DCG
translator for eonvenience of the comparison.

“translate™ for the Top-down Parser Using the Top-down Interpreter

Input : a set of grammar rules P and a set of dictionary rules I,
Crutput : a pair of program and database (P, I).

Procedure :
step 0 : Initialize P to @.
step 1 : For each rule in P, say of the form
o — C1y oy Cm (m > 0},
add the clause below to P
parse(co, XNo, Xm) - parse(e;, Xo, X1), parse(ea, X1, X2), ..., parse(cm, Xme1, Am).
step 2 : Add the clanse below to P:
parse(C, [W|X], X) - dictionary(W, C).
step 3 : Let D be the set of unit clauses “dictionary(w, ¢)” such that dictionary rule “c — w®
i51in).
step 4 : Return [f’,fi}.

“translate-input” for the Top-down Parser Using the Top-down Interpreter

Input : an input rule [.
Output : a query [.

Procedure : Let [be of the form “e — w; wo -+ wg.” Let 1 be
“?- parse(c, [wy, wa, ..., wy],[]).”
Return [.

Example 4.1 The CFG before is translated as below by this translator:
Program and Database:

parse(s,X,Z) :- parsel(np,X .Y}, parselvp,¥,Z).
parse(C, [W1X],X) :- dicticnary(C,[W[X],X}.
dictionary(john,np).
dictionary{walks,vp).

Query:
7= parse(s,[john,walks],[1).

(2) Bottom-up Parser Using the Bottom-up Interpreter

The well-known Cocke-Younger-Kasami’s parser [1] can be formalized in the {framework
ol logic programming as a { breadth-first} bottom-up parser using the (breadth-first) bottom-
wpinterpreter (with some systematization) as below, where I, is the tail list [w; g, wiga, ..,).
... 4y 38 [teg. ... wy] and f s [). (The procedure “translate-imput” returns a set of atoms
for initializing the hottom-up interpretation when the boltom-up interpreter is employed.
Notiee the procedure “transiate-input™ for “Alexander Farser.”})

“translate” for the Bottom-up Parser Using the Boltom-up Interpreter

luput : a set of grammar rules * and a set of dictionary rules D.
Cutput ¢ a pair of program and database (P, I}).

Mrocedure
step 0 - Initialize P to 0.
step 1 : For each male in P, say of the form
T I L i U (m = 0],
o the clagses Lelow to JE:'
parselen, Xo, X) = parse(ey, X, Xy) parscies, X, X, o parseleg, Xo oy, X).
step 2 : Add the clause below to 2%
parse(C W INL N = dnputi [WX], X), dectionary(W, C).
step 3 : Let D be the set of unit clauses dictionary{w, ¢} such that dictionary rule “c — w”
w=n)
step 4 : Return (P, D).

“translate-input™ for the Bottom-up Parser Using the Bottom-up Interpreter

Input © an input rule .
Output @ oa sel of atoms [.

Procedure - Let T be of the form “c — wy wo -+ wg.” Let [be
{ii%pﬂ-t{["ﬂll“],h_],f!!pﬂ!{[w:“g],fgj anput{ [we |h] L)}
Heturn T,

Example 4.2 The CFG before is transluted as below by this translator:
Program and Database:
parse(s,X,2Z) :- parse(np,X,Y), parse(vp,Y,Z).
parse(C, [WlX],X) :- input([W|X].X).dictionary(C, [WIX],X).
dicticnary(john,npl.
dictionary{walks vp).
cel of Atoms:
input{[john,walks], [valks]),

input {[walk=],[1).
{3) Hybrid Parser Using the Hybrid Interpreter

An alternative approach to embody a hybrid parser is to employ a relatively simple and
direct translator, but employ a more sophisticated hybrid interpreter. “Earley deduction™ by
Pereira and Warren [8] is the hybrid interpreter used for the hybrid parser as below, where we
have again modified the original “Earley deduction” for the convenience of the comparison.
[The translator is the same as that of Section 4 (1) for the top-down parser.)

“interprete” for the Hybrid Parser Using the Hybrid Interpreter

Input : a program i, a database), and a query I
Output : a sct of atoms.

I'rocednre : Let I be of the form “7- 4.7 and X, X, ... X, be the variables appearing in
Aln = 0).

step 0 : Initialize X to | “answer{ X X, X,) - A7 |

step 1 : Select a non-unit clanse C' in X, say with leftmost body atom B. When there exists
a non-unit clause €' in P whose head is unifiable with B, say with m.z.u. 4, add 8(C") to
%, if it is not subsumed Ly any clause in £, When there cxists a unit clause in I or a unit
clanse in £ whose head is nnifiable with 1, say with m.gu. 8, add #(C) 1o T with lefumost
body wtom deleted, iT it is not subsumed by any clanse in ¥, Repeat this step until © does
not increase.

step 2 : Hetnrn the set of all the instances of “enswer{X;, X2, ... X,) 1o E.

Fxample 4.3 Vor the translated program, database and query before, the “Earley deduction”
penerates the clauses below step by step at step 1:
Repetetion 0: answer - parse(s, [john, walks],[]}.
Repetetion 1: parse(s,[john, walks],[]) :
purse(np, [john, walks], X,), parse{vp. Xy, []}

Repetetion 2: parsc(np, [john, walks], [walks]) - dictionary(john, np).
Repetetion 3: parse(np, [jokn, walks], [walks]).

Repetetion 4 parse(s, [john, walks).[]) = parse(vp, [waiks],[]).
Repetetion 5 parse{op, |walks), |]) - dictionaryg(walks, vp).
Repetetion 6: parse(vp, [walks],[]).

Repetetion 7: parse(s, [john, walks].[]).

Repetetion 8: answer.

{1) Bottom-up Parser Using the Top-down Interpreter

When the control of the desired belavier of parser and tle control of the logic program
interpreter for implementation differ, more complicated and indirect translation is needed as
our “Alexander Parser.” BUI" by Matsumoto et al [4] is an example of the other combination,
bottom-up (left-corner depth-first) parser nsing the (depth-first) top-dewn interpreter. The
(naive version of the) translator is us below, wherne

o “parsed(C G X, Z) means that the left corner of 2 sequence of terminal symbols has
been parsed to grammatical category ', the rest of the sequence is from X to Z, and
we are now parsing the whole sequence to G, and

B

o “parstnglG, X, V) means that we are now parsing the sequence from A to ¥ 1o
grammatical category G,

“translate” for the Naive Version of BUP

fnput @ a set of grammar rules P and a set of dictionary rules I,
Chutput : a pair of program and database { 7. 1).

Procedure :
step 0 : Iuitialize to the set of the clause below:

purstangl G X, Z) - dictionary(€C N Y Lparsed(C,GUY,).
step 1 : For each rule in P, say of the form

'.'I:'r]—\'."'|._1.':_'n-.,.....l."m_"lI tm}ﬂ},
add the clauses below to P

parsedie, G, X Y -

parsing(ea. Xy, Xa), ... oparsingic,. Np—1. Xo hoparsed{eo. G X Y.

step 2 ¢ Add the clauses below to P:

paraed{(O X X)

dictionaryl O [W|X], A} - dictionary(1, C).
step 3 Lot D Le the set of unit clauses “dectionarylw. o) such that dictionary rule “r — w”
15 in {7, o
step 4 - Return (P, D).

“{ranslate-input™ for the Naive Version of BUP

Luput = an inpat rale £
Ouepot o guery f.

Procedure - Let 7 he of the form “r — wy we --- we” Lot I be
<2 parsing(c. [w ma, . wg] [])0
Return 1.

FExample 4.4 The CFG before is translated as below by this translator:
Frogram and Database:
parsing(G,X,Z) :- dictionary(C,X,Y), parsed(C,G,Y,Z).
parzedinp,G,X,Z) :- parsing(vp,X,Y), parsed(s,G,Y,Z). parsed(G LG XKD
dictionary(C, [WIX],X) :- dictionary(W,C).
dictionary(john,npl.
dictionary(walks,vpl}.
Query:
- parsing(s,[john,walks] [1),

{6) Relotions to Other Works

Our “Alexander Parser” is an adaptation of Seki’s query evaluation method in deductive
dutabases, called “Alexander Templates” [7],[8], to parsing algorithms. In fact, if we
s apply his algorithm to the logic programs generated by the translator of Section 4 (1),
considering “dictionary”™ as an extensional database predicate, and
s identifv the predicates “call_parse,” “sol_parse” and “cont” predicates with the pred-
icates Yparsing,” “parsed” and “fable”

o

then the resull is exactly our “Alexander Parser.”

Onr “Alexander Parser” is also a refinement of Fuchi's description of Earley’s parsing
algorithm [2] within the framework of logic programming [3]. The predicate D and the “guide
predicate” G in his description play the same role as the predicates “parsed” and “parsing”
in our “Alexander Parser.” The predicate corresponding to our “table” is not explicit in his
description, because the class of CFGs he considered is in Chomsky normal form. (A set
ol all the atoms of the form “table{[n, ¢, [lo. &, {n])" with the same second argument in our
“Alexander Parser” corresponds to a *parse table” of the original Earley’s pursing algerithm.)

5. Conclusions

This paper has presented a hybrid parser nsing the bottom-up interpreter of logic
prograins, called “Alexander Parser.” The implementation of the parser on the parallel
machine is an inieresting research theme left for future,

Acknowledgements

Tlus research was done as a parnt of the Fifth Generation Computer Systems project
of Japan. We would like to thank Dr. K. Fuchi (Director of ICOT) fur the opportunity of
doing this research, and Dr. K. Furukawa (Deputy Director of ICOT) and Dr. B. Hasegawa
(Chief of ICOT Ist Luboratory) for their advice and encouragement. We would also thank
Dr. Y. Matsumoto (Kyote University) and Mr. H. Seki (Mitsubishi Electric Corporation) for
their valuahble suggestions.

Heferences

(1] Aho AV, and Ullman,J.D)., The Theory of Parsing, Translation and Compiling, Val-
ume I: Parsing, Prentice Hall, 1972,

[2) Earley, J., An Efficient Context-Free Pursing Algorithm, Comm. of ACM, 13, 2: 94-102
(1670).

(3] Fuchi,K., Predicate Logic Programming — A Proposal of EPILOG - | (in Japanese)
Research lteport of 51G Symbolic Processing, 1. 1, Japan Information Processing So-
ciety, July 1977. Also J. of Japan Information Processing Society, 26, 11: 1298-1305
(1985).

4] Matsumoto,Y., Tanaka,H., Hirakawa ., Miyoshi,Hl., and Yasukawa,H., BUP: A
Bottom-Up Parser Embedded in Prolog, New Generation Computing, 1, 2: 145158
(1983).

[5] Pereira,F.C.N., and Warren,DLIL.D., Definite Clause Grammar for Language Analysis
~- A Survey of the Formalisim and a Comparison with Argumented Transition Net-
works —, Artificial Intelligence, 13: 231-278 {1988).

6] Pereira,F.C.N., and Warren, D). H.1)., Parsing as Deduction, Proc. of 21st Annual Meet-
ing of the Association for Computational Linguistics, Boston, June 1983,

(7] SekiH., On the Power of Alexander Templates, Proc. of 8ih ACM Symposium on
Principles of Database Systems :150-159, Pliladelphia, March 1989,

[8] SekiH., On the Power of Alexander Templates, ICOT Technical Report TR-577, ICOT,
Tokyo, December 19849,

10

Appendix. Proofl of the Correctness of Alexander Parser
(1) Definitions for the Standard Notions of Parsing

As for the standard notions of parsing, we translate CFGs into logic programs in the
same way as the standard DOCG translator in Section 4 (1), and discess the derivations in
the vriginal CFGs using the refutations in the corresponding logic programs. (We do not
explain the detail, since it is almost obviouns.)

In the following, s,t ate used for terms, and X, Y for variables, possibly with primes
and subscripts, to denote lists of symbols. A sequence of atoms of the form

parse{ey, to, 1)), parse(ea, ty,12),. .., parse(ca, tu_1,15)
is called a goal, where n = 0, and each ¢ is a non-terminal symbol (1 £ ¢ € n). Hereafter,
Fand D denote a set of grammar rules and a set of dictionary rules, respectively.

Definition Search Tree

A tree is called a search tree when each node is labelled with a goal. A search tree of
atom A is a search tree whose root node is labelled with a goal consisting of only one atom
A. When a node in 1 search tree is labelled with A4, A5,..., A,,” the atom A, is called the

head atom of the node,

Definition Resolution
A terminal node of search tree T labelled with
parse(e.ty, 1), parse(es, 1,12), ..., parse{e, , 1a1, 1)
1z said to be resolvable in P U D when it satisfies either of the following conditions:
& There is some grammar rule “c — dy dy --- d,," in P. The goal
3;":1J"“'-"L‘f:'-r.'ﬁ:1'| ty, JTl]er'Ts':[d! i Xl.‘ ':"'-E}r resy Pﬂfﬁﬁ{ldm lxm—‘l.'tlL
parse(cg, 1, 12}: ey FEITSG{'E“.| tn-14 =It}|
18 called the resolvent.
* There is some dictionary rule “c — w” in D, and the head of {p is “w.” The goal
(parse(es, b, b)), ..., parse(eq daoy, 1,))8
15 called the resolvent, where # is an m.g.u. of t; and [w|t,].

Definition Initial Search Tree
The initial search tree of “c — wy w3 --- wy" is a tree consisting of a single node
labelled with goal “parse(r, [y, wa, ..., w], [1).®

Definition Extension of Search Tree
An immediate extension of search tree T in Fu D is the result of the following opera-
tions, when a terminal node of T is resolvahble,
o Let &7y, Go,..., Gy (B > 0} be all the resolvents of the node in PU D. Then, add &
child nodes labelled with G, Gq,..., G} to the node,
A search tree T,y is an extension of search tree I"in Pu D if T, is obtained from T through
successive application of immediate extensions.

Definition Parsing Path and Partial Parsing Path

A path in search tree T is called a parsing path of “parse(c,15,1,)" when it is a path
starting with a node labelled with

parse(c, g, 1), G
and followed by the nodes labelled with

Hlﬂh Gl‘}l i

Ha810s, GO, 02,

11

Hp 1 fyfp ey, GOylg- - 0p_y,

G818z b,
where (7, #y, H2,..., Hy_1 are sequences of atoms. Then, atom *parse{c,in, 110102 --- 8.7
is called the solution of the parsing path. A path in a search tree T starting from a node
with head atom “parse(c, lg, t,)" is called a partial parsing path of “parse{c, tq,1;)” when it
does not contain any parsing path of “parse(c, {g,1y)" as its prefix. The length of a (partial)
parsing path is the number of nodes econtained in the path.

(2) Definitions for Alexander Parser

As for the nations of our parsing, some of the following definitions overlap with the
contents of Section 3. We have repeated them for making the correspondence between the
standard notions of parsing and the notions of our parsing clear. Hereafter, P and D denote
the resull of “translate0(P, D)."

Definition Atom Set

A set of atoms is called an atom set when it consists of atoms of the form “parsinglc,t,¢'),

LI

“parsed{e, t,{')," “dictionary(w,c).”

Definition Generatled Atom)

Let P be a program, [be an atom set, C be a clause in P, and # be a substitution
for the variables appearing in the hody atoms of C. Then, atom A0 is said to be generated
from T using € when

s atom A is the head atom of C, and
¢ [contains instances of the body atoms of C by #,

Definition Initial Atom Set
The initial atom set of “{parsing(c,[wy,wg,...,wy],[])}" is the set of atoms
{parsing(c. [wy,wa, ..., me],[[} U D.

Definition Extension of Atom Set
An immediate extension of atom set I' in Pu) is
Mu Ta,
where I" is the set of all the atoms generated from I using some clause in P, and Tg is an
initial atom set. An atom set ', is an extension of atom set I in PU D if Tz is obtained
from [' through successive application of immediate extensions.

(3} Proof of the Correctness

The following Lemmza 1 reduces the correctness of the refined “Alexander Parser” 1o
that of the naive “Alexander Parser,” which is in turn guaranteed by the following Lemma 2
and Lemma 3. Let P be a set of grammar reles, 7 be a set of dictionary rules, I be an input
rule, (ﬁ‘, f)}l be the result of “translatcO(F, D),” and I be the tesult of “translate-input(I).”

Lemma 1 Let T, and A, be the set of all the atoms of the form “parsing(c,1,1'),”
“parsed(c,1,1'),” “dictionary(w,c)” generated by the naive “Alexander Parser” and the re-

fined “Alexander Parser ™ respectively. Then, [, and A, are identical.

Proaf. Obvioue by induction on the number of the steps required to generaie the atoms.

12

Lemma 2
Let T he an extension of an initial search tree, and T’ be an extension of an initial atom
set.

{a) If T contains a partial parsing path of “parse(ec, fo, 1,)" whose last nede has head atom
“parse(d, 55,51),” and I’ contains “parsing(c, to, 11),” then some extension of I' contains
“parsingid, 55, 5,)."

{) If T contains a parsing path of “parse(c, 1o, 1) with solution “parse(c,{p,;)8," and
I" contains “parsing(e,ip,1;),” then some extension of [contains “parsed(c, o, 4;)8."

Proof, The proof is by simultanecus induction on the length of (partial) parsing paths.

Proof of Part (a):
Let r be a partial parsing path starting from node » and ending with node v.
Base Case: If the length of ris 1, then “parsing(d, 50, 51)" is identical to “parsing{c, o, {p),”
hewnee, [rom the assumption, “parsing(d, 80,5,)" is in T
Induction Step: If the length of r is greater than 1, there exists a grammar rule, say of the
form
“to—€1 2 - Em
with which u is resolvable. Let @ be the immediate child node of u labelled with resolvent
parseicy, o, Yy parselea, Y1, Yol oo parsel ey, Yot la)ae ot
Lot the path from wg to v be divided into
vy ¢ parsing path of “parse(e;, 1, ¥,)" with solution “parse(c;, tp, ¥1)81,"
ro o pamsing path of “parse(ce, ¥, ¥2)8," with solution “parse(cs, ¥y, Yo)0 8,7

”

r; o parsing path of “parse(c:, Yy, Y0102 6:2y”
with salution “parvse(cs, Y;_q, ¥i)d 0 - 87

risq o partial parsing path “parse(c; e, Yo, Yoo 0008 - - - 87 with lengih shorter than v
Becanse a clanse

parsging(ey, Xo, X)) = pursingieg, Xg, X))
iz in P, atom “parsing(c,, 15, ¥,)" is in the immediate extension of I'. From the induction
hivpothesis for part (b), atom “persed(cy, iy, ¥1)8;" is in some extension of [Similarly,
aloms

parsing(co, ¥, Y209,

parsedics, ¥i, Yo)8 8,

pﬂr!-“i'ﬂl_']'[.':‘i. Yio1. }':'.15132 SRR Y
parsedic; Yoo, Y188, --- 8,
pavsingleip, Yo, Yip) o - 0
are in some extension of T, Then, from the induction hypothesis for part (a), atom
“parsing(d, sg, 5)" 1s in some extension of T.
Proof of Part (b):
Let r be a parsing path starting from node « and ending with node v.
Base Case: If the length of r is 1, there exists a dictionary rule, say of the form
Yo ”
with which u is resolvable. Becauves a clause
parsed(C,|W|X], X) - parsing(C, [W|X], X), dictionary(W,C)
is in P, and atom “dictzonary(w,c)” is in D, (hence in I',) atom “parsedic,[w[t],?)" is in
the immediate extension of I'.

13

Induction Step: If the length of r is greater than 1, there exists a grammar rule, say of the
form
I"ll.‘.‘n;_'l —] €y -- ﬁm'“
with which u is resolvable. Let ug be the immediate child node of w labelled with resolvent
parse(cy. o, Y1), parse(eg, V1, Y2), ... parse(em Yoog t1),
Let the path from up 1o v be divided into
71 parsing path of “parse(e, o, Y17 with solntion “parse(ey, to, Y118,."
re @ patsing path of “parse(es, Yi, Y2)8" with solution “parse(es, Yy, Yo) 82,7

rm @ parsing path of “parse(cney Yine1s Yo W18 - oo Bl 17
with solution “purse(cp. Yoo, Viu Mifs-- 0,7

Because a clanse

parsingle;, Ng, Xy) = parsing{eg, X, X))
is in P, atom “parsing(ey,1g, Y117 15 in the immediate extension of I'. From the induction
hypothesis for part (b), atom “parsed(r,, iy, ¥{)8," iz in some extension of I Similarly,
aloms

parsing{cs. Yy, Ya)fy,

parsedics. ¥y, Yo)iy s,

parsingl o, Y1, Y 182 O _q,
parsed(oy Yoo 1, Yo)01 02 - -
are in some extension of . Then, because a clanse
parsedicg, Xo, Xy) -
) parsingl(ca, X, Xo hparsed(cy, Xo, X1), parsed{en , X1, Xn)
is in 7, atom “parsed(c, lo, ;1]5'1{}? B S K “pursf:f[c,fu, 11}5“ is tn some extension of T'.

Lemuma 3
Let T be an extension of the initial atom set of J, and T be an extension of the initial
search tree of 1.
{a) W T contains “parsing(ci, t; 1,%),” then some extension of T contains a node with
head atom “parse{e;, oy,)7
(b) i ' contains “parsed(co, 15, 1,,)," then some extension of T contains a parsing path
with solution “perse{eq, to, 1,07

Proof. The proof is by simultaneous induction on the number of steps required to generate
the atoms in I from the initial atom set.

Proof of Part (a):
Base Case: If the number of required steps is 0, “parsing(c;, -1, ;)" is in the initial atom
sct, hence “parsefc,, t;_q,1;)" is the leftmost atom of the root node ol T.
Induetion Step: If the number of required steps is more than 0, there exists an instance of
a clause in P of the form

parsingle; i—1, 6} - purat’ng[cn,tn.tm},parsed[chtn,11],..,,pur:tfd{r:e-hli_mh_ﬂ
translated from a grammar rule

“c.;-, — £y €z - Cm."
where parsing{cq, lo, I), parsed(cy, tg, 11), ... parsed(ci_1, 42, {;—y)are already in [at the
previous step (i > 0). From the induction hypothesis fur part (a), there exists an extension of
T such that it contains a node whose leftmost atom is “parse(¢o, o,)," and the grammar
rule above is resolvable with the node. Similarly, from the induction hypothesis for part (b),

14

there exists a further extension of T such that it contains & path starting with the node
followed by the parsing paths with solutions “parse(e; 1o, 4).7 ..., “parse(cioy, tioa, tiz1).”
Then, the leftmost atom of the last node of the pail s “parse(c, i1, 4)."

Proof of Part (b):
Base Case: If the number of required steps is 0, it must be in the initial atom set, which
obviously does not hold, since any initial atom set contains atoms with predicates either
“parsing” or “dictionary.” Hence, the lemma is vacantly true.
Induction Step: If the number of required steps is greater than 0, there are the following
VWO CRses: i
Case 1: There exisis an instance of a clause in P of the form

parsed(cg, lg. e) - parsinglcg, lo, by), parsed{cy, to, 0), ..., parsed(co, tm 1, bn)
iranslated from a grammar rule

Bog — 0y Coott Dy
where parsinglcy, to, Uy) parsed(cy, tn, 1), ..., pavsed{cy, 1y _1, 1,) are already in I' at the
previous step (m > 0). From the induction hypothesis {for part {a), there exists an exten
sion of T sucl that it contains a node whose leftmost atom is “parse(cq, o, &)" and the
grammar rule abhove is resolvable with the node. Similarly, from the induction hypothesis
for part (b}, there exists a further extension of 7' such that it contains a path starting with
the immediate child node followed by the parsing paths with solutions “parse(cy 1o, 1,17 ...,

“parse{cy, tno1.tm).7 Then, the whole path is a Ear.‘sillg path with solution “parse(cg, o, .).

Case 2 There exists an instance of a clause in P ol the form

parsedico, [ty] tn) - parsingley, [w|in], iy). dictionary{w, c5)
translated from a dictionary rule

htJ.‘I — w,”
where g 18 [w|i,,], and parsing(cg, ly, Ly), dicttonary(w, cg) are already in I' at the previous
step. Hence, from the induction hypothesis for part (a), there exists an extension of T' such
thiat it contains a node whose leftmost atom is “parse(rg, fo. 0w)" Then, the immediate
extension of the extension of T contains a parsing path with solution “parse(ca, to, tm).

15

