ICOT Technical Report: TR-540

TE-540

A System of Logic Programming
for Linguistic Analysis

by
K. Mukai
April, 1990
© 1990, 1COT
Mita Kokusai Bldg. 21F 03) 456-3191 -5
“ :D | 4~28 Mita 1-Chome Telex ICOT]32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A System of Logic Programming
for Linguistic Analysis*

Kuniaki Mukai

Institute for New Generation Computer Technology
Mita Kokusai-Build. 21F
4-18, Mita 1-Chome, Minato-ku. Tokvo 108 Japan

March 1, 1990

Abstraet

This paper describes unique aspects of a logic programming language rcalled
CIL. CIL is an extension of the standard Prolog with motivations for linguistic
analysis. CIL handles the record structure and constrainl predicates on the struc-
ture. The record is understood as an extension of the nsual first order ground
term. Also parametric records are introduced as a partial description of a record.

The usnal unification over the first order terms is extended to that over the
records straightforwardly. The unification algorithm is presented whose complex
ity is almost lincar. Thus some version of the unification grammar formalisms
is as well embedded inte CIL in a natural way as Definite Clause Grammar is
embedded into the standard Prolog,

A combination of the record structure and the constraint adds a simple but
powerful feature to logic programming for computational models of linguistic in-
formation.

The implementation of record is described in detail. Also the built—in library
of CIL for constraint is described.

Several intended uses of CIL are explained with small examples, which includes
linguistic analysis based on unification grammar and situation semantics.

1 Introduction

Record is a basic and useful data structure in many fields such as computer lan-
guages, databases, computational linguistics, and so on. A record is a recursive
structure which consists of pairs of ‘attributes’ and ‘values’. We define record in
the present paper to he just a function. This definition will be made more precise
in Section 3.

*To appear in The SRI Tokyo Series on Advanced Technology- Introduction to Fifth Cencration
Computers. A preliminary version of the present paper was read at Workshop on Semantic Issues on
Human and Computer Languages, organized by S. Peters, D.lsrael, and J. Meseguer, at Half Moon
Bay, California, March 19-21 1987,

Taken as a function, the records form a partially ordered set with respect to
the binary relation that one record is a restriction to the other. If two records
are compatible as functions then the set theoretical union of the two records also
is a record. The new record is called the merge of the two records. This merge

operation is a fundamental operation on records.
We introduce parametric records, whose general form is like this:

{ﬂ]_,"lb]_,...fllm.'rb“}.

We call this parametric description a PST for short'. The PST is understood as
a constraint on records f that

Sflag) = b

for 1 < ¢ < n. Also the eguation
{as/biy s tnfbn} = {1 /drs. s

is a constraint on records g that g(a;) = b, for 1 < i < n and that g(¢;) = d; for
1<j<m.

By writing arg(a, f,b) for f(a) = b, it is easy to see that the theory of record
can be developed equivalently as a theory of arg relation without introducing the
notation of PST.

A PST can be used in almost every contexl where the standard term can be
used in the standard Prolog. The meaning of such uses of PST is understood as
a notational convention as follows. The Horn clause, [ur iustance,

pl{e/b}) : —g({e/d})
is translated into the following one:

plz): —qly)| argla,z,b), arglc, y,d)

where, the right part of *|" sign is a coustraint, and variables z and y denote
records. In general, every Horn clause can be translated into another Horn clause
which has no PST occurrences but additional arg constraint part instead.

Whichever of PST or arg iz used, the essential point is here that there is
partiality in the set of the records while it is not in the set of the first order
ground terms. In fact, there iz no built-in merge operations over the first order
terms?.

Here is a list of other well-known data structures which have a similar structure
and operations to the records in our sense,

o Association list.

» Attribute-value pairs list.

s Frame structure of Minsky,

Property list of LISP.

+ Record type in the programming languages.

'In the history of CIL, the record and the parametric record are called a Partially Tagged Tree
(PTT) and a Partially Specified Term (PST), respectively[12]. We use PST also in the present paper
while not PTT.

n theory, the order relation between first order general terms that one term is more general than

the other is a kind of relation between syntactical objects, ie., it is & mels level notion.

» Record in database.

Also in the recent literature of computational lingnistics, linguistic information
is formalized as record-like structures forming a DAG. For instance, the feature
structure of GPSG[7] and the functional structure in LFG[8] can be thought of as
a kind of the record structure with the merge operation. This observation is one
of the strongest motivations of our work.

In addition 1o these examples, we observe that partial assignments play some
important role for natural language semantics in the light of situation semantics[fi].
Also a merge-like operation is defined on the assignments. Together with relations,
partial assignments are the major component of state of affairs, which is the
basic maodel of information in situation theory. The point is that sinee the partial
assignment[4] is a function which assigns values to argument places, it is just a
record in our sense,

T'hus it is natural to introduce record structure into logic programming for
such a variety of applications. Although the record and the first order term are
essentially different structure in the sense of partiality in the sense mentioned
above, fortunately the standard unification can be straightforwardly extended to
the record. Therefore, we decided to introduce records into logic programming.
This new language is called CIL. PST notations can be used together with the
standard notation for the usual first arder term in a nested way. CIL has a built-
in extension to the nsnal first order unification for the PSTs. The PST together
with built-in constraints is a key aspect of CIL towards 4 new integrated linguistic
analysis framework[18].

The first version of CIL worked 1984 fur natural language processing among
others, An anaphora processing in CIL is described in Mukai and Yasukawa [15].
The enrrent version described in the present paper. is now applied for Japanese
phrase grammar analysis on PSI machines.

A theory of the records is described in Mukai[12, 13, 14]. According to the
theory, the domain of the records is an extension of the first order term in such
a natnral way thal the domain of the first order terms is embedded into the
domain of records and the soundness and completeness properties of the standard
unification theory of the first order terms are preserved also in the record domain.

There are many rclated works to the record. Ajt-Kaci[3], pointing out from
a type theoretical point of view that the first order term should he extended
to a record-like structure, gives a lallice—theoretic foundation to the record-like
structure. Percira [16] gives a related overview on grammars and logics of partial
information. Also sce Smolka(21, 20, Johnson[9], Kasper and Rounds[10]. They
treat not ouly merge operation, ie,, conjunction, but also other logical operations
such as disjunction and negation. The reader is referred to these articles.

In Section 2, we describe an example from simple discourse anal ysis, which
was also nsed to illustrate the previous version of CIL in Mukai and Yasukawa[15].
Owing to PSTs, the example in this paper is much more clearly written than the
previous one. In Section 3, the domain of records is formally defined. In Section
4, the syntax of the language is defined, giving various reserved forms of terms. In
Section 5, the class of programs in the language are defined, and an operational
semantics is given. In Section §, the unification algorithm over the records is
given and other built-in cousiraints are explained. In Section 7, several ideas
are proposed for applying the record and coustraint to linguistic analysis. The
paper is concluded at Scction 8. In Appendix A, the whole program which is used
in Section 2 is listed for convenience. In Appendix B, the constraint library is
explained.

2 Using Partially Specified Terms

In this section, we show an example which illustrates discourse interpretation using
situations and feature set. The example program illustrates ideas to use P5Ts for
linguistic analysis. It includes a simple use of constraint by lazy evaluation. The
program expresses a naive idea ubout the meaning of sentence proposed in some
earlier version of situation semantics that the meaning of a sentence is a relation
hetween disrontse situations and described situations in Barwise and Perry [6].

Imagine the following piece of discourse between two persons, say Jack and
Betty:

(1} Jack: [love you.
(2) Betty: I love you.

The two sentences are the same, but interpretations of (1) and (2) are different as
in the following {3} and {4), respectively:

(3} Jack loves Betty.
(4) Betty loves Jack.

This difference is an example of language efficiency [6]. How is this kind
of language efficiency analveed in CIL? We demonstrate the power of P5Ts by
giving a program which analyze the simplified discourse. The complete listing of
the program is in the appendix.

The name of the top level predicate is discourse_constraint. Roughly speaking,
for the query 7- discourse_constraint([(1),(2)], [X.Y]). , the program

will produce answer interpretations X= (3) and ¥ = {4} for (1) and (2], respectively,
as expected,

In this lustration, discourse constraints are simplified as the following {5} and
(6):

[5) The speaker and hearer turn their roles al every sendence utlerance,
(6) The suceessive discourse locations are numbered sequentially.

First, let us see the following clause:

(T) discourse_situation({sit/S, sp/l, hr/ You, d1/ Here, exp/ Expl}):
member {(soa(speaking, (I, Here),yes),5),
member (soaladdressing, (You, Here),yes) .S},
member (sca{utter, (Exp, Here),yes), S).

This clause declaratively gives a condition in which a parameterized object, say
£, is a “discourse situation.” The list of parameters consists of sit/S, sp/I,
hr/You, dl/Here and exp/Exp, where the left hand side of / sign of each element
in the list is the name of the parameter while the right hand side is the value of
the parameter. The body of the clause is the condition for the object x to be a
discourse situation in terms of the parameters. That is, x is a discourse situation
if 5 has the three state of affairs as indicated in the body of the clanse. The
membership definition is as usual,
Next, let’s see the discourse constraint clauses:

(8) discourse_constraint([J,[J):-!.
discourse_constraint([X],[Y]):-! ,meaning(X.Y).
discourse_constraint([X,Y|Z], [Mx,MylR]):-

meaning (X ,Mx),

turn_role(X, Y,
time_precedent(X, Y),
discourse_constraint([Y|Z], [MyiR]).

The first and second arguments are a list of discourse situations and a list of
described situations, respectively. The clauses constrain discourse situations and
described situations with Rule (5) and (6) above. The constraint (5) is coded in
the clause:

(9) turn_role({hr/X,sp/Y},{hr/Y,sp/X}@discourse_situation).

According to the context of the program, this clause presupposes that the first
argnment is a discourse situation. The term

{hr/X%,sp/Y}0discourse_situation

in the second argument place constrains that the actnal argument contains both
information {hr/X, sp/Y} and some discourse situation which satisfies the con-
straint defined abhove,

The constraint (6) is coded in the clause {10):

(10} time_precedent ({d1/loc(X)},{d1/1loc(Y)}):= constr{X+1=:=Y).

The CIL call constr(X+1=:=¥) constrains X and ¥ so that the latter is greater
than the former by one.

The sentence interpretation is described in DCG form. The following clause is
an interface between the discourse situation level and sentence level.

(11) meaning(X#{exp/E},Y):-sentence(E-[] Aip/Y,defx}).

The sentence model is very simplified as follows. A sentence comsists of a noun.
verb, and another noun in order. There are only four nouns, i.e., jack, betty, ifl,
you. The word love is the only verb here. The feature system is taken after
GPSGI7). The control agreement principle is illustrated using subcategorization
features. By checking the features agreement between the subject and verb, (12)
is legal, but (*13) is illegal.

(12} T love you.
(*13) Jack love you.

The verb love has several semantic parameters: agent , object, iocation, and
g0 om. The first and last nouns are unified with agent and object parameters,
respectively, The location comes from the given discourse situation parameter.
T'he agreement processing and role unification are coded in the following two
clauses (14}, (15) using PSTs, where ip stands for interpretation.

(14) sentence({ip/504,ds/Ds})-->
noun{{ip/Ag,ds/ DS, syncat/{head/F}}),
verb({ip/S0A, ds/DS, ag/Ag, obj/ Obj, syncat/{subcat/F}}},
anoun({ip/0bj, ds/ DS}).

(18) verb({ ip/ soca(love,(X, Y, Loc), yes),
ds/ {dl/Leoc},

ag/ X,
Dhjf'f.

subcat/ {head/{miner/{agr/
({plu/P, per/N}: (P=(+), N= (@per):
P=(-),(N=1; N=2)))@agr}}}0categoryl)
-=> [love]. % love

The pronoun [and proper name Betty are described as follows. The agreement
features of I are the first person and singular. The agreement features of Betty are
the third persen and singular. The interpretation of the pronoun [is the hearer
of the given discourse situation.

(1€} noun{{ip/betty,
syncat/{head/{minor/{agr/{plu/(-) ,per/3}0agr}t}idcategory})

-->[betty]. % Betty
noun{{ip/X,
ds/{sp/X},
syncat/{head/{minor/{agr/{plu/(-),per/i}0agr}}i€category})
==»[i] I

The system of syntax categories in this example is described as follows:
{17} categery({bar/ @bar, head/ @head}).

This clause says thal an object which contains {bar/B, head/H} is a category,
where B and H are a bar category and head category.
The following is an example of the category specification in PST notation:

{15:' ‘[bal‘f?;
head/ {wajoxr/ {n/ +, v/ -1,
minor/ {agr/ {per/1, plu/ -},
case/ acc 3.

Take query (19}, to the above defined constraiut, for example.

(19) 7= discourse_ceonstraint(
[{=it/ [soa(speaking, (jack, _), yes),
soa(addressing, (betty, _),yes)|.],
exp/ [i,love,youl,
d1/ lec{i)}ediscourse_situation,
{exp/ [i,love,you]l}ediscourse_situation],
Interpretation).

Note that no parameter other thau expression parameter is specified in the second
discourse situation in this query. The other parameters are determined by the
discourse constraint. Then, the exact output of this query is (20):

{20) Interpretation =

[sca(love,(jack,betty,loc(1)),yes),
soa(love,(betty,jack,loc(2)),yes)].

3 Record as Function

The record is a key notion of the present paper. So we give here a formal definition
of the record. First we define the domain of finite records. Let L and € be two
sets of labely and constants, respectively. Let L be the set of finite strings over

6

L, ie., Kleene's closure. The string also is called a path. T'he domain and range
of a function v are ritten dom(r) and ran(r), respectively as usual. A function
which has a finite domain is called a finite function.

A (finite) record is a partial finite function from I whose value is a constant or
a record. A little bit more precisely, the record is defined inductively as follows.

e any lnite and partial function from £ into ¢ = a Tecord.

o il K is a finite set of records then any finite and partial function from L to
R is a record.

The null function &, i.e., the empty set, is a record by definition. We write
z C' yif dom{x) C dowmly) and either x{a) ' y(a) or z(a) = yla) & 7 for any
a € dom(z). It is easy to see that the set R of records is a partially ordered
set with respect to C*. The merge x + y is defined to be the minimum record =
such that » ' 2 and W ' z. The merge operation is not totally defined. Under
the merge operation + the domain of records is a commutative and idempotent
{partial} monoid:

L.z+r=r.

L r+d=r.

3 z+twta=c+(y+z)

i zt+yv=y+=z

We write ¢!y for the funetion application z(y). The rule for the application !
are ag follows,

1. zle = =

2. xlae) = (zla)la.

where £ is the empty string. The set of records is a lower semi-lattice with reapect
to the order C*. If = = r + y exists, then z is the supremum of the set {x,y}. The
infimum of {z,y} always exists.

F7 8N AN

Figure 1: The merge of two records.

It is much interesting and even useful to introduce infinite records or equiva-
lently say, non-well-founded records. The domain of infinite records over [and
€' is co-inductively defined to be the largest class # such that for any record f$R
the following condition hold:

o dom({f)C L
e For any = € dom([), it is the case either f(z) € R or f(z) € C.

This definition is justified mathematically in the universe of non-well-founded
aet.a[l].

Actually the domain of CIL is the class of infinite records. However since we
treat such records only in terms of PST, which is always finite, our theory will

look almost as if it treats only finite records. 1t should be pointed out that the
use of infinite records has even advantage over that of finite ones in that there is
always a solution Lo the constraint such as r = {a/z} in the domain of infinite
records unlike in the domain of finite records. It is because of the use of the infinite
records that there is no need of ‘occur check’ in our algorithm of the unification
which is explained later,

4 Syntax

By first order term, we mean the usual first order term such as in Prolog. First
of all, we deline a class of terms and clauses of CIL by extending the first order
term. Let us fix two disjoint sets VARIABLE and CONSTANT. For the sake
of simplicity, CONSTANT includes atomic symbols and integer constants and
functor symbois all together. We follow the convention of Edinburgh Prolog|16]
for variables and constants. See examples below. Also the following delimiter
symbols are used in the language as usual:

Ly, 02/ -
A term is defined inductively as follows:

(1) A variable iz a term.

(2) If fis a constant and =,,...,2, are terms with n > 0 then fizy,...,2,) i&
a term.
(3) If ay,...,a, are first order terms and x,,....r, are terms then the set

{a/zy,.. . 0. /2.) of pairs a, /2, is a term.

A comstant is a term by (2) with n = 0. A term f{zy,...,2,) of (2] i5 called a
totally specified term (TST) while the term {a;/zy, ..., an/2,} is called a partially
specified term (PST). The empty set {} = ¢ is called the empiy PST. Several
functors are reserved as follows:

Jz,y) o conjunction x A .
ilr,y) o disjunction £V oy,
not{x) : negation —x.

:(#,y) : an object z with the constraint y.
@(z,y) : an object r with the constraint y. (lazy version).
#(z,y) : a tagged term. This is a shorthand of : (x,2 = y).

z,y) : alabeled term. This is a shorthand of : (2,2 = {y/z}), which means the
y-component of z.

Mz} : afrozen term. The execution of the subgoal which contains =7 is suspended
while z is unbound,

The hinary functors in the list can be used as an infix operator for readabilily
while only some of the unary operators are written as a postfix one. For example,
the two notations : (z,y) and z : y are equivalent.

Here are several examples of terms of CIL:

Variable X Man X101 Salary _325

Constanls 378 ’'Man’ x1013 abc

I5T [1, 2, 3, 8] 3+5 f£(1, abe, X)
soa(give, {agent/A, object/B, recipient/'Jack’}, 1)

EST {} {agent/father(X), cbject/0, recipient/ X}
£ /Y, £0Y)/X}

Conditioned Term Z0(Z»0) X:(man(X), wifeof(X,Y), pretty(Y))

Tagged Term X#4 Sit#soa(R, {agent/A, soa/3it}, P)

Labeled Term Man'name!firat
Frozen Term X7 (Man'name)?

Conjunction (X0, %X<10)

Disjuncfion (X>0; X<0)

Negation (not XeY)
Guery 7- print(X?), X=ok.

5 Operational Semantics

A simplified operational semantics of CIL. The predicate freeze and cut are
explained operationally. Although the actual operational semauntics of the current
CI1 s sensitive like other Prolog implementations to the order of clanses in the
program and atomic formulae in the body of a clause, the [ollowing semantics
treats the program and goal as sets for the sake of simplicity. However, this
restriction makes a good approximation to the real operational semantics of CIL,

5.1 Program Clause

A program is a fiuite set of program clauses. A (program) clause is a pair (h,b) of
a term h and a set b of terms. The clause (&, {b;,...,b,}) is written

ho: —ﬁ],._.,ﬁ“.

The term A is called the head of the clause while the set b is called the body of the
clause. A unil clause is a program clause whose body is empty. The unit clause
(h, @) is written simply k.

A guery is of the form

T—y
where g is a set of terms. The set g is called the goal of the query. A subgoal is
an element of the goal.

A program is executed on the top-down, depth—first and lefi-to-right basis like
the standard Prolog.

As are introduced in the previous section, CIL has various reserved forms of
terms. The current CIL treals them as macros. They are translated into normal
form when the system reads in the program clauses. The rules of ezpanding macros
are as follows:

rle — r: freeze(z,c).

rHy — x:{x =y

ly — z:{z = {y/=})-

r e x. As a side effect, ¢ is moved so that ¢ hecomes a subgoal of the
clause.

[

e 22

5 % — x, and g — freezelz,gt’), where g is the subgoal in the clause which
contains the occurrence 7. By g, we means the new term obtained by
substituting e for all nccurrences of b in the term g.

Given the program, these rules arc applied according to outer-maost-first principle
until they become not applicable. For example, the clause

plz#{a/yt) : —b{yle)?)
is rewritten into the clause
plr):—z ={afyl, v = {e/v], freeze(v, b{v)).

In the end of this rewriling process, the final form does not contain any of 7, @,
:, #, and !. Thus we assume without loss of generality that a program contains

no part of these macros,

5.2 State and Computation

This subsection describes the operational semantics of freezing, melting, and nega-
tion of goals. First of all the execution of freeze(r,g) is explained as follows. If
x is hound then salve immediately all the constraints in the state which has been
attached so far to r including ¢, otherwise attach g to » suspending them till z is
bound.

Before going to the operational semantics, we would like to explain the idea
behind it. We see the goal as an expression evaluation of which gives The semantics
of a goal is a set of constraints which is read disjunctive. a set of normalized
constraints. This is an analogy to semantics of context free grammar in which a
sentential form (a goal) yields a set of strings which is generated by the form.

There are two useful primitives, one is a choice function which select one
ronstraint from the set of constraints the other is a conditional statement. We
can define an operational negation in the language, which is more clear than
usual implementation of negation by using ‘eut’ and *fail’. {; . } selects only one
normal constraint among other possible ones to which € N g van be reduced by
the computation rule, where is (7 is the current constraint. cond(g,g', g") means
“if choose{g) is successful then execute g’ else execute g”. A negation nof{g), for
cxample, is defined cond{g, false, true).

Unfortunately, CIL has not these primitives. However with this idea in mind
the following explanation might be understoad more easily. Houghly speaking cuf
is conceptually understood as choose.

We assume a fixed computation rule[11] to select the next subgoal in the body
of each program clause. Alsa we assume a fixed way to select the alternative
clause of the program at the choice point. Actually, we assume that the body
of the clause is a list (not a set) of subgoals and that the program is a lhst of
program clauses. The simplest computation rule is to select the subgoal from-lefi-
to-right and to select the alternative clanses from-top-to-doun. Based on these
two assumplions we can define the vperational negation by using eut primitive

10

as described below. Unfortunately it is known that this practical computation
rule is neither sound nor complete in the logical sense. However this problem
15 not pertinent to our language but still general and active research problem in
foundation of logic programming. Hence implementation of logical negation is out
side of the present paper. The fixed computation rule is implicit in describing the
semauntics below for the sake of simplicity and readability.

A eomputation state (stale for short) is a triple (g, K, F') of a goal ¢, a set E of
equations of solved form, which will be explained later in the next section, and a
set I of pairs (v, ¢') of a vaniable v and a goal ¢'. Also E is called an environment
for variable bindings. I' is a set of frozen goals. A variable z is bound in the state
if &' has an equation of the form x = ¢ or t = z for some non variable term 7. Also
the variable is frozen in the state if there is a pair (z,g) in F for some goal g.

For the given goal g, the initial state is the state (g,¢,¢). A pair (s,8") of
states is called a basic step of computation, written s — &' if any of the foliowing
conditions hold. In the following rules, U means the disjoint union if it is nat
specified explicitly. Also for the sake of simplicity, the rules is given in a nou-
deterministic way, though actually it is deterministic like the standard Prolog.

resolution: s = ({g1,02,....9.}, E.F) and & = ({bs,. b, 00.....0.}, E', F)
where there is a fresh copv a : —by,... b, of some program clause and E' is
the solved form of E U {g = a}.

unification: s = ({r = ¢} U g, E.F) and &' = (g. £, F) where E' is the solved
form of E U {r =r'}

freeze: s = ({freeze(u,g")} U g, E,F) and ¢' = (g, K, {{u.g')} U F).
melt: s = (g, £, {{n,g")} UF)and &' = (¢’ U g, E, }'), where u is bound in E.

cut: s = ({eut} U g, £, F) and s' = (g, E,F). As a side effect of this step. all
the alternative branches in the computation are pruned off. A more precise
explanation is given below.

disjunction: s = ({(g;¢')} U ¢", £, F) and either &' = (g U ¢ E.F)or s =
(¢'Ug", E.F).

negation: s = ({not g} U g',E,F) and either s = (g U {cut, farl}, E, F) or
s'=1(¢".E,F).

for & = ({fail} U g, E, F), 5 is undefined.

Note that there is no state s such that ({fail} Ug, E,F) = 5. An intuitive
logical reading of the basic step (g, E', F') — (g', E', F') is that g’ A I o F' irnplies
g A £ A F, though this holds only in limited sense because of our computation
rule,

A computation tree is a tree whose nodes are labeled with states in such a way
that if a node N in the tree is a successor of another node N’ then ' — s must
hold, where s and &' are the states on N and N', respectively.

Given the goal, a computation is the construction of a computation tree from
the initial computation tree on the top-down, depth-first and left-to-right basis.
The algorithm of the construction of the tree stops with success when it hits upon
any state which has the empty goal and empty list of frozen goals, otherwise it
stops with failure when there is no alternative state left in the tree which can he
expanded further.

It is clear that each subgoal occurrence in the computation has the unique
ancestor node which introduced it first. The node is called the generating ancestor
of the subgoal. Given a computation tree T', a node N in T and an ancestor node

11

N': The generator node of N.

NS
S

AR

Alternative nodes.

® : The current node.

Figure 2: Cutting the alternatives.

N' of N in T, We define cut(T, N', N} to he the computation tree obtained by
‘pruning off’ all the descendant nodes of N’ which is neither an ancestor nor
descendant of N. Suppose that the goal of the state at N has the cut subgoal
and that N' be the generating ancestor on V. In this sitnation we state more
precisely that the execution of the cut predicate changes the computation tree T
into cuf{1, NN

6 Built—in Constraints

In this section, we explain the following basic built=in constraints : unification,
boolean, arithmetic and (first order) term constraint. These built-ins work as
constraint in Lhe sense that the direction of data fow, that is, input and output
depends on the context. In addition to them, a meta constraint freeze(z,g) is
explained in new light of constraint. The term constraint is written u = v abusing
the equality symbol for unification, where u and v are first order terms. Unlike
the unification it never instantiales any variables of the equation. For example,
the execution ¥ = a constrains z so that only a is the possible value of z.

6.1 Unification and Complexity

In this subsection we extend the standard unification to the records, The input of
the algorithm is a set of equations and the output is either the set of solved forms
of the input if it exists or undefined otherwise.

The unification algorithm goes as follows: (Given a set of equations, repeat the
following applicable steps to the set as far as possible until there is no applicable
one. When it terminates, check whether there is a conflicting equations or not. It
is easy to see that any sequence of these steps will always terminale.

(1) if z = £ i5 in the set then remove it,
(2) if £ = y is in the set then replace all the occurrences of y with z.
(3) if w = 7 is in the set for a non variable u then replace it with z = u.

{4) if z = u and r = v are in the set for non—variable TSTs u and v then remove
one of the equations whose size is notl less than the other and add u = ».

(5) if flugy...,uq) = flvg,...,v,) is in the system then replace it with the n
equations u; = v; for 1 <4 < n.

12

(6) if = p and r = ¢ are in the system for non-variable PSTs p and g then
replace them with the single equation r = pUg.

(7) if £ = wis in the system for a PST u and both a/v and a/w € u for different
v and w then replace the equation with the following three equations: z =
(u = {ajv,afw})U{a/y}, y = vand y = w where ¥ is a new variable.

A set S of terms is called a conflict if ane of the following conditions hold.
+ 5 has both a non variable PST and a non-variable TST.

5 has two non-variahle TS'T's or constants which have different prime func-
tors to each other,

The equation u = v is called a conflict if the set {u,v} is a conflict. For
example, equations, 1 = 2, flz) = {a/y}, fla) = f(a,b) are all conflicts. Hy
unify(£}, we denote the conflict-free set, only if it exists, of solved forms obtained
by applving the unification algorithm to E.

Now we show that our unification problem has a UNION-FIND algorithm|2]
in the following way, which is known to be an almost linear complexity algorithm.
First of all, we can assume without loss of generality that any argument of terms
is either a constant or variable and that no equation has non-variable terms at
the both sides. If there is an equation, say = = {a/{b/c}.d/e}, which does not
satisfy the assumplion, we replace the subterm {b/c} with a new variable y, and
add the equation y = {b/c} to the system. It is clear that by repeating this
replacements we obtain in a finite number of steps a system of equations which
satisfies the assumption. Also it is clear that the number of generated variables is
proportional to the ‘size” of the given problem.

Secondly, we transform the unification problem into the UNION-FIND prob-
lem by replacing each of the equations with union-find ‘commands’ according to
the following rules.

® X =M= Ir=i.
{ay/uy, ... ;00 fug} = ARG =u, ..., ARG] = uy.
¢ 2= flug,...,un) = FUN, = [, ARGT = uy,... ARG = u,.

L

where z and y are variables, u, u; are a variable or constant, ARG? and FUN/
are new variahles.

Let 1 be the set of variables and constants which appears in the final list of
commands. It is easy to see that both the size of {1 and the size of the union-find
commands are proportional to the size of the input problem. Since it is well known
that UNION-FIND problem has an almost linear algorithm, it follows that our
unification problem has an almost linear complexity algorithm. Note that this
result does not depend on whether occur—check is performed or not.

6.2 Freeze

The call of the goal freeze(z, g) suspends the execution of g while r is unbound.
With freeze(z,g) taken as a constraint, the normalization rule of freeze is given
in the following two simple rules: if there are two constraints freeze(z,g), and
freeze(z,h) in the current state for some unbound variable = and different goals
h and g, then replace them with the constraint freeze(z,g U k). For a bound
variable r, replace the constraint freeze(z,g) in the current state with solve(g).

13

6.3 Boolean Constraint

Here are three predicates and{z,y,z), or(z,y,z), and not(x,y) for Boolean al-
gebra. Their declarative meanings are that 2 = 2 Ay, 2 = 2 vy and y = -z,
respectively. These constraint will bind values to the variables when it turns ont
that the only one possible solution remains in the state, For instance, suppose
that the subgoal and(x,y, =) was called at some time with all the three variables
unbound and that now z is bound to the Boolean value true. Then due to the
constraint = = x Ay, r and y also are bound to frue becanse it is the only possible
solution by the truth table. These constraint predicates are implemented based
on the freeze primitive. In general constraint solving in the current CIL system
15 driven by the event of variable hindings.

The rule e — 3 reads that if the constraint o is in the system then replace it
with 3.

s consir(-{c),m) — constr(c, m'). not{m, m").
e constria A b,m) — cosntr(a,r), constr(b,s).and(r,s. m).

e consir(aV b,m) — cosntr{a,r),constr(h,s),or(r, s, m).

By these rules, the second argument of constr is used as u control parame-
ler for specifying one of three modes of solving constraints. Let ¢ and z be a
constraint and an unbound variable. The modes of three calls constr(c,fruc),
constre, false), and constr(c,z) may be called active, passive and intermediate
mode respectively. In the passive mode, the constraint solver itself never instanti-
ates variables of the constraint . The constraints are checked without unification
when some variables are bound by other processes. In the active mode, the con-
straint solver executes equalily constraints as unification. In the intermediate
mode, the variable is bound to the value immediately when it turns out to be the
unique possible value,

6.4 Arithmetic Constraint

As Boolean constraints the arithmetic constraint add(z,y, z) is introduced, which
means x + y = z. For example, this constraint will bind # to z — y when both of
¥ and z are known.

6.5 Term Constraint

The term constraint is written constr(u = v,m), where u and v are first order
terms and m is a variable, true, or false.

Let m and r be an unbound variable. The constraint is solved hy repeating
the following rewriting rules.

L. comstr(u = v, true) — solve(u = v).
2. constr(a = a,m) — solve(m = true).

3. constr(f(ty,....t0) = flur,... ua),m) — and(my, mg, mz), - - -, and{Mmp-y, My, m),
consir(ly = uz,my), ..., constr(t, = w,,my), where m; is a new variable,
forl<i<n forl<i<n.

4. eonstr(f(...) = gl(...),m) — solve(m = false) ;where f and g are different.

5. econstr(r = u,m) — constr(v = u,m), where z is bound to the term v.

14

6.6 One Way Unification and Sequential Control

We explain how to allow user-defined constraintz. The idea is to use the one way
unification for parameters passing . The predicate assign is a built-in predicate
for the one way unification. What is the one way unification? Ronghly this is
a pattern matching. Let us review the difference between the usual unification
and assign. The standard unification works both ways. For instance, the resnlt
of flz.1) = fl{2,y)is r = 2 and y = 1. On the other hand, assign works only a
specified way: the result of assign{ fiz, 1), f{2, %)) is y = 1 but with & unbound.

Now we define the rewriting rule for assign. Lel r and v be a variable and
non-variable term, respectively. Also let u he any term.

1. assign(r,u) — assign{v,u), il = is bound to v
2. assign{u,) — wssign(u,v), il £ is bound to v
3. assign{u,z) — selve{w = z), if is unbound.
4

. assignia,a) — solve(true), where a is a constant.

S asstgn(f(t... o tn), fluy, oo un)] — assign(ty, uy), .. assigui(l,. u,).
6. asatgnla,b) — solve(fail), if @ and b are different constants.
T.oasstgn(f{...) al...)) — solve(false) | where [and g are dillerent funclor

symhaols,

Note that if z is unbound and u is non-variable, then there is no applicable rule
in the list for assignx.uw). In this case we say that (he constraint is suspended.
As a fact, freeze(z,assigniz,u))) is called in the actual implementation of CIL,
In general, when a constraint g has been rewritten into g' in the current state by
applying the constraint normalization rule in such a way that there is no constraint
in g' to be solved, then we say that g is solved in the state.

segand means ‘sequential execution’. segand(g,g') constrains that g’ is exe-
cuted only after g is solved in the sense defined just above.

Here is an example for using the one way unification and sequential ‘and’. The
standard membership predicate is written in Prolog as usual:

member|z, [z]-]).
member(z, [|y])i-member(z, y).

Let mem be a constraint version of member. In the current CIL, the definition of
miem can be given as the following unit clanse:

de feon{ mem(z, y), seqand|assign({y, [k|t]), (z = h;mem(z,1)))) (1)
where de feon is a reserved predicate symbol.

By using mem, we explain how the user defined constraint is solved. The call
of the constraint mem(z,y) goes as follows. First of all, parameters h and { are
assigned values from y by the one way unification, i.e., the pattern matching with
the input parameter y, The disjunctive constraint = = i v mem(z,t) is solved.
If the term constraint z = f is not solved yet, the constraint mem(z,t) is called
recursively. If y is unbound, due to the use of segand in the body of the definition
the call mem(z,y) suspends not only assign{y,[h|t]) but also (z = h;mem{z,t))
while y is unbound.

Let us see what happens as the result of the following call in the active mode.
The problem is to solve the goal (2).

consir{mem({z,|a]), true) (2}

15

Ry definition (1) of mem, this is equivalent to the goal (3).
constr({segand({assign{[a]. [A[t]),(z = a;mem(z,[1))), true) (3

Firstly by the rewriting ruie of assign, the constraint assign([a],[h{t]) is re-
duced to h = a and ¢ = [|. Hence, by the segand rule and the conjunction rule,
the constraint (J) is reduced to the three constraints (4), (5), (6) for some new
variables v and v’

constr(z = a,v) (4)
constr{mem(z, (]}, v") {a)
or{v, v, true) ()

The constraint (5) is reduced to v = false. Dy the or-Boolean constraint rule
with this binding, the constraint (6) is reduced to v = true. Hence from (1), now
the problem has been reduced to the goal (7).

constr{r = a,trie) (71

Finally, we obtain = @ from the last active constraint (7). This result is
what we expected becausc the constraint memir, [a]) declares that there is no
other possibility for z than z = a.

Note that the constraint reduction goes without backtrucking as far as mem
is concerned. It is this point which is different from the standard execution of
member,

7 Linguistic Analysis

In this Section, we show several ideas how to apply the record and constraint of
CIL to describe linguistic analysis.

7.1 Features Co-occurrence Restriction.

We explain a typical intended use of the predicate constr. Let us take the following
example from linguistic constraint. It says that if REFL feature of z is {4} then
the (R feature of x must be SBJ, where z is a feature set. This is called a Feature
Co-occurrence Restriction (FCR) in GPSG and written

(REFL 4} = (GR SBJ).

In CIL, the following call of the constr predicate make the feature set have the

constraint.
constr((r!REFL = (+) — 2GR = §BJ)).

The feature set z will automatically get the value SBJ as the GR feature im-
mediately when the value (+) is generated at the REFL field of z. That is,
the execution of constr{(z!REFL = (+) — z!GR = $BJ)), z'REFL = {+)
a = z!GR yields a = SBJ, = = {REFL/(+),GR/SBJ}.

16

7.2 Record for Partial Assignment

A state of affoirsisoa} is a triple written
& Roa,pe

where [i, a, and p are a relation, partial assignment, and polarity, respectively.
A relation R is given a set Arg(R) of argument places. A partial assignment for
i is a partial function from Arg(R) which assigns objects to argument places.
Each argument places has a condition which constrains the objert assigned to it
by the partial assignment. A partial assignment is appropriate if it respects these
constraints[4],

hoas play important roles in studying natural language semantics in the light
of situation semantics[6]. So does the partial assignment. Note that a partial
assignment is just a record in our sense since it is a function. Also merge operation
can be defined on the assignments. In other words, the set of partial assignments
is homomorphic to the set of the records. Pollard[17] proposed a notion of anadic
relation, which is defined to be a relation with no fixed arity. Anadic relation is
an alternative to the state of affairs, that is, & relation whose arguments may not
be fully saturated. [he to our view that record is a function, we can give directly
a representation for both soa and anadic relation.

7.3 Complex Indeterminate

A complex indeterminate is an vrdered pair (x,¢), written r|c, of parameter r and
condition ¢ on r possibly with other free parameters in e.

For the sake of simplicity, we identify the terminologies, indeferminate, con-
ditiore, and compler indeterminate to parameler, constraint, and conditioned pa-
rameter respectively, This may be safe for the purpose of the present paper.

Here is a remark on complex indeterminate in the history of CIL. A complex
indeterminate was represcated al earlier time as a triple h(z,y,2), where his a
distinguished functor for parametric object, r is the object to be parameterized,
y is a PST for the list of the parameters, and z is a condition on the parameters.

hiz, {age/y], (man(z) A age(z,y) Ay < 30)).

We noticed that [rom implementation point of view it is only ronvention to
separate the prime and the other parameters. By introducing the conditioned
term, we achieved more homogeneous representation of parametric objects. Now
the above old example is simplified to

({sclf [z, age/y}, (man(z), age(z,y), ¥ < 31)).

This shift means that by means of using the record we have a uniform represen-
tation of complex indeterminates, parametric objects, and feature sets.

In CIL, a complex indeterminate is written z : ¢ or @e, The behavior of the
complex indeterminate is specified in the following simple rule:

a = (x :¢) = unify(a,z),s0lve(c).

e = (zrfic) = freeze(r,c), unify(a,z).

Of course this rule is yet poor to cover the theoretical richness of complex inde-
termninate. However we must leave it for the further development.

17

7.4 DMultiple Inheritance with Records

As an application of record and unification, we apply it to a simplified model of
multiple inheritance system.

First of all, a class system T is a set of classes. 1 is assumed to be partially
ordered by <. An inheritance (function) of T is a function which assigns PSTs
to each class of T. The ordered set T represents an ‘is-a’, hierarchy and x gives
prototype attributes for each class. Let us fix T and = in the rest of this subsection.
We write H(e,x,v) for the constraint {z = v{u)le <u € T}, Foraclass eof T
and a variable r, an instance r of ¢ written creale{e, 1) is defined to be a unifiable
constraint H{e,x,r) such that ¢ is a maximal inheritance function which satisfies
the following conditions:

o v(u) ' () for any ¢ < u.
* 2 =7(u}and z = p(v) are unifiable for any » and v such that ¢ < v < w.

where C' is the order relation defined in Section 3. Note that an instance has
ambiguity corresponding to the choice of a maximal constraint which is not unigue
in general.
Now, Iet us take a simplified inheritance system, for example, {{bird, penguin, swallow}, x)

as fullows:

penguin < bivd.

stwallow < bird.

T(lird) = {can.fly/yes).

T{penguin) = {can_fly/nel.

wlewallow) = &,
This inheritance system can be written in the following CIL clanses.

is_a(penguin, bird).

is_a{ swallow, bird).

bird({can_fly/yes}).

penguin({can.fly/no}).

swallow(.).

By definition, there is some inheritance function v such that

create(penguin,r) = H{penguin,z,v)
= {z = v(penguin), z = v(bird))

and that v(bird) = ¢ and v(penguin) = {ean_fly/no}. Thereby we obtain a
penguin instance r = {can_fly/no} as ‘common sense reasoning’ may expect.
similarly with ereate(swallow, y) vields y = {can_fly/yes).

7.5 Attitudes in PSTs

We show a simplified idea toward implementation of the attitudes theory in Bar-
wise and Perry[6]. According to them, an atlitude (mental state) is a pair of a
frame and a setiing. A frame is a parametric object, and a selling is an assignment
or anchor. Barwise and Perry solves semantic paradoxes with this representation.
Incunsistent beliefs are analyzed in terms of two mental states, say (t,a;) and
(t,a3) which contain the same frame { but different setting a,, az respectively.

18

It is surprising that the proposed data structure is close to that of the closure in
LISP wr the malecule in 'rolog of structure sharing implementation. The record
in CIL gives a natural representation for the mentlal state as illustrated below,
Suppose the following two belief contexts:

(1) Jack: I believe Taro beats Hanako.
(2} Betty: [believe Hanako beats Taro.

We represent the mental states of (1) and (2) in (3} and (4), where beater and
beaten are indeterminates.

(3) belicve(jack,{ frame /beat(beater, beaten), beater/taro, beaten/ hanako})
(4) believe(betty, { frame [beat(beater, beaten), beater [hanako, beaten [faro})

We would like to say that basic unification and utilitics on records gives a useful
model to search for information in the mental state representation given that
menlal states are represented i records, We show this by giving queries to the
above twa beliefs,

(5) Who believes taro is the beater?.

{G) 7 - believe(z, {beater ftaro}) yields x = jack.

(7) Whe does jack believe is beaten¥

(8) 7 — believe(jack, {beaten/z}) vields z = hanako.

(0 What does jack belicve taro does?

(10)?—m = { frame/z,aftare], believe(jack, m) yields a = beater, z = beat{beater, beaten),
m = { frame/beat(beater, beaten), beater [taro, beaten [hanako}. This answer con

tains information that taro is the beater.

7.6 DAG and Record

DAG in unification grammar and record in CIL are very close to each other, as is
pointed cut in the literature based on intuitive argument. Shieber[19] for instance.
We support this closeness by giving a simple explicit translation from DAG into
a constraint over records,

Let d be a DAG (N, A,C,a,8,7) where N is a sel of nodes, 4 is a set of
arrows, (' is a sel of constants, both 4 and v are functions from A to ¥, and o is

a function from N to C.
The translation f(d) is defined to be the set

{r=ulrec Nac A#a)=2,7a)=yu={ajy}, or a(z) = u}

of equations,

£
’ z = {a/y}
¥ & = z = {e/d}
b y = {b/d}

Figure 3: A DAG as a Constraint

As is seen in the translation, the vocabulary of the constraint language over
records are the following: is the set of constant symbols, N is the set of variable
symbols, and A is the sel of labels on edges.

19

It is casy to sce that the two DAGs d and d' can be merged if and only if
Sidju fld') U {zy = 2;} are unifiable over the set of finite records, where 4 and
z); are the roof node of d and d', respectively. Therefore DAG unification ean be
seen as a constraint solver over the records.

The notion of structure sharing in DAG-based theory is reduced to that of
sharing the logical variables in our constraint language. One of the conseguence
of this translation is that the notion of structure sharing belongs only to the
constraint language. That is, it is not a property of the abjects. This also scems
to raise a question whether structure sharing is an essential linguistic relation or
not. The anthor has not the answer vet.

Since a record may be infinite, it can represent more complex structure than
(finite}) DAG. In particular, the records domain may be suitable for represent-
ing and processing circular situation proposed by Barwise[5] in conjunction with
ordinary linguistic information.

8 Concluding Remarks

A dynamic record structure and its unification was introduced into logic program-
ming based on constraint. Several promising ideas of application of the record has
been demonstrated for linguistic analysis,

Although record structure is an extension of the standard term by just for-
getting the fixed arity, the whole merils of this extension seems more profound
than usually thought. In the introdnction of the present paper, we has pointed
out several source of the power of the record for a variety of application.

Several basic built-in predicates for constraints such as arithmetic, term, and
Boolean were described in a uniform way such that even the meta constraint
[reeze was explained in a very simple rewriting rule.

At the current stage, our theory of record lacks several important aspects. For
instance, our logical disjunction and negation depends on incomplete computation
rules for practical purpose,

We have shown several new ideas how to use records to represent paramet-
ric objects motivated {rom situation semantics and dependent type theory. For
instance, we have implemented a toy version of built-in predicates both to de-
fine and to instantiate the type. Of course, the current level of treatment is far
from satisfiable one. The idea of parametric objects is attractive to represent and
handle more sophisticated linguistic information or situated information in more
general sense of situation semantics. We would like to develop our system to he
able to handle some significant portion of the theory of situated information.

Acknowledgments

Jon Barwise, Joseph Goguen, and Carl Pollard gave me useful comments to
the earlier version of the present paper. Koichi Furukawa has been encouraging
me by showing his interests and insights in the record structure. Koichi Hasida
and Hideki Yasukawa has enhanced the readability of the present paper by giving
many comments. Toshio Yokoi and Shunichi Uchida supported this research as
the former and current research managers of Second Laboratory of our institute.
I would like to thanks them for their various contributions to this work.

References

[1] P. Aczel. Non-well founded set theoy. CSLI lecture note series, 1988,

2] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison Wesley, 1974.

[3] H. Ait-Kaci. 4 Lattice Theoretic Approach to Compuation Based on a Cal-
culus of Partially Ordered Type Structures. Ph) thesis, Computer and Infor-
mation Science, University of Pennsylvania, 1984,

[4] J. Barwise. The situation in logic- III: Situations, sets and the axiom of
foundation. Technical Report CSLI-85-26, Center for the Study of Language
and and Information, 1985,

[5] J. Barwise and J. Ftchemendy. The Liar: An Essay on Truth and Circular
FPrapositions. Oxford Univ. Press, 1957,
[6]

| . Barwise and J, Perry. Silwalions and Attitudes, MIT Press, 1981,

[7] G.K. Pullum G. Gazdar, E. Klein and L.A. Sag. Generalized Phrase Structure
Grammar. Cambridge: Blackwell, and Cambridge, Mass.: Harvard Univer-
sity Press, 1G85,

{8] J.Bresnan and R.Kaplan. Lexical-functional grammar: a formal svstem for
grammatical representation. In J. Bresnan, editor, The Mental Reprsentation
of (Frammatical Relation. Cambridee, Mass : MIT Press, 1982,

(9] M. Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI Lec-
ture Notes 16. Center for the Study of Language and Information, Stanferd
University, 19457,

[10] R.T. Kasper and W.C. Rounds, A logical semantics for feature structures.
In P'roceedings of the 2{th Annual Meeting of the ACL, Columbia University.
ACL, 1986, New York, N.Y.

[11] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1084,

(12] K. Mukai. Anadic tuples in prolog. Technical Report TR 238, ICOT, 1987,

[13] K. Mukai. Partially specified term in logic programming for linguistic analyis.
In Froeeedings of International Conference on the Fifth Generation Computer
Systems. Institute for New Generation Computer Technology, 1988, also
appears as [COT-TM 568, 1988,

[14] K. Mukai. Merge structure with semi-group operation and its unification
theory (in japancse). Journal of Japan Society for Software Science and
Technology, 7(2), 1990. also appears as ICOT-TR 480, 1989,

[15) K. Mukai and H. Yasukawa. Complex indeterminates in prolog and its ap-
plication to discourse models. New Generation Computing, 3(4), 1985.

Ilﬁ] F.C.N. Pereira and S.M. Shieber, Prolog and _Nulumf-,[,anguugﬂ _.alnufysis_
CSLI, 1987.

[17] Carl J. Pollard. Toward anadic situation semantics. Manuscript, 1985.

[18] S. Ryoichi, H. Miyoshi, and K. Mukai. Constraint analysis on Japanese
modification. In the proceedings of natural language understanding and logic
programming. North- Holland, 1987,

{19] 5.M. Shieber, F.C.N. Pereira, L. Karttunen, and M. Kay. A compilation of
papers on unification-based grammar formalisms parts [and II. Technical
Report CSLI-86-48, CSLI, April 1986.

21

[20] G. Smolka. Feature constraint logics for unification grammars. Technical
Report IWBS report 93, IBM Dentschland GmbH, 1989,

[21] G. Smolka. Feature logic with subsorts. Technical Report LILOG Report 33,
IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, W. Germany,
May 1989,

22

A Tiny Discourse Analysis in CIL

/= Abbreviations
g1t: situation
gp: beaker
ip: interpretaticn
hr: hearsr
dl: discourse location
exp: expression
sca: state of affairs
ag: agent
ob: ocbject
syncat: syntactical category
head: head feature
subcat: subcategorization #/

% Digcourse Situation
discourse_situation({sit/5, ap/I, hr/ You, dl/ Here, exp/ Exp}):-
member (soa(speaking, (I, Here},yes),3),
member (scaladdressing, (You, Here),yes),3),
member (scalutter, (Exp, Here),yes), 5).

% Membership
member{X, [X|¥]).
member(X, [Y|Z]):-membar{X,Z).

% Discourse Constraint
discourse_constraint([],[]}:-!.
discourse_constraint ([X],[¥]1):-!,meaning(X,Y).
discourse_constraint([X,Y[Z], [Mx,My|RI):-
meaning (X,Mx),
turn_rolefX, YJ,
time_precedent(X, Y),
discourse_constraint([Y|2Z], MyIR]).

turn_role({hr/X,ep/Y$}$,{hr/Y,sp/X}0discourse_situation).
time_precedent{{dl/loc(X}},{d1/loc(Y)}):- constr(X+1=:=Y).
meaning (X#{exp/E},Y) : -sentence (E-[1,{ip/Y,ds/X}).

% DCG (Dafinite Clause Grammar)
gentence({ip/S04,ds/DS})-->

noun({{ip/Ag,ds/ D3, syncat/{head/F}),

verb({ip/s0A, ds/Ds, ag/Ag, obj/ Obj,
syncat/{subcat/F}),

noun{{ip/0bj, ds/ DS}).

% Lexical Items

noun({ip/jack,
syncat/{head/{minor/{agr/{plu/(-) ,per/3}0agr}}}ecategory})

23

-->[jack] . % Jack

noun({ip/betty,
ayncatf{haadf{minnrf{agrf{pluf(-},perfs}Magr}}}ﬂcatugor?}J
-=>[betty]. % Betty
noun{{ip/X,
ds/{sp/X},
syncatf{hﬂadf{ninnrf{agr!{pIUFE-},parfl}iagr}}}ﬂcatagory}}
-->[i] 11
noun({ip/X,
ds/{hr/X},
syncat/{head/{minor/{agr/{plu/@plu, per/2}Qagr}}}@category})
==»[youl 4 you

verb({ip/ sca(love,(X, ¥, Loc), yes),
ds/ {dl/Loc},
ag/ X,
obj /Y,
subcat/ {head/{minor/{agr/({plu/P, per/N}:
(P=(+), N= (@per);
P=(-), (N=1; N=2)))@agr}}}ecategory})
-=> [love]. % leve

% Syntax Categories

category({bar/ @bar, head/ @head}).
head({major/ @major, minor/ @minor}).
major{{n/ @n, v/ @v}).

minor ({agr/ Qagr, case/ @casal).
agr({per/ €per, plu/ Qpiu}).

casalaccusative},
case(nominativa).
bar{l).

bar(2).

bar(3).

n{{+}).

n((=)).

vi{+)).

wi(=)).

plu((+)).
plul(-)).

per(l).

per(2).

per(3).

24

B Built-in Predicates

Dinilt-in functions in CLL are listed below with example uses. Only relevant pred-
icates to either PSTs or constraint are listed because other ones just follow those
of the standard P'rolog. By ofz) we means the term ¢ such that & = 7 is in the
environment. For convenience, if ¢ is unbound then afx) = ¢, Suppose that u be
a variahle and the equation = p is in the environment for some PST p. In this
situation, by u{r) we means p{zx) lor convenience,

B.1 Extended Unification

unify(f,u) This call unifies ¢ with w. This is written also ¢ = u for short notation.
The execution of the three equations = = {a/1}, v = {b/2}, r = y vields z =
y = {a/1,b/2}. Also {a/b,c/{d/z}}c'd = h yields = h. The execution of
x = {ajok}, v = {a/@print}, r = y displays ok, where print is a built-in output
predicate. The execution of {a/z. b/c} = {a/1,b/y} yvields 2 = 1, y = ¢. The
execution of r#{a/l bfzla} = y yields z = y,# = {a/1,b/1}. The exeeution of
z ={a/b,c/y}, y = {a/b,c/z}, z = y yields, = y = {a/b,e/z}. The execution
of z = {a/b.e/y}. y = {afb,c/z} yields = = {a/b,e/u}, v = {a/be/z}.

assign{u,m,z) ‘I'his call makes matching u with » by the one way unification. If
the matching is successful, then return z = true else return z = false if matching
fails, otherwise leaves = unbound. The last case means that the process has heen
suspended to wall u is gelting more instantiated. The variables in u are treated
as read-only variables. The execution of assign(f(z), fly),z) yields z = frue,
r = y. The execution of assign(f{z), fla), z) yields no bindings, ie., z and ¥
remain unbound. The execution of assign(f(a), f{z), 2) yields 2 = a, = = true.

B.2 Utilities

samefu,v) This call checks whether u and # are equal at the current state or
not. The execution of same({a/{b/_ ¢/ }}, {a/{c/1,b6/b}}) fails. The execution
of {a/A#{b/ ./ }} = {a/B#{c/1,b/b}}, same(A, B) succeeds.

dif(u,v) This call constrains that u and v are different from each other.

fullCopy({u,v) This call makes a fresh copy of u and unifies v with it. Even the
frozen conditions accumulated on the variables in u are copied. The execution
of # = {a/@print, bz}, fullCopy(z, z), z!bla = ok will display ok on the output
sEreen.,

typefiu,typeiv,w)) This call is equivalent to the execution of fallCopy((v, w),(u, z)),
solve(z).

create Typefu, v, lype(w,z}) This call is equivalent the execution of fullCopy((w, z), {u,v)).
The execution of ereateType(y,(y = 1y = 2),t), typeO f(1,1), typeO f(2,1) suc-
ceeds.

instance(u,v) This call is equivalent to the execution of fullCopy(v, w), unify(w, u).

25

B.3 Record Utilities

Here are utilities for handling records.

getRolefu, k, vJ This call is equivalent to the following execution:

('Fllzkl;"';k=kr}fu:‘tkf{v}

where dom{a(u)) = {ky,..., &} in the state.

Lesg formally said, this call finds the key & in « Lo return the value » of the key.
This is equivalent to the unification « = {k/v} in declarative sense. No argument
place of u is created. This predicate may have backtrack points. The key k does
not need to be ground. This predicate is similar to the predicate locate below. In
the case that k is known to be ground, the predicate locate is more efficient than
this. The execution z = {a/1,5/2}, getRole(x, k,v) vields k = a, v = 1 as the
first solution and then &= b, v = 2 as the second one.

locate(w,k,v) 1f k is bound to a ground first order term and & & dom(u) then
solve u = {k/v} otherwise fails.

This is similar to the predicate gei Role above. However k must be ground.
The execution will fail if u has not the argument place named k. The execution of
locate{{a/b},a,z) vields # = b, The execution of lncate({a/y}, b, x) fails, where
a # b. The execution of locate({a/y}, a,z) yield the unification = = y.

setOfKeys(u, 8) This call makes the List of keys in the record u and return it to
5. The execution of selQ fKeys{({a/z,b/y, c/z},5) yields z = [a,b,¢].

role(k, u, v} Thisis a constraint version of get Role, which declares that getRole(u, k, v)
is executed when & is bound to a ground first order term. The execution of
x = {a/1,b/2), role(k,2,3), k = ¢ yields k = e, 2 = {a/1,b/2, ¢/3).

delete(k,u,v) This call generates the conjunctive constraint of v = v’ and * o'
i the restriction to the dem(u) — {k}" which is to be solved when the value of
k is grounded. Intuitively this call deletes the k-field from u. The execution of
delete(a, {a/1,b/2}, 2) yields = = {b/2}.

partial{u) This call succeeds if u is a record otherwise fails.

record(w,v) Provided that v = {a; /b;,...,an /by } in the state, this call generates
and solves the following constraints.

v o= [I:ﬂ[,bl}lﬂl]
= [(ag,bz)|va)
Uh—1 = [(ﬂmhﬂ}lﬂul

In other words, this call makes the list consisting of pairs (p,w) such that
w = {p/w} and return it to v. This predicate is similar to buf fer. v is generated
as a stream from the record u. This predicate is used as a stream generator, The
execution of record({a/1,b/2},r) vields r = [(a,1),(b,2)]. This call is dangerous
if there is possibility that the record u grows in the further state.

26

buffer(u, v) Provided that u = {aj/by,... 0, /B, } in the state, this call gener-
ates the following constraints.

v = wp, vy = (wyiv1], ey vre1 = (Wl]
If0<j<n-—1and j<rthen w; = (a;p1,h401).
If n < r then w, = end_of list.

These constraints are salved in such an incremental way thal every time when
any variable v; gets instantiated the corresponding unification in the above is
performed.

T.ess formally said, the call buf fer(u.v) converts the record u to the buffered
list v. This is similar to the predicate record. Each pair (k, 8)in u,ie, u = {k/r},
is put on v as the last element of v while there is room in the list ». The
end_of list marker is pnt when the pairs in u is exhausted. If the current tail
of v is unbound then the producing of the rest is suspended. 'The execution
of buf fer({af1,b/3},2), x = [] sncceeds. The execution of buf fer{{a/1,b/3},z}),
x = [y]2]. z = [ulv] yields = = [(a,1),(b,3)|v]. The execution of buf fer({a/1,b/3}. [z, y. 2. u])
vields z = (a,1). ¥ = (b,3), z = end_of list.

glue(w,v) This call executes the unification w = {k/2} and v = {k/z} for each
common key k of u and v. The execution of » = {a/1,b/2}, vy = {b/2,¢/3}.
glue(r, y) vields =z = {a/1. b2}, y = {b/2,ef3}, 2 = 2

mergefu, v} This call is just the wnification v = afu). In other words, this
call adds to v each element of u. The execution of z = {a/l}, y = {b/2,¢/3},
merge(z,y) vields 2 = {a/1}. and y = {a/1,b/2,¢/3}.

d_mergefu, v) This call is the unification v = ' such that u’ is ‘a maximal™
restriction of u as a function such that the unification v = v’ is successful.

In other words, this call adds to v each element of u which is unifiable with the
counter part in # if any. The execution of = = {a/1,6/2}, y = {a/3}, d merge(z, y)
vields z = {a/1,b/2}, v = {a/3,b/2}.

subpat(u,v,d) This call checks domi(u) C dom(v) and unifies d with the list of
the triples (&, u(k), v(k)), where k € dom{u).

I other words, this call ereates onto d the list of triples (k, r, &) such that (k/r)
isin w and (k/s) isin v. If u is not a subrecord of v in the scnse that cach key of uis
also the one of v, this call fails, The execution of subpat({a/1,b/z}, {a/y,b/2,¢/3}, 2]
yields z = [fﬂslﬁy}f{bs-zszﬂ*

ertend(u,v,d) This call unifies d with the list of triples (k,u(k),v(k)), where
k € dom{u)Ndom(v). Alse this call unifies v with the restriction of u to dom{u) -
domiv).

In other words, this call adds each element of u to v and return in d the
difference list between u and v. The execution of z = {a/1,8/2}, y = {b/z,c/3}
vields y = {a/1,b/2,¢/3}, d = [(b,2, 2)].

31 am not sure that we can safely put “the maximum” for it.

27

meet{u,v,d} This call creates the triples (k,u(k), v(k)} onto the D-list d for k ¢
dom{u) Ndem(v). The execution of meet{{afl,b/2},{b/3,e/4},z = []) vields z =
[(8,2,3)].

frontier{u,v,d) This call creates the triples {(k, u(k), v(k)) onto the D-list d for
k & dom{u) N dom{v). This predicate fails il u(k) and v(k) are a conflicting
pair for some k. It is similar with the rase of TST concerned. The execution of
Sfrontier{ fla,g(b)), flz,y),z — []) yields z = [a = z,g(b) = y]. The execution of
Srontier{a,b, z — []} fails.

match{u,v,d] 'This call creates the triples (k,u(k}, v(k)} vnto the D-list d for
k & dom{u) N dom(v) such that u(k) # v(k). This predicate always succeeds, The
execution of match{ f(a,z, e}, f(b,z,2),n —[]) yields u = [a = b,¢c = z].

{_subpat{u,#) This call checks whether w is a heredilary subrecord of v, e, u is
a pattern of v, provided that both u and v are ground record. More formally, it is
checked that dom{u) C dem(v) and for any = in dem(u) il is the case that either
u{z) and v(x) are the same first order term or t,ubpat{u(z), v(zx)). This call will
fail if it is not the case. This predicate is a transitive version of subpat.

The execution of t_subpat{{a/{b/1}},{b/1,a/{c/2,b/3}}) succeeds. The exe-
cution of t_subpat({a/{b/3},¢/4}, {b/1,a/{c/2,b/3}}) fails.

t_merge(u,v) This call merges u into v in the transitive way. This predicate is
a transitive version of merge. In other words, this call generates the constraints
t.merge(u(a), via)) for each a € dom(u) N dom{v), and execute » = u' where u' is
the restriction of u to dom(u) — dom(v).

The execntion of t_merge({b/1,a/{c/2,b/3}},{a/{b/y}}) yields y = 3.

masked_merge{u,m,v) This call creates u minus m and then merge them into .
The execution of v = {a/2}, masked_merge({a/1,bf1,c/1}.{a/_ b/ },v) yields
v={a/2,e/1}.

B.4 Meta Predicate

bound(u) This call just succeeds if u is already instantiated.

unbound(u) This call just suceeeds if u is not bound.

B.5 Control Predicates
freeze(z, g) Suspend the goal ¢ while z is unhound.

freeze(z,y,q) Suspend the goal g while both z and y are unbound.

if(t, g) 1t =true then solve g else fails.
if(t,y,z) 1 t then solve y else solve z.

ifBound(z, g) If z is bound then solve(g).

28

fUnbound(z, g) If z is nnbound then solve g.

wif(z,y) Suspend the goal y until z is bound., When z is bound, y is called if
T = truc otherwise fails.

wif(z,y,z) Suspend the possible execution y and = until z is bound. When = is
bound, y is called if £ = frue otherwize = is called.

pv{f.g) I [is unbound then this call makes f = true and solve g else this call
just succeeds.

solve(g) Solve g.

whenfa, g) Suspend the goal ¢ while a is not ground.

29

