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ABSTRACT

A predicative sccond order constructive logic for programming, QPC? is
presented in this paper. It is obtained by introducing predicate and type
variables and universal quantification over them to a modified sugared sub-
sl of QJ. The form of second order formulas in QPC? is restricted and the
restriction is inspired by parametnc polymorphism as in ML, The logic, al-
though it has only a weak second order feature, allows various kinds of higher
order programming, and cxtraction of programs in a variant of untyped A-
caleulus from second order proofs is rather casy.
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1. lniroduction

As is well known, programs can be developed in constructive logics. The basic idea is to
regard a formula in the form of ¥z € #.dy € 7.A(x,y) as a specification of a function, f,
from the input of type o to the output of type 7. A proof of the formula can be regarded as
abstract presentation of the function, and can be translated to the function by realizability
interpretation. The translation is called program extraction from constructive proofs. On
the other hand, one of the chief feature of programming is higher order programuning:
application of a function to another function. Therefore, a constructive logic should also
be higher order to capture higher order programming.

One way to realize a higher order constructive logic is to introduce function variables and
guantification over them, in other words, a first order constructive logic with function
variables such as QJ [1] [2] and QPC [3]. For example, a specification of map-function can
be described as a formula in the form of ¥f € ¢ — 7.%r € L(o).3y € L{r).A(f, z,y) where
o — 7 is the type of functions from ¢ to r and L(s) and L(7) are the types of lists over
o and 7. The specification and its proof can be applied to other functions, say successor
function if both o and 7 are natural number type. The application can be descnbed as
a proof in the elimination rule of first order universal quantifier. However, if a function,
g, is given as a specification, Yr.Jy.B(z,y) type formula, and its proof, application of the
map-function to g cannot be deseribed as a proof procedure.



Another way is to introduce predicate {proposition) variables and quantification over them,
e, second (or w) order logies. This approach has been well developed as higher order
typed lambda caleuli or constructive type theories such as the Caleulus of Constructions
[4], second order lambda caleulus (5], and F, [6]. For non type theoretic approach, an
impredicative second order logic called AF; [7] has been given. However, the chicf interest
in AF; is to define various dala structures as in [8].

This paper presents a predicative second order constructive logie for programming, QPC?.
Predicate variables, type variables, and universal quantification over them are allowed
in addition to quantification over function variables. Unlike type theoretic formulation
of constructive logics based on Curry-Howard correspouding [9], types and formulas are
clearly separated: types arc only to categorize expressions such as terms, propositions
and propositional functions (predicates). For program extraction from second order proofs
extracted programs are usually deseribed in second order typed lambda caleuli as seen in
the program extractor for the Caleulus of Construction [10]. However, if the form of (second
order ) universally quantified formulas are restricted, program extraction from second order
proofs can be rather simple and can generate programs in a variant of untyped lambda
culeulus in many cases. The restriction of second order formulas was inspired by parametric
polymorphism of ML [11] in which type variables are interpreted as universally quantified
and, if types are regarded as propositions, the type system represents a predicative second
order logic. Also, higher order programming can well be deseribed in spite of the restriction
of the fortomlas.

The structure of the paper is as [ollows. Section 2 and 3 defines the language and rules of
QPC?. Section 4 presents the method of program extraction. A variaut of g-realizability
for sccond order logic is given. The way how higher order programming can be performed
in QPC? is explained in section 5. Scction 6 gives an example of program extraction. A
map-function and its optimization are demonstrated. Section 7 gives final remarks and
coneclusion.

2. The Language of QPPC?

2.1 Terms of QP[’_‘!“E

The terms of QPC? denote programs in a variant of untyped A-calculus. Sequences of
terms, if-then-else, let-sentences and fixed point operator are available in addition to lambda
abstraction and application,

Definition 1: terms

1) 0,1,--- (natural numbers} are terms;

2) left, right, any, nil, t, f (constants) are terms;

3} x,y, 2z, - (individual variables) are terns;

4) If My,---, M, are terms , then (M,,---, M, ) (sequence of terms) is a term;

() denotes nil sequence. A sequence of variables is often denoted 7. any[n] denotes the
sequence {any,---,any) of length n;

5) If M is a term and X is a variable or a sequence of variables, then AX.M () terms) is

& term;
6) If M and N are terms, then ap(M, N) (application) is a term;



7) If M and N are terms, and if 4 is a (in)equality of terms, then

if beval{ A) then M else N (if-then-else} is a term;

&) If M is a term and Z is a variable or a sequence of variables, then pZ. M {p-term) is a
ferm:

9) If X is a variable or a sequence of variables, and if T and M are terms, then let X =
T in M (let sentence) is a term;

10} suce, pred, tseq, ttseq, proj, beval, i, and app (built-in functions) are teris.

if beval{ A} then M else N will often be abbreviated to if A then M else N in the

. . . . — def
following. p-terms denote (multi-valued) recursive call functions. Let 5 = (81, ,85) be

Iy sequence of terms, then
proj{k}3) =sx (1 =k=n)
tseqk}3) = (85,841, 2 8a) (1 Sk <n)
ttseqlk I)(F) = (8o Ska1, o Ski—1) (1 2k Sn, 1Sl <n— E+1)

beval decides whether input (in)equation holds and returns boolean values, t or f.
and app are the cons and the append function of lists. suce and pred are successor and
predecessor functions. It is also possible to extend the term structure by introducing
arithmetic operataors.

In the following, X, Y, Z, - -- denote variables or sequences of variables.

2.2 Types of QPC?

The types in QPC? are separated in three categories: types, typea and types. type, types
specify the demains of variables quantified by ¥ and 3, and typey types specify the domains
of W2, types types are to categorize the codes extracted from proofs.

Definition 2: type; types

1) nat, bool, and 2 {primitive types) are fype; types;

2} a, 3, - (type variables) are type; types;

3) If o and 7 are type, types, then ¢ x 7 (Cartesian product) and ¢ — 7 (function space)
arc type; types,

4) I o is a type; type, then L(o) (type of lists over ) is a type; type.

Definition 3: type; types
1) type; and prop (proposition type) are typez types;
2) If o : types, then o — prop (predicate type) is a types type.

As can be seem from the definition of predicate type, ¥? quantifies variables over formulas
without ¥, in other words, QPC? is a predicative second order logic. ¥* also quantifies
type variables over type;.

Definition 4: typey types
1) If & is & type; type, then o is a types type;
2) If o is a type; type and 7 is a types type, then (o — prop) — T is a type; type.



2.3 Formulas of QPC?

The formulas of QPC? have three caregories: class, ¢ classy, and classs. class, catego-
rizes formulas which may contain predicate variables and type variables free, and class,
formulas are closure of class; formulas, in other words, universally quantification of predi-
cate variables and type variables in the given class; foruulas, classy forumulas are typing
relations.

In the following, P, ), - - - denote predicate variables. Each predicate variable is assigned a
natural number called arity which means the number of parameters, A predicate variable
with arity 0 is called proposition variable.

Definition 5: class) formula

1) If M and N are terms, then M = N, M < N, M < N, and L are class; formulas
{atomic formulas);

2) If P is a n-ary predicate variable and M; --- M, arc terms, then P(M;.---, M, ) is a
cluss, formula:

3) If A and B are class, formulas and o is a type; type, then 4 A B, Av B, A o B,
Vo € 0. A{r), and dr € 7. A(2) are class, formulas.

Negation of a formula, A, is defined as -4 def 4 oL

Definition 6: class; formula

1) If Ais a class; formula, then A is a class, formula;

2) If A is a class; formula, then V2 X, € Th.---V2X,, € Tn.A is a class, formula where T}
18 a types type, and if T; = fype; then X is a type variable, otherwise, X, is a predicate
{proposition ) variable,

Definition T: Abstract

If Ais a class) formula which contains variables #,,- - -, x,, which are not predicate vari-
ables or type variables, free, then an expression, Mz, -, z,).4 is called a predicate or an
abstract.

Definition 8: classy formula

1) If M is a term and o is a type, type, then M : 7 is a classs formula;

2) & : type; s a classy formula;

3) If Az.A is an abstract and & — prop is a type; type, then AT. 4 : 0 — prop is a classy
formula.

2.4 Scheme

A scheme is ronghly a mixture of terms and predicate variables. Unlike terms, schemes
cannot be used in proofs, they are used only to describe the codes extracted from second
order proofs.

Definition 9: Scheme
1) If M is a term, then M is a scheme;
2) If P is a predicate variable and M; (1 < ¢ € n) is a term, then any[L(P(M,,---, My,))]
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(any code scheme) and RV(P(My,---, My,)) (Rv-scheme) arc schemces:
3) If P is a predicate variable and T is a scheme, then AP.T (program scheme) is a scheme;
4) If T' is & scheme and if ( is a predicate variable or an abstract, then ap(T, Q) is a scheme.

A Rv-scheme, RV(P{My,--- M)}, is au expression which contains a predicate variable P
free. The meaning of Rv-scheme is that it denotes the realizing variable sequences, which
will be explained iu section 4, of a formula which is obtained by substituting a predicate
to the free predicate variable. A Rv-scheme can, therefore, be regarded as a variable
for the realizing variable sequences. The expression, L{P(M,,---,M,)), in an any code
scheme, any|L(P{M, -, M,))]. denotes the length of P(Mj, -+, M, ) which will alsc be
defined in section 4. The term, any[n], can naturally be extended to the case in which
n=m+ L{P(M, -, M,)) and n = L{P{My,-- -, M,)) + m (m is a natural number. ):

anylm + L{P(My,--- M, ))] = (any|m]. any[L{P(My.- -, My))])

any[L{P(My,-- -, My)) + m] = (any[L(P{M,, -, M, 1, anylm])

Both of them are regarded as scquences of length m 4 1.

In the following, substitution of a scheme, T, to a variable (or sequence of variables), X
which accurs free in an expression E is denoted F 5 [T]. If X is a sequence of variables then
T must also be a scquence of scheme of the same length. E; o M- M,] denotes
sunultaneous substitution. If 4 is a formula, 4, [M] is also denoted A(M ).

3. The Rules of QPC?

3.1 Rules on Scheme Calenlus

3.1.1 Term Equivalence Rules

apl{My,--« My),N) = (ap(M;,N),---,ap{ M, N))
AX (M, My) = (AX. My, -+ AX.N,)

if Athen (M, -, M,) else (Ny,-++,N,)
=(if Athen My else Ny,---,if A then M, else N,,)

let X =T in (My,--- M,) =(let X =T in M,,--- let X =T in M,)
r""(zlf"‘rzn}~[M11“‘1Mn:] E{fls"'rfﬂ]
Whﬁre jr.i = #zf.(nfg':lzlr__|1=,._1|;‘_+h“.lxnlf]5' o &fi—‘-rfl:-f'l-r' ) '}fﬂ]

3.1.2 Reduction Rules

M —— N means that the term M is reduced to N.

M] _I‘NJ_ Mz_"Nj
{MthJ _“(NMNE}

— 5 —



ap(Ar. M. N) — M, [N]

N=(Np, - Na)
up{.:'i.{:r;., s 1.'1'“-]."'1-43,1'15'-} —F ﬂr_f“_._,ﬁﬂlﬂrh- s .,!‘I\-Tn]

beval(A) =1t
tf beval{A) then M else N — M

beval(A) = f
if beval(A) then M else N — N

letz =T in M — M_.|T|

T=(Ty, . Ty)
let (21, zp)=Tain M — M, . [T1,---,Ty]

M=(M, - M) plz o za) My Ma)=(fi0 fa)
plzy, oz b M — M. o Uy fal

ap(AP.T,S) —s Tp[S]

3.2 Type Rules

3.2.1 type; types

o itypey  riitype; (1 <1< n)
g= xSl —=nlxwio—= 1)

aitypey T:type, M:a o=r71

M:r
15 a typey fype
o typeg
(n=0,1,--) g :typer
ri @ nat any : @
t: bool f 1 bool left: 2 right : 2
o : type, ogitypey M:o N:L(o) a:typey M : L{e) N:L{g)
nil : L{o) M:N: L) app{M,N) : L(7)
o:typey, T:typey, M:e N:T
(M\N):oxT
(X : o]
oitypey  T:typey M:T
AXM:o—r1

aitype; Titypey M:o—r1 N:o
ap{M,N):r

- B —



7 itype; Titypey, S:o T:o M:v Nt
if bevallS =T then M else N @1

mrtypey Sinal Tinat M:o N:o

R=<,2,<or>
T benal(S B T) thin M else N1g (L=S2<0r>)

[X :a]
ogidype, T:eo M:o
let X=TinM:¢c

|Z:0 = 7]
7 —=T:typey T:ieo—r1
[T A

aitypey M:o N:Lio) o typey M :Lie) N:Lio)
M2 N Lig) wppl M, N} : L{ig)

Finat{l<k<n) N:gy % - %a,

tseg{ k) (N) cop %o % 0,

kinat (1<k<n} ltnat(l<i<(n=k+1)) Nioyx---xop
ttseq(h, NIN) top 2 - % Tpar-

keonat{(l<k<n) N:igyx.-- xa,
proj(k)(N) : o

o iypey cr : TypRey
RV(P(M,, My :a  any|L(P(M;,---, M,))]: a

3.2.2 types types

A is a class;, formula

A prop
agitypey M:0 N:o M:nat N :nat
=<, >

beval(M = N) : bool beval(M B N): bool \H=S2 <0 >)

X ]

p:prop o :type o : type; Al p.oa—=prop T:a

AX.p:o - prop px|T] : prop
3.2.3 types types
[P : o — prop]
T:r APT : (o0 — prop) =1 5:0 — prop

APT : (e — prop) — 1 ap(APT,5): 7



3.3 Logical Rules

3.3.1 First Order Rules

In the following A, B, C, A{0), A(n), Alx), A(pred(zr)) A{tliz}) are class, formula, i.e.,
of type prop.

o Rules on A, vV and O

A B AnB AnB

TR EE0E, EEEE)
P 5 4] [B]
AvB ¢ ¢
VD o5V e—2)
(4]
T 4> H ﬁi
ey A I) 7 (2 E)
» Induction
lxr =0v (x> 0nA Alpred(z)))] lx — milvix # naln Altl{z)))]
Alz) (nat-ind) Alz) (L(er)-ind)
Vu € nat. A{x) ' Vr € Lig}Alx)
These rules are usually used in the following form:
[Alpred{x))] [A(ti{2))]
A(0) Alx) Alnal) Alx)
Vr € nat. A(x) Ve € L{e).Alx)
» Hules on quantifiers
[z : o]
a:type; Alx) o:typer M:o Vi€ od(z)
Yr € 0. A(x) (V) A(M) (VE)
[+ : 0, A(z)]
o typey M:a A(M) dr € 0. A(x) C
Jr € o A(x) (20 ' (3E)
e Rule on absurdity
1
Z(LE)

¢ Rules on equalities

In the following, M, N and S are terms, and A i1s a class; formula.

gitypey, Mo M=N M=N N=§
M=M N=M M=S5

— B —



M=N M—N M=N AM .
M=N M=N A [N] Y

3.3.2 Second Order Eules

[ex : typer]
) " Ctype,  WE t A
—d4 (1), 7:typer o Etper-A gy
V2 € type;. A A, lo]
[P: o — prop| )
7 : typey A (¢-1), M p:o—prop VPeo — WGP'A{W-E},,

ViP o — prop. A Conv(Ap[AX.p|)

Conv{Ap[AX .p)), also denoted just 4p[AX p|, is obtained by performing §-reduction

(AX.p) M) E ap(AX.p, M) — px|M]

i Ap[AX pl

3.4 Some Properties
The following properties are easily proved.

Proposition 1: Assume that A is a classy formula in the form of ¥* X ¢ T.F. Then, if
A is proved in QPC?, the last rule used in the proof is either (Y1), {'ﬂ‘zf]p_. (V*EY or
[I.';'.I!.i:l}lp

This is because the form of elass, formulas is restricted, and any first order rules are only
for classy formulas.

Proposition 2: Assume a class; formula in the form of ¥ X, € Ty.---¥*X,, € T,.4
where A is a class, formula. If the formula is provable in QPC?, then there exists a proof
in QPC? in which last n rules applied are either (¥*I), or (¥*I),, and these rules are not
used in other part.

This can be proved by using proof normalization on the second order universal quantifier
[13).

Corollary: Assume that A is a class, formula. Then, if A is proved in QPC?, there is a
proof of A which does not use (v*I),, (V*I)p, (V*E)q, or (V' E),

Proposition 3: Assume that M and N are terms such that M = N. If M : o (o : type, ),
then NV : o,

Proposition 4: Assume that M and N arc terms such that M — N. If M : o (o : type, ),
then N : &,



Because u-terms have types, typability does not mean termination property of the term.
Moreaver, it is possible to use non-terminating term, M, in (VE) and (37):

otypey M:o A(M)
dr € 0. A{x)

gityper M:o Yreod(x)
A(M)

(VE) (31)

4. Program Extraction

4.1 gpe-realizability

Definition 10: Realizability relation

Assume that A is a class; formula and that T = (z,,--,z,) is a sequence of variables
which does not occur free in A. Then, 7 qpe A, which reads “F realizes A7, is called a
qpc-realizability relation, or qpe-realizability for short. z is called a sequence of realizing
variables, or realizing variable sequence, of A.

Definition 11: QPC*+
QPC?** is a trivial extension of QPC? by adding all the realizability relation as formulas.

Definition 12: gpc-realizahbility
def

1) If 4 is atomic, then (} gpe A= 4;
2} If P is a predicate variable,
then @ qpe P(My, -, M,) = @ = RV(P(M,,---,M,)) A P(My, -+, M,,)
3jagpe 45 B Y Wbe oAb gpe A ap(a,b) qpe B)
where o is such that @ : ¢ = 7 for some 7
4) (g bgpeJr e A a0 n A.[@ A b qpe A, [d]
5) @ gpe Ve € 0.A = ¥z € o.(ap(d, z) qpe A)
6) (2@ b) qpe A v B (z=left nArTqpe A)V (2 = right A B A b qpe B)
7)(@.b) qpec AN B G gpe AnDgpe B
8) @ qpe VP eoAX v pe o.(ap(@, P) gpe A)
where o is a types type other than type;
9) @ qpe Vo € type,. A = o € type, (@ qpe A)

Note that the interpretation of ¥* formulas varies according to which types second order
variables are quantified on: the clause 8} is similar to the typing rules of second order typed
lambda terms, and the clause 9) is the same as Kreisel-Troelstra realizability {12} which
is also used in AF; [7]. The intention of clauses 8) and 9) is that predicates which have
computational meaning should be substituted to predicate variables while type information
should be removed in the program extraction.

Proposition 5: For a realizability relation 7 qpe A and a scheme e, ¢ qpe A 2C
(Z gpe A)z{e] can be provable in QPC**

__‘]u_



From the definition of gpe-realizability, a sequence of realizing variables can be determined

by the strueture of the given formula as follows:

Definition 13: Fv(A) (sequence of realizing variables)

1) Re(A) = () if A= atomic;

2) Re{P{My - My )y = BV(P{My,---, My)) if P15 a predicate variables;
3) Ru(An B)=(Rv(A), He(B));

4) Rv(iA D B) = Rv(B);

5) Rv{Vr € 0. A) = Rv( A);

6} Ro(Av B) = (z, Rv(A4), Re(B)) (2 is a new variable);

T) Rui3r € a.A) = (=, Ru(A)) (= is a new variable);

8) Rv(v®a € type;.A) = Ru(A);

9} RuiV*P € o — prop.A) = v A).

Definition 14: Length of formula
Assume that 4 is any class; formula in QPC?*. Then, the length of A, [{A4), is the length
of [uv{A) as a sequence of variables.

Note that {{4) is the number of 3, v and P(M,, -, M,,) type formulas that ceeur in the
strictly positive part of A, and these logical connectives and formulas can be pointed by a
position yunber ¢ (1< ¢ < [ A)).

Typing of realizing variables can be performed in type; types from the structure of the

given formula ws follows;

RviAy:a Rv(B):7 Re(A): 0 Ru(B):r1 Ruv(A): 7
Ro(AANB):o =T Re(lAD>B):a o7 RviVr CoA)y:a o+ 7
RAo(d):e Ru(B):r Ro(A):r

RoiAvB):2xexr1 Re(dreod):oxr

Rev(A): o Re(A):r
Ro(Via € typey A) : o Ro(¥!Peaog — propA): (o = prop) = 7

4.2 Properties of gpe realizability

Proposition 6: Let A be a elass, formula which contains no predicate variables. If A is
realizable, 1.e, there is a scheme, M, such that M qpc A, then A is provable in QPC-.

Proof: By induction on the construction of A and the definition of qpec-realizability. g

Theorem 1: Soundness of qpc-realizability

Assume that A is a class, formula in QPC*. If A is proved in QPC?, then (1) there is
a scheme, €, such that e qpc A can be proved in QPC?*¥; (2) e is typed by the type of
Rv(A), ie., if Rv(A): o then e:o; (3) FV(e) C FV(A)

— 11—



Proof: The proof of (1) is performed by induction on the structure of proof trees. (2) and
(3) are easily checked.
If the proof tree 1s 4, then let ¢ = Fv{A). Let B be the name of the last rule which is used
in the proof tree of 4. If 4 is atomie, then let e = [). Other cases are as follows:
case R = (Al): Assume that 4 = B A C. Let a and b be schemes such that o gpe B and
b gpe C. Then, let e be (a,b). ¢ gpe A can be proved by (AT).
case [l = (AF);: Assume that 4 A B is the premisc of the R application. Let a be a
scheme such that a qpec A A B, then let ¢ = ifseq{1,l{A4))(a). ¢ gpe A4 can be proved by
(NE);.
case B = (AE);: Assume that B A A is the premise. Let a be a scheme such that
a gpe B A A, then let e = teeq(l(B) 4+ 1){a). e qpc A can be proved by (A E);.
case B = (VI);: Assume that 4 = BV (' and B be the premise. Let a be a scheme such
that a gpe B, then let e — (left,a, any[leni C')]) where len (') is defined as {ollows:

1) len(A}) =0 if 4 is atomic;

2y len(P(My,--- M) = L{P{M,--- M) if Pisa predicate variable;

3 len(A N B) =len(A) + len( D),

4) len(d O ) = len(B)

) len(Yr c o.d) = len(A);

6) len(AV B) =1+ len(d)+ len{B):

T)len(dr CoA) = | +len(A).

Note that len(d] = [{A) if A does not contain any predicate variable because the only
difference between (A} and len(A) is [ P(M, -, M,)) = 1. ¢ gpc A can be proved by
(vI).

case Fl = (VI)z; Assume that 4 = 8 v C and C Le the premwise. Let b be a scheme such
that b qpe C, then let e = (right, any|len(B)), b}, ¢ qpe A can be proved by (VI).

case i = (VE); Assume that B v € i the first premise of the R application. Let
a bLe o scheme such that a qpe BV O, and b and ¢ be the scheme which realize 4
as the second and the third premises of the R application. Note that b and ¢ may
contain Ro{B) and LRo(C'). Then let ¢ = of proj(li(a) = left then (let Rv(B) =
ttseq(2, (B ))(a) in b) else (let Ro(C) = tseqg(liB) + 2)(a) in ¢). € gpc A can be proved
by (VE) and {= ).

case R = (3 I); Assume that 4 = B O € and € he the premise. Let a be a scheme such
that @ qpe C'. @ may contains Rv(B). Then, let ¢ = ARv{B).a. € qpc A can be proved
by (¥I), (D I) and (= E).

case R = (D E); Assume that B O 4 and B are the premises. Let a and b be schemes
such that e qpe B 2 A and b gqpc 3. Then, let ¢ = ap(a,b). e gpe A cau be proved by
(D E), (AD) and (VE).

case R = (VI); Assume that 4 = Vr € .0, Let a be a scheme such that a gpe A, then
let e = Ar.a. e gqpe A can be proved by (V) and (= E).

case R = (VE); Assume that M : ¢ and Vo € 0.B(x) are the premises. Let a be a scheme
such that a qpe Vo € 0.B(z). Then, let ¢ = ap{a, M). ¢ gpc A can be proved by (VE).
case R = (dI); Assume that M : ¢ and B(M) be the premises. Let a be a scheme such
that a gqpc B(M). Then, let e = (M,a). ¢ gqpc A can be proved by (AJ).

case i = (JE); Assume that dr € 0.B(r) is the first premise. Let a be a scheme such
that a qpe Jdz € . B(x) and b be a scheme which realizes A as the second premise, Then,



let ¢ = let (r, Rv{B)) = a in b. The proof of e gpe A can be obtained from the proof of
b gpec A by substituting (proj(1){a).tseq(1)(a)) to (x, Rv(B)), and replacing proj(1 Wa):o
and tseq(1)(a) qpe B(r) as the discharged hypotheses by the proof of a gpe 3r € 0.B(x).
case R = (= E); Assume that 4 = 4,[N] and that M = N and A, [M] be the premises.
Lot o be a scheme such that o qpe A, {M]. Then, let ¢ = a. ¢ qpc A can be proved by
(= E).

case R = (LE); Let ¢ = any[len{ A)]. € qpe A can be proved by (LE).

case B = (Lio)-ind}): Assume that 4 =Vr € L(o).B(r), and A is proved as follows:

[x # nil A B(tl{z))]

o i
D{nidy Blx)

Yor & Lie).Bizx)

This proof can be translated to the following:

Yo [z # nal A B{tl{x})]
[ = ml] D(nal) (= E) pe
|z = nil V (2 # nil A B(ti(x)))] B(z) B B(z)

(VE)

Bir) L
TN r.[n;_nﬂﬁ“"“’} ind)

By the induction hypothesis, following proofs in QPC? exist:

- '
.'_.I|_| _11

a gpc Bin:il) b qpe Blr)

Also, + = nil v (r # nil A B{tl{z))) is realized by its realizing variables: (z,7) def

(z.Rv(B{tl{x)))), and (2,7) gpe « = nid V (z # mul A B(H(z))) = (2 = leftrr =
nil)V iz = right Az #ni A B(H{x)) AT qpe B{tl(z))). Let ¢’ =if =z =left then a else b.
Then, the the following proof can be constructed:

iHl] [Hlj
= ) e ]
=79 Mo gy 27 1

Hy ¢ qpc Bir) =8 apc B(z) [ E}(vE)

FH qpi: El:.r} .
Vr € L(o).c' qpe B[ﬂ{L{ﬂr}-md}

where Hy ' (2,7) qpe (z = mil V (z # nil A B(tl(2))), Hi < z = left Az = nil,

H, def ) = right A x # nil A B(tl(x}) AT qpe B(tl(r)) and II; and II, are as follows:

r=nmnil a qpc B(nal) (= E) )
a qpc B(x) b qpc B(z)

Let 7 be a new sequence of variables of length I{B), and assume the equation: Z =
Az.eLlap(Z, ti(z))]. The solution of this equation is the following recursive call function:
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f e pz.Azaf = = left then a else bzlap(z,#l{x))]. f is equivalent to a sequence of

schemes i, -, fy (n = I{B)). Note that z = left 2C r = nil can be proved in QPC?,
so that f can be regarded as puZ.Az.if = = nil then a else bglap(z, tl(x))]. Note also
that ap(f,z) = ex[ap(f,ti{z))] can be proved. By substituting ap(f,tl{z)) to T in the
above proof, Ve € L{e).{ctap(f, tl{z))] ape B(z)) = ¥z € L(s).(ap(f.z) qpc B(z)) =
fqpe ¥z € Lio).B{zr) can be proved. Therefore, let e be f.

case = (nat-ind); Similar to the previous case.

Let e = pZ. Ax.af o = 0 then a else bzlap(Z,2 — 1)] where 7 is a new sequence of variables
of length [ A4).

case R = (¥:T),: Assume that A =V¥*P & o — prop.B and the proof is as follows:

[P:a — prop|
5

B )
WViP ca — ;,n'up.Bw& Dy

Let @ be the scheme such that @ qpe B which iz constructed from the subproof (Z/53).

Then, AP.a qpe ¥*P € 0 — prop.13 HMvipeo - prop.lap{AP.a. P) gpec B) = ¥*P ¢
o — prop.(a gqpe B). Therefore, let ¢ = Ala. e qpe A can be proved by (v91),
case K = (V*I);: Assume that A =% a € type; I} and that the proof is as follows:

[ : typey |
N

—— 8 ___ (/]
Via £ fypel.H{ )

Let a be a scheme such that a gpe B. Then let ¢ = a. ¢ gpe A cau be proved by (¥21),.
case R = (V' E),: Assume that A = [,[AT p] and that the proof is us follows:

Eﬂ ﬂ]
Az.péo—=prop Y:Peag— propB
BplAz.pl

(V2 E)p

By proposition 2, this proof can be normalized to reduce the case of R = (V*I), or a first
order rule.
case R = (V' E); Assume that A = A,|7] and that the proof is as follows:

En E]

actupey Vo € type A o
: vFE
Au[ﬂj [ }!

By proposition 2, the above proof can be normalized to reduce the case of R = (W21}, or a
first order rule.

Corollary:
Assume that A is a class, formula which does not contain any predicate variables, If A is

proved in QPC?, then there is a term, e, which realizes A.

The proof of the theorem can be formalized as a program extractor procedure, Ext, in a
straightforward way as in [2] and [3].



4.3 Optimization
Thiree kinds of optimization technique can be used for first order proofs.

{1) Proof norinalization
As is well known, some of the proof normalization rules (See [13] or {14]) correspond to
partial cvaluation of the extracted programs. For examnple, if the hypothesis A occurs only

onee in Ty in the following proof,

[4]
)
B_(5p =

B

then T-reduction optimizes the extracted code by performing 3-reduction:

ap{ARv(A).a.b) — apy 4)[p] where ARviA).a and b are terms extracted from the sub-
proofs of A O B and A. If 4 ocenrs more than twice in Zy, the reduction rule substitutes
copes of b to the oceurrences of Ru(A) in a. Therefore, proof normalization does not ac-
tually optimize the extracted code in this casc if the program is executed in call-by-value

strategy.

{2) Modified V code

The decision procedure in 1 f-then-else code which is extracted from a proof in the (VE)
rule can be simplified in some cases. If 4 and B are both (injequalities of terms in the
major premise, AV B, of a (VE) application, the extracted decision procedure may just A.
This optimization can also be extended to the case in which either A or B is a (in)equality
of terms. See [3] for the detail.

(3) Extended projection

This technique is to remove redundancy in the extracted codes. For example, from a proof
of Iz € #.A(z), gpc-realizability extracts & code in the form of (1, s) in which ¢ is a term
such that A(t) holds, and s is a term extracted from the subproof of A(t). The code s is
often redundant. In the extended projection technique, if the position number of 3 and V in
the specification which corresponds to redundant code is given, a procedure which is similar
to strictness analysis with abstract interpretation propagates the wnformation to each node
of the proof tree. The code extractor generates redundancy free code from the annotated
proof tree. Similar method is given in [15], [16], [17], and [10], but the extended projection
allows more fine-grained specification of redundaney and an algorithm of semi-automatic
analysis of redundancy is given. See [18] for the detal.

5. Writing Specifications

Three examples, map-function, sorting, and user defined rles of inference, are investigated
to demoustrate the expressive power of QPC?.

5.1 Map Function

Two kinds of specification of map-function is possible.



(1) Specification using a function variable
The function which the map-function takes as input is described in a function variable and

universal quantification.

Vo etype, V23 € type Nf € a — 4.
Vo eL{a).3y € L(3)
lengthiz) = length{y)
Al E nat.l < i < length{z) D flelem{i,z)) = elem(i, y))

where length{z) and elemn{t,x) are functions which caleulates the length of » and ith
element of r. They can be defined in QPC?,

The specification can be proved by (¥21);, (VI), and (L{a)-ind). The extracted code will
be as follows:

Afpzdzaf r=mnil then nil else ap( fohd(z)) = aplz,t(x))

Let the specification be, for simplicity, Y2a.¥? ¥ f.MAP(a, 3, f). Application of map-

function to other function, say suce def Az.z + 1, can be described as follows as a proof
procedure: Becanse nat @ type;, YL MAP(nat, nat, f) can be proved by (YE);,. Also,
because Az.ax + 1: nat — nat, then M AP{nat, nat, suce) can be proved by (VE).

This schemna has a problem: the map-funection cannot be applied to a funetion which is

defined as a specification and its proof.

{2) Specification using a predicate variable
The input function of the map funetion can be deseribed as Yr.3y. Pz, y) with a predicate
variable, P, which iz universally quantified.

Woa ctype, V253 € fype, V' P € a x # — prop.
(Ypea.dge 3.P(pyq)
O ¥r eL{a).dy € L{F).
length(z) = length(x)
AL € nat. (1< ¢ < length(r)
= Plelem(i, r), elem(i,y))))

This specification can be proved by two applications of (V21), followed by (¥*I),, (D I)
and ( L{a)-ind), and from which a program scheme can be exiracted. Let the specification
be, for simplicity, Vea V¢34 P.(¥p.3¢.P(p,q) 2 SPEC(«a, 3, P)). Application of the map
function to even_odd given as a specification and its proof can be described as a proof
procedure. A specification of even_odd can be described as follows:

p €nat.3q € bool.
((Sxenatp=2-zhg=t)V(dy€Enatp=2-y+1Ag=f))

This can be proved by (nat-ind). Let the specification be ¥p.3¢. EVOD(p,¢). Then, the

application is as follows:

L2
=1 VP(Vp3g.P(p.q)
o Alp,q).EVOD > SPEC(nat, bool, P)) (V2E)
Vp.3q.EVOD(p.q) ¥p.3q.EVOD(p,q) > SPEC(nat, bool, A\(p,¢).EVOD) r (> E)

SPEC(nat, bool, \p.q).EVOD)



where Ty is a proof of the specification of even-odd, ¥ is a proof that Ap, ¢).EVOD 15
an abstract of type nat % bool — prop, and T, is a proof of elimination of ¥* quantifiers
on « and § followed by the proof of the specification of map-function. This proof can be
normalized by using one D-reduction and three V?-reductions (one is for ¥2P and others

are for ¥?a and ¥2/3). The normalized proof does not contain the second order rules or
predicate variables, so that a term can be extracted.

5.2 Sorting Prograun

Total order relation on the elements of the lists to be sorted can be generalized by using
predicate variables.

SORTING:

Va etype; WP € a x a — prop.
(REL(P, «)
5 ¥r: Lla)3y: Lia) . PERM(r,y) N SORTED(y,P))

where REL(P,a) is a formula which means that P is a total order on a, PERM(z,y)
means that y can be obtained by some permutation of , SORTED(y, P) means that y is
sorted with the order relation, P:

SORTED(y. P) i € nat ¥y € nat (1 < i< j < length(y) O Plelem(i,y), elem(7, )]}

The specification ean be proved by (V1) (W2 1)p, and (D T).
This specilication can be applied. for example, to the following total order relulion on
nat * nat type.

lexr(z,y) S proj(1)(z) < proj{(1)y) V (proj(1)(z) = proj(1)(y) Aproj(2)(x) < prej(2)y))

By using (V! E);, (V2E),, and two ¥*-reductions, the following first order proof can be
obtained:

B

REL(lexnat x nat) " (2 1)

o ¥z : L(nat x nat).3y : L(nal x nat). PERM (z,y) A SORTED(y, lex)
The term extracted from this proofs takes a justification of REL(lex,nat x nat) and any
list, . of type L(nat x nat) and returns the sorted version of z.

5.3 TUse Defined Rules of Inference

As is well known, well-founded induction must be used to write a proof which corresponds
to quick sort algorithm. The induction is available after proving the following formula:

v2ae typey V2 F € L{w) — propV*P € a x a — prop.
(REL(P)
o (Vre L{a)¥y € L(a).(P{y,z) D F(y)) > F(z)
o ¥z € L{a).F(z})))

This is proved by (V2 1), (V21 )p, (D I) and (L{a}-wnd).



6. Lbxample of Program Extraction

The code extracted from the second specification of map-function and its application to
other function will be given.

(1) The code extracted form a proof of the specification is as follows:

MAFP = AP .Jkl:;.l!u, RV[PEP.-’{”}
plzg RV{P(elem{i, tl{x)), elemn(i, xy)))).
Araf x =ml
then (ml, Av.any[L{P(elem(i, nel), elem(e, el }))])
else (ap{xo, hd(x)) 2 aplzp, 11(x)),
AMafi=1
then ap{ RV(P(p,q)), hd(r))
else aplapl RV (Plelem{i, il(2)), elem(i,za))), tl{x)),
i=1))

This is not a program but a program scheme because it contains au absiraction (AP},
Rv-scheme (RV(P(p,q)). RV (P(elem(i, tl(r)),elem(i, 20)))), and any code scheme
(any[L{ P{elern(z, mil), elem(i,nil)))]). (w0, RBV(P(p,q))} is Ru(¥p € a3 € 3.P(p,q))
which is extracted from the assumption ¥p € «.3¢ € 3.P(p, q) discharged in the appli-
cation of (D I), and (2o, RV(Plelem(i,tl{x)), elern(i, z4)))) is the parameter of recursive
call function which is extracted from the (L{a)-ind) proof on r € L{a). Informally, the
recursive call function is to calculates a sequence of terms: the first element is the value of
¥ € L(A) (nil and ap{xy, hd(x)) :: ap(zg, tl(x))) and the rest of the sequence is the justifi-
cation of length(z) = length(y) AYi € nal.(1 < i < length(z) D Plelem(i,x), elem(i,y)))
{(At.any[L(P(elem(t, nil), clem(i, nil)))] and
Aaf i =1 then ap(RVIP(p,q)), hd(z))

else ap(ap{ RV{ P(elem(i,tl{x)), elem(i, xq))),#l{z)},1 = 1)).
The justification part is redundaut in many cases. More specifically, if the predicate which
will be substituted to P has any computational contents, the justification part causes
redundant code. For example, if the map function is applied to the successor funection,
¥p € nat.3q € nat.qg = p+ 1 and its proof, i.e., ¢ = p+1 is substituted to P, no redundancy
oceurs.

(2) The following program is generated from the proof deseribing application of map-
function to even-odd. The specification of even_odd is substituted to the predicate variable,
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P, in the proof of the second specification of map-function.

ap(A(xo, x1,72,T3). (20,21, 22,22)
Arif r = nil
(rel, Ai.any|3])
(ap(z0, d(z)) = ap(z0, tl(x),
Arif 1 = 1 then ap((z1, 20, x3), hd(z))
else aplap((zy, 23, 22), t(z)), i — 1)
plwo, wyi, wy, wy ).
Apafp=10
then ([t 1eft, 0, any(1])
else of apluy,p—1) =left
then (f,right,any[l], ap(ws,p — 1))
else (tleft,aplws,p— 1) — 1, any(l])

The function, p(wp,w;,ws,ws).Ap.---, 15 the code extracted from a proof of the speci-
fication of even-odd. The top level application, ap(-, -}, corresponds to (O E) rule. If
D-reduction is performed before code extraction, the following code is obtained:

iz, 21,22, 28). Azif @ = nil
{(nil, AM.any[3])
let (Yo, y1,v2,U3)
= ap pl wo, un,we, uwrs)
Apafp=10
then (t,left,0,any|l])
else if ap(wy,p—1) =left
then (f,right, any(1], ap{ws,p — 1))
else (t left aplws,p—1) = 1L any[1]}.

hdix})
in (yo 2 aplzo, t(2)),
M. ifi=1

then (y1, vz, ¥a)
else aplap((z1,22,23),tl(z)),2 — 1})

This program has a lot of redundancy. It can be removed by using extended projection
method. Therefore, the final code obtained is as follows:

pzg Azaf o = nil

then nil
else let (yo,u1)

= apl{pi(wer w1)-

Ap.if p=0then (t,lcft)
else if aplwy,p— 1) = left then (t,right)
else (t,left),
hd(zx))
in y i aplzo, ti{z})
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(3) Application of the map function with the specification in 5.1 (2) to other function can
also be performed at the extracted code level. The scheme, M AP, obtained in (1) can
be applied to a specification of a function of type a — [ by introducing the following
additional reduction rules on schemes:

[AVI(AX p)(M)) — Ruolpx[M])

any[L{{AX.p)(M})] — anyllen[px[M]]]
where AX p is an abstract and (AX p)( M) is obtained from P{X) by substitution.

For example, the code obtained by applying M AP to the input-output relation of even odd,
AMpg)iiFrenatp=2-rrg=t)vidycnatp=2-2+1Aqg = f)), is as follows:

A T, W, g, g )
gz .'tr.',lj,‘_ 'u-'li . H'Iz .
Arif o = nil
then (nrl, At.any|3])
else (aplag. hd{x)) = ap( =y, ti{x)).
Aifi=1
then ap({wqg, wy,wy), hd(x))
clse aplap((wg, trl, 1:*12 LH{T).
1 —11)

Lhis code can be applied to cven odd function extracted from a proof of the specification.
However, it is better that the application is performed as a proof procedure because the
optimization technique can be used at proof level.

7. Thsecussion and Conclusion

A predicative second order constructive logic, QPC?, was presented. Tt allows predicate
variables which range over predicates without secoud order quantifiers and type variables
which range over types constructed with elementary type constructors (eartesian product,
arrow, and list ) from a few primitive types. These variables are treated as universally quan-
tified. This simple second order logic, however, enables a sort of higher order programming
as demonstrated in this paper.

For the program extraction, gpe-realizability interpretation is defined, It looks like the
formulation of second order typed lambda caleulus for the quantified predicate variables,
and Kreisel-Troelstra realizability for the quantified type variables. This distinction means
that type information should be eliminated in the program extraction while a predicate is
interpreted as containing computational meaning to be extracted. To assure the soundness
theorem of gpe-realizability, a class of expressions called scheme is introduced in addition
to a variant of untyped lambda expressions. Scheme is a comparative notion to second
order lambda terms, but a scheme expression is not regarded as a program. The structure
of schemes extracted from the second order proofs is simple because the form of the second
order formulas is restricted. Schemes can be handled rather easily by using proof normal-
ization, and in many cases second order proofs can be translated to first order proofs from
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which lambda terms can be extracted.

The system presented in this paper does not have the notion of non-infermative prope-
sition{[10]) except Harrop formulas [14] from which no computational contents should be
extracted. Therefore, the extracted sorting programs from the proofs of the example specifi-
eation need redundant codes, which justifies that the relation P is actually a total relation,
as inputs. This problem will be overcome by introducing two kinds of constants prop
(non-informative proposition) and spec (informative proposition) as in [10], and redefine
gqpc-realizability as follows:

e e qpc Via € type;. A L e € type;.(e qpe A)

¢ eqpe VP co — prop A 2P e o s prop(e qpe A)

o cqpe VP €0 — spec. 4 T2 p ¢ o — speclaple, P) qpe A)
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