ICOT Technical Report: TR-532

IR-532

Parallel Design Rule checking
using Bitmaps

by
D. Dure

February, 1990

© 1990, 1COT

Mita Kokusal Bldg. Z1F 033 456-3191-3

| [: DT 4-28 Mita I-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Parallel Design Rule Checking using Bitmaps
Daniel Dure - ICOT - fourth laboratory
June 11, 1989

Abstract

Circuil logic and layout design wols now available 1o circuit engincers have
reduced the nember of manual operations and, consequenily, the probability of
errors. Nevertheless, in an industrial environment, it remains necessary 1 check
the observance of layout design rules within large scale designs, This operation
requires a large amount of computing and memory resources that conventional
mainframe compuiers can barely provide, We investigoie here an implementation
of such a rule checker, on the parallel machine developed at ICOT, and
demonstrate that a lincar speed-up of our program is 1o be gained as the number
of processor increases.

1. Imfrodoction

Desizn rule checking consists of applying a set of geometrical rules to a tentative design layout, in order 1o verily 1z
consistency with regard 1o the wehnological rules which characterize a given process. Tn the sequel, we will refer tis
operation as DRC.

DRC operations usually take place at 3 specific moments, in the course of circuil conception @

« when building elementary blocks from the scratch, e standard cells. This operation is considered as one of the most
difficult during the design, as it requires good knowledge of process details, and is likely to greatly affect
performances of any circuit based on constructed primitives. DRC 15 necessary at this point because creation of basic
cells remains essentially a manual process,

» When assembling several blocks together, by abutment or by inserting metal or polysilicon connecting paths, A
this process is nowadays mostly astomatized, DRC will be performed in rare occasions, when complicated assenibiy
have been done, involving partial overlap of cells with merging of some conductive paths or body ties. As a malwr
of fact, it 18 always difficult to guaraniee that librarics support this kind of operation.

« When a layout is received from a third party at the fub., and when clementary care is taken. Actually, this third case
covers any messy situation in which one s not sure of the quality of a design, cither because primitive conceplion
tools have heen used, or because a bug is suspected. or because of company policies, etc.

As reasonably fust computers, with high definition display devices, have become common, graphic layout editors waok
over more conventional methods such as paper or symbolic design {(although the latter has stll several applications). As
well, it has appeared that the most convenient data structures 10 handle interactive layout design could be used also w
perform DRC, it an interactive manner, A typical example of such tools with design and DRC capabilitics is the MAGIC
desipgn editor, which is included in the Berkeley CAD 1ools package [1]. There, incremental DRC is performed over a part of
the design, in a recursive fashion, and corrections are interactively suggested to the designer. Very unfornately, such
interactive ools are extensively using memory; they are unsuited wo fast scanning of the whole circuit. Hence, DRC of
entire circuit, in a flat fashion, is mostly unfeasible. OF course this kind of operation does not occur frequently, as set oul
the third point above, but it is nevertheless necessary in an industrial environment, with speed and accuracy as high 2
possible,

To this end, we developed a method which takes a direction quite opposite 10 usual atgorithms, which are based on
refined representations of layout objects in the plane : the entire design is mapped (0 a rectangular bitmap, each point of
definition in the design corresponding with a bit in the bitmapl, As several layers usually occur in designs, each layer is
mapped to a different bitmap. The next siep is then o make some operations on these bitmaps, in order 0 check the
correctness of the design. It has appeared that most rules found in the fab. literature could be expressed in terms of bit-wise
lopic operations, such as and, or, xor, shifl, eic... These operations are very simple and for a normal circuit density the
DRC of a circuit with such a brute force method has been found to have time complexity comparable 1o the one required by
more suphisticated methods. But as data are spread aver a bitmap, it becomes very casy (o divide them over a netwurk of
processors, in onder to perform DRC in a parallel fashion, thus gaining speed.

This note is concerned with the implementation and early resulis of an experiment hased on this idea of parallel bitmap
processing. The next seetion describes the operations which are necessary for bilmaps; section 3 gives some clues about the
implementation on a Multi-PSI machine, using the KL1 programming language: section 4 presents some experimental
figures of performance and section 3 is devoted to conclusion.

10F course we assume that the design contains only polygons with faces at right angles. For DRC of designs with
general shapes, see [3]. There is no reasonable way in this case but algorithmic geometry.

J

This program is an extension of a DEA experiment, lead in the LIE of the Ecole Normale Supérieure under mtelage of
Jean-Mare Frailung and Jean-Ciastinel, in the early 1986.

2. Basic primitives

Tt is good first to recall the main types of rules found in DRC specifications. They can be roughly divided into two
categories: proximity rules and inclusion rules, with a possible mixture of them,

Proximity rules prescribe a minimum or a maximum disance belween certain catcgories of object. Typically, they stae
that two metal wires should be separated by a given distance, or that the edges of a given wire should be separated by a
inimumn thickness distance, etc. Inclusion rules staie that some object should be within some other type of object, with a
minimum «securitys horder, As an example, in a p-well CMOS process, PMOS transistor should be within a well, with
some margm within active zones and the well borders.

We shall now show, for a limited sample of such rules, how we can use bitmap operations. We will introduce new
operations as they become pecessary.

« For the first example, we consider the inclusion of every active zones in some well. Active zones can be obtained by
the intersection of diffusion and polysilicon, say Tayer 0 and 1 {in a technology without buried contact). Ther 12 get
fuully zones, we have 1o make a bit 1o bit «ands hetween the layout of active zones and the complement .~ the
layout of wells, If we assume that the layout of wells lies in bitmap 2. we get Faulty locatons with the follc sing
sequence of insructions

newregister % allocate a new register (3)
equal 3 O % load diffusion into 3

and 31 % and with polysilicon

andnot 3 2 % and with the complement of wells

We used here our first instructions, A summary of the command language lies in next section, newreglster
allocates a hitmap with the same area as the largest of all bitmaps amongst all layers. equal 3 0 copies the bitmap
from layer 0 (diffusion) into layer 3. Then, the and operation keeps the intersection between diffusion and
polysilicon. We note at this point thut all active zones of the circuit are in register 3, It may be intercsung 1o copy
this register into an intermediary register, w avoid recomputation of active zones in the sequel of DRC. Evenually,
with the andnot operation, we select amongst active zones only the ones which are not included in some well,

- The second cxample illusirates how proximity rules can be realized. A typical example is that metal line (assumed 1o
be in layer 0) should be at least 3 units wide and separated by 4 ynits. Before we actually give the small program
necessary 1o check this rule, we must explain what is eresizing» of polygons in a bitmap.

Roughly, to resize a bitmap of n unit is to make all its objects «grows by n unit. This can be expressed very simply
i terms of bit-wise shift and bil-wise or operations: resize(R,n) = R1 or (R1 < n) or (R1 > n), where R1 =R or htk
T njor (R + n), where <, >, 7, + represent respectively shift of the bitmap Lo left, right, upwards and downwards,
and n is the number of time the shift occurs. We assume that, at the limits of the bitmap, Fero's are injected doring
the shift operations. Conversely, to resize a bitmap of -n unit, that is (0 say, 10 shrink it, can be represented as
resize(R.-n) = R1 and (R1 < n) and (R1 > n), where R1 =R and (R T n) and (R 1 m.

Now, let's think about the meaning of a negative resize followed by a posilive resize, of the same number of units.
We see on the following figure that such an operation will leave the bitmaps conlents unchanged, provided that any
object in the bitmap has a width greater than twice the resize parameler:

Bl - -

Figure 1: effect of a negative, then posilive resize.

Conversely, what will happen if we enlarge first and then shrink of the same number of units? This lime, the bitmap
is lefi unchanged provided that all parallel extern faces of objects are separated by at the least 2n units:

e~ .

Figura 2 - effsct of a positive, then negative rasize.
This properties are quite promising, for our goal is to check proximity of edges and objects. But they allow us Lo
check only even distances. Of course, we could double the scale of the biumap in order 1o use only even coordinates,
but that would cause a waste of memory. Anyway, this inconvenience of previous properties can be avoided if we
use what we call «half-resize operations, The idea is to operate resize operations in only one direction for each axis.
For example, resize only to the lefi and to the bottom. More formally, we can express this as hresize(R.n) = Rl or
(R1 < n), where R1 = R or (R L n). Conversely, shrinkage can be expressed s follows: hresize(R,-n) = K1 and (R

>n), where R1=R and (R T n).
We can now give the little program which checks that all metal lines are at the least 3 units wide:

L]

newregister % allocate a new register (1)
egqual 1 0 % load metal inte 1

laize 1 -3 % shrink of 3 units

lsize 1 3 % enlarge of 3 units

HOE 10 % difference with original metal

Note that the instruction 151 ze above is in fact the «half resizes we described before. There is alsp arsize,
which is the symmelric operation, from the viewpoint of resize directions. The composition of these two operations
is equivalent to the anisotropic resize which we first introduced thereupon.

Quite similarly, we can check that metal lincs are separated by 4 units:

newreglister % allocate a new register (1)
equal 1 0 % load metal into 1

lasize 1 4 % enlarge of 4 units

lgize 1 -4 % shrink of 4 units

HOT 10 % difference with original metal

We could give a list of the most common design rules found in fab. literature, but this is not our purpose here. If our
reader wants more evidence of the validity of the method, he can have a look in [2]. For the pleasure of it, we just give the
program which checks the two following nasty rules: The grid tail should overlap diffusion by 1 unit (see fig. 3), ithen any
acive zone should be within 30 units of a body tail.

minimum ovarlap

POLY
Figura 3 : overlapping grid rule.
To check this rule, we just need to compare the resull of growing diffusion of one unit and then cul this with the
polysilicon, to the result obtained by applying the cut before growing. Any bit of difference would be placed next 10 a

common edge of palysilicon and diffusion, where overlap should have been. Since such a common edge could be on any
side of a polygon, we have to do anisotropic resize:

newregister % allocate a new register (2)
newregister % allocate a new register (3)
equal 2 0O % load diffusion into 2
lgize 2 1 % resize left and top

rsize 2 1 % resize right and bottom
andnot 2 1 % cut with polysilicon

ecual 3 0O % lopad diffusion into 3
andnot 3 1 % cut with polysilicon

lsize 3 1 % resize left and top

regize 3 1 % resize right and bottom
HOT 2 3 % difference between the two resize ops.

For the sccond problem, the basic idea is to identify body ties, and then Lo resize them by 30 units. This creaics objects
which should cover any active zone. Here also, we have 1o use anisotropic resize. We assume in the following that n
diffusion is in layer 0, p difT is in layer 1, polysilicon is in layer 2 and p well is in layer 3:

newregister % allocate a new register (4)
newregister % allocate a new register (5)

equal 4 0@ % load diffusion into 4

lgize 4 30 % resize left and top

rsize 4 30 % resize right and bottom

equal 5 1 % load complementary diff inte 5

and 5 2 % and with polysilicon

andnot 5 4 % out of bounds active zones

and 5 3 % select correct polarity, using well.

As we can see, this method is quite easy o use, but requires some care while programming rules. This can be compared
1o assembly code generation for a high level language. It is clear that it would be nice to define a high level language to
express rules in a more user friendly fashion, and then w compile these «programs» into executable bitmap operations. This
would also allow data flow analysis of the program, and possibly save time : some operations over initial bitmaps are
repeated several times. Of course the number of bitmap registers we can use is limited. «Register allocation» technigques
used in the craft of compilers find an application here. Speed gain can be hoped all the more than, as we will see in section
4, the memory which can be devoted to the storage of bitmaps is quite huge. Hence, the number of available registers 13

also large.

3, Parallel implementation

Parallelism can be seck for in several ways, in order to speed up the solution of the previous problem. We first have 1o
imagine how the overall DRC process is organized. This iz illustrated in figure 4. We sce there that several imporwant
operations, such as mapping of polygons 1o bitmaps and extraction of errors, have w be taken into account. Although there
are occurring less frequently than the bitmap operations, they handic & high number of ohjects and can become a botilencck
lor the whole DRC process.

The first stage of circuit analysis is o find the necessary size of the enclosing bitmap. In the curreni implementation,
this is done after that afl polygons have been read from a (ile, This is clea-ly & mistake, as sl objects are stored in memory
hefore their mapping into biunaps can start. In future version, a single rewd of the file should be done previously w poelygon
splitting.

L L 1 — |
=1 e S |
split
L
Ll]
bitmap bitmap
operations uparations 4
—

arror list
Figurg 4 : the overall DHC process

Then, polygon splitting itsell can be divided among all the processors which are available in the Mult-PS1, In the
current implementation, this is notf the case either, due w lack of time. Hasicully. the idea would be to send polygons ina
stream, which goes through all processors. Then each processor picks polyzons in this stream, according to the following
rule : if there are P processors, the nth palygon is picked by processor p if 0 equals p modulo P As cach pelygon is split
inio squares, we merge all squares into a single stream. Cheuking the ahove conditions is implemented very simply by
using a counter on each processor. The corresponding organization is proared i ligure 5.

pﬂl'ﬁl’gl‘”’l!‘i’ '\ f‘ - "'b‘ f-""""""'-"'—"—l‘!. ,_\.

slream

— fral f1a] [12] 11] [10] |2 E-_?'Jﬁ-lﬁ!dl_;zi

1 5 2 B | 3 7 4 B

splil split split split

VLT L) L

\. y, \ J L _J

\.

ractangles
slream

Marge Merge Marge

Figure 5 : parallel polygon splitting.

A minor optimization of this methods can be done, 10 avoid unnecessary duplication of polygons which have been split
+ il a processor has split a polygon, it does not pul it back into the outpul stream. The test used to check whether the n'®

polyveon should be reated by processor pout of Pis a liide bit wifferend @ nshoold be equal to 1 modulo (P - p + 1), This
allows a twolold degrease of the commuenication cost.

MNow comes the parallel usage of the produced rectangles. Before explaining this point, we need to see how hitmaps
themselves are divided amangst processors.

We haven't given yel a complete list of available primitives, bat basically their complexity grows like the area of the
bitmaps they work upon. Hence, a natural way o speed up operations i 0 divide area befween processors. In order (o
distribute computation load equally between processors, and thus maximize efficiency of parallel operations, we have to
divide area as uniformly as possible between processors. Alse, o keep simple operations on cach processor, it is more
reasonable o divide the inial bitmap into rectangular bitmaps.

Dividing initial bitmap is a nice idea but some problems are then introduced. The fiest problem is that errors have 1o be
extracied in several bitmaps, and then merged. This is not a big problem, as the number of such errors is usually low,
comparad to the nomber of polygons in the circuit. In the current implementation the fusion of error sguares found in all the
sub-bitmaps of the error bitmap is not performed, bul a classical 2 dimensional sort like [4] can be used. The sceond
problem is that during resize operatons, zero bits will be injected on the sides of bitmaps. One solation would be 1o
exchange values of border bits between processors, but that would require some communication and require synchronization.
Another possibility is 10 duplicate some of the data between bitmaps. This is what we chose o do. If the maximum resize
paramcter is M, during the whole DRC, then it is nocessary to duplicate N bits between borders of sub-bitmaps, in each
dirceuon, An example of the resulting division is shown in figure 6. We assume in this figure that the initial bitmap is
Hal, o be divided between 4 processors, while the highest resize magnimde is 1.

Processor 1

Processor 2

Procassor 4
Figure & : ovarlapping of sub-bitmaps.
The gverlap of some data implies that when building original bitmap (rom circeit description, some parts of the
polygons are found al the same time in 2 bitmaps (or 4 bitmaps for the comer bits). In the sequel, the width of overlap will

be called the margin. As we said that complexily of basic bitmap operations is proportional to the size of bitmaps, we see
that our interest is (o find a division which makes bitmap areas equal, but also which minimizes the perimeter of rectangles

: If we assume we have a division of initial area A into P identical rectangles with perimeter A, for a margin M, global time
complexity is :

C=]‘a‘7+lM + 4M2 + Pa

where a is the small constant representing the cost of synchronizing processors. Of course, the above figure decreases when
rectangle shapes become close 1o squares. The lower bound is :

A A 2
C_P+41I'-I P+4M + P

Refined methods [5] 10 get near optimal divisions exist. We chose a quite simple one, based on the obscrvation that
usual circuits have a square shupe, whereas we store 32 bits in a single word, thus introducing a large unbalance between the

horizontal and verueal lengths of the original bitmap.

For more than 32 processors, the following algorithm is used : we first decompose P into its prime factors prsizn,
sorted in decreasing order. Then, starting with the initial dimensions xp, yo of the overall bitmap, we apply the following
rule until all primes pj arc used :

if yn 2 %p, Yo =';_:3“d Xn+t = Xp

. X
if yn < Xn, Xp4y = iand ¥o+1 = ¥n

Once all the factors of P have been used, X, and ¥y are the sizes of bitmaps on each processor. Since the onginal bitmap
dimensions may not be muliiples of Xy, and ¥, an eventual remainder of division is scattered amongst the first proci:sors.
That way, the difference in size hetween hitmaps on all processors is bounded by 1, in each direction, which is negligible.

Although this method is very simple, «wlerables behaviors have heen ohserved, as the number of processor was nevera
big prime number. 1 this should occur, complexity would become, for an originally square bitmap :

csg-q-:m%+ VA + 4aM2 4 P

If we neglect the communication cost, we get an asymptotic bound which is in a ratio \I'Im 2M {usually several hundreds)
with the previous lower bound. For values of P under 107, the bad decomposition of the initzal bitmap does not account for
mare than one third of the computation time, for usual values of A and M.

Now, our problem becomes 1o know how we are going (o transform polygons into data in hitmaps. It was suggested
above o split first polygons into rectangles. This is quite intuitive: refer o [2] for details of the algorithm. Then, we hav.
to distribute rectangles over the <good= bitmaps, We may think of some clever process to send a rectangle only to the
proceszor which is in charge of the cormesponding bitmap. Unforiunately, as a rectangle may pertain 1o several bitmaps, this
tumns oul to be diflicult, and would demand meliple gocess to several processors at the same ume, which is heavy
manage. So, we chose a very noddy approach again : all processors are raversed by a single stream, in which all rectangles
are seat. If a rectangle is at Jeast partly included in the bitmap managed by some processor, the latter makes a copy of the
ractangle and puts it into the bitmap. In any case, the rectangle is sent 1o the next processor, This method is very similar 1o
the one we plan to use for polygons. It is also possible to perform an optimization which diminishes the number of
communicated rectangles of 20%: il a rectangle is completely included in some processor bitmap, with no bil in the
overlap, this rectangle is of no use to other bitmaps. In current implementation, this oplimization is not performed.

Another point 15 1o make eniform the flow of rectangles through processors. We chose o wait before transferring a
reclangle, for completion of the previous modification of the bitmap. This is useful to avoid an accumulation of data at
several places at the same time in the network. On the other hand, our method bounds the speed of the whole process o the
specd of the slowest processor. This is not a big problem as subsequent operations will anyhow not start before all
processor have finished. In future version, a buffer should be used,

Mow that we have introduced the essence of the method, we give a summary of the DRC command language, in its
current state, In the following, arguments enclosed between <> are meta-arguments, while [] indicate opuional arguments.

Pimas command
There are 4 ways to call the program, 1o allow debugging :
drosdre (<command file» |, <debug file>] [,processor])

<command £ile> is an atom which contains the name of the wxt file containing DRC commands. <debug
£1ile> is acharacter string with the name of a file in which timing measurements and reduction counts will be stored. This
argument is optional, processor is an integer indicating on which processor the master process should he started. By
default, processor 0 is used. The number of the processor connected to the frunt-end PSI should be put there. This is an
optenal argument.
Command File

Basically, each command is a vector. The first element of the vector is an atom which identifies the command itsell,
while remaining elements are arguments of the command. In the command file a vector should be enclosed between { | 1
with a period at the end of the command. Comments are allowed, provided that they stant with a %, If you dare use Emacs,
don't forget to put a new-line character at the cnd of the file.

1In the following, curve braces will be used to represent vectors, 1o make the syntax lighter.
&

There is no need o insert a special command at the end of the command file, but the stop () command will stop the
parsing il it does not match with a previous 1 £.

!!E.I'IE!I‘EII Cﬂl] X ﬂllﬁ

run{<file>)

This command makes the DRC program start interpreting commands found i the file identified by the atom <file>,
Tt works recursively and wilhin conditional blocks. When the file execution is terminated, execution is resumed in the
calling context. This command may be convenient to divide DRC into several files, possibly written by different people. 1T

some syntax error is found in the file, no message is displayed and, in the worst case, the KL1 bailt-in parscr crashes,
usually printing some mysterious message... This will not be corrected in the future, 1 think.

window (<name>)

This command is quite similar to the previous one, in the sense that il creates a new coniext from which commands are
read. But this time, instead of 4 file, we get commands from the user, via a PIMOS window. The alom <name=> is used 1o
give a name to the window. If there is a syntax error, 8 Message is output on the window, Bui the KL1 parser may still
crash,..

help()

This command displays help on the current user window. If this command is found in a file, nothing happens, Help is
rather concise and this command does not support any argument. | am afraid this will not be improved.

echo{<dala®=)

This command displays <data> on the system console, This data should not contain any andefined value, but can be
of any type or complexity. There is no limit as to the depth of structures or any other stupidity. This command can be
useful 1o monitor activity of the DRC process. Tt should be kept in mind, though, that displaying on the consolc is
ludicrously slow.

put (<margine, <proc>,<file>)

This command is used (o transform a file holding polygons into a set of bitmaps. The format of the file is very simple
each polygon periains to some layer, starting from 0, which is represented as an integer followed by a period. Then [ollows
the polygon itself, as a list of point coordinates, followed by a period. The points should be taken on the contour of the
polygon, in clockwise or counterclockwise order. The following is an exampie of what could be such a file :

o. % the following pelygon is in layer 0
[o,1,0,1,1,1,0,1]. % a sqguare between (0,0) and (1,1)

No special command has io be inserted to mark the end of the file. Just don't leave hall of a list, or the parser will bomb
ontt, Comments are allowed.

The <Marqgin> parameter is an integer which should be set 1o the maximum number of units used in any resize in the
DRC. If 00 is set, there is no overlap between bitmaps. The <Proc> parameter is the number of processors to use for
bitmap operations. You should know that at least one processor is used just to parse commands and files. So, if you have a
16 processors system, this parameter should not exceed 15, Eventually, <file> is an atom identilying the file where
polvgons are sheltered,

In the current implementation, there is no way 10 keep the registers known previously 1o this command. In other word:
this command restarts everything from the fresh,

newragister ()

This command allocates a new register. If it is the first issued after a put, the number of this register is the number of
the last layer found in the circuit file plus one. As more registers are created, number is increased. Keep in mind that the
reading context created when reading a command file or opening a window is not related 1o the register space. The register
space does not work like a stack. That may be improved in future versions; otherwise, nesting command files is not very
usual. Also, that would make the task of an hypothetical compiler more easy.

As 0 the number of available registers, the figure depends on the size of the bitmaps, depending itself on the circuil.
Read nexl section for more details about this, As there is currently no way to know the available memory in the system, il
too many registers are allocated, memory shortage will oceur during garhage collection, In other words, the system crashes.,

get (<layer>, <file>)

This commands extracts squares from the layer specified by the integer argument <layer>, and puts them into the file
specified by the atom < £1 1>, Squares should be merged 1o produce polygons. I don't think this will be improved as it is
not an absolute necessity. The format of the produced file is compatible with the put command.

As our careful reader may have guessed, extraction is not performed over the entire area aof each sub-bitmap. The margin
is not scanned, as its contents are not consistent after resize operations, A feature of this operation is that the biumap is
cleared, except margin. So, for future use this bitmap should not be considered as blank. It has to be initialized via one of
the commands load, clear, black or equal.

- T —

dump ([<£ile>])

This command produces a picture, using 0 and 1, of all sub-bitmaps currently present in memory. Dump is done in the
current command window, if command is issued from it. If this command is interpreted from a file, nothing is displayed. If
the optional atomic argument <£11e> is present, dump is done in the file it identifies.

This command was used during dcbug and it is terribly slow, becanse rows are dumped character by character, using the
puit command of Pimos file device.

save{<layer>,<file>)

This command saves the contents of the layer specified by the integer <layer> in the file specified by the atom
<file> Idid my best, but this commands remains slow. That will be improved in the next version. The contents of the
original layer are not changed by this command.,

load(<layer>,<file>)

Conversely, this commands loads a bitmap from a file. Dimensions of the current set of bitmap should be the same, and
margin as well. Practically, the two previous commands should be used only within the DRC of the same circuil.
Currently, if there is a difference in size, DRC bombs out. In future version, discrepancies will be checked, but not

supponad.

Let's note that the two previous commands are wseful when there is a shortage of register, in order to avoid
recomputation of intermediary registers. But considering the sloppiness of save and load operations, I don't think it has
much mierest, even with lew processors,

lisional
As 1o the matier of error cetput, it is not useful 1 output an empty error file. Also, for some complicated rules, it may

he possible to ahort operations if no object is present on the bitmap. The following commands are provided for the purpose
of such opumizations.

if (<layer>)
stop()
This command has a single argument, an integer, which specifies which layer is checked : if any bit is set Lo one in any

of the sub-bitmaps, the commands within the block are interpreted. Note that the margin is not taken into account during
the check. Only the zone which will contain relevant data after a resize is checked,

The beginning of the block is macked by 1 £ (. . .) and the end of the block is marked by stop (). Severul conditions
can be nesied. Since there is a complete equivalence between an end of file and the stop () command, there will be no
syntax error in case of unbalance, In future version, some wamning will be output on the console,

ifnot (<Layer>)

stopl()

This command works in a similar way to the previous one. Following block is interpreted if the layer is blank, besides
MAargins.

There should be a conditional command which also checks the margin part of a bitmap, and some «¢lses construct. That
will be improved in the next version,

One-operand bitmap operafions
clear (<layer>)
This command clears e layer specified by the integer argument <l ayez >, margins included,
black (<layer>})
This command sets all bits of the layer specified by the integer argument <layer > 1o one, margins included.
neg (<layer>)

This command inverts all bits of the layer specificd by the inlager argument <1ayer> to one, margins included. This
operation is equivalent o an exclusive or of the specified layer with a blackened layer.

rsize (<layer>, <units>)

This operation performs a resize of all objects in the layer specified by the integer argument <1ayer >, Resize is done
from the top and right edges of polygons. For the matter of operations on the margins, the sub-bitmaps arc virtually
surrounded by zero. Hence, resize operations do not produce meaningful results on the margins, as we already know it.

lsize (<layer>,<units>)

This operation performs a resize of all objects in the layer specified by the integer argument <layer>. Resize is done
[rom the bottom and left edges of polygons. Besides, it works in a similar way to the previous command.

Twi- ifrm, i

The destination register is the first one from the left; the second one is not modified by the following operations. Also,
all parts of the destination register are affected similarly by the following commands, even the margins. For all the
remaining commands, destination and source registers should be different, or deadlock will occar. That will be checked, but
niot supported, in the fomee version,

agqual {(<layerl>, <layeri>»)

This copies the contents of the layer specified by the inleger argument <l ayex 2% into the layer specilied by the inleger
arpurmnen: <layerls,

and (<layerl>,<layer?:>)

This writes into the layer specified by the integer argument < Layer 1=, the resull of a bit-lo-bil and belween contenls
of the layer specificd by the integer argument <layer2> and the contents of the layer specified by the integer argument
<layerl>,

or (<layerl>, <layer?>}
This writes into the layer specified by the integer argument < 1layer 1>, the result of a bil-w-bil or belween contents of

the layer specilied by the mleger argument <layer2> and the contents of the layer specilied by the inleger argument
<layerl>,

gor (<layerls,<layer2>)

This writes inlo the layer specified by the inleger argument <l ayer 12, the resolt of a bit-to-bit exclusive or batween
contents of the layer specified by the integer argument <l ayer Z> and the contents of the layer specified by the inleger
argumeni <layerl>,

andnot (<layerl>, <layerl>)

This writes into the layer specified by the integer argument <1ayer 12, the result of a bit-to-bit and between the bit 1o
hit 1's complement of the contents of the layer specified by the integer argument < 1ayer 2> and the contents of the layer
specified by the integer argument <layerls,

4. Experimental measurements

Experimental measurcments have been conducted with two purposes in mind : 1o check the number of reductions done in
the program and to measure the execution ime. Knowing how many reductions are performed allows some verification of
the global behavior of the program, while tme measurements are related 1o the behaviar of the slowest of all processors. As
in our case al]l processors are doing more or less the same thing, T confess that making the difference is somewhat
Byzanune...

Anyway. For the first experiment, we used an input file with only two squares of one bil in area, with a distance which
was varving from 128x128 10 2048x2048. As we slore 32 bits in @ word, the bitmap sizes were varying from 4x128
64x2048, Considering this unbalance, as we used from one to fifteen processors, bilmap division was always done
according to the vertical axis.

Experiment itself was conducted over a set of 12 instructions. More precisely onc instruction of each type in the above
list (newregister, 1 f and file operations excluded). This sat was executed once, then twice in a row, and the resulling
mean execution time and reduction count were extracted. The error resulting from this set of measure is a systematic ermon
(100 ms), while the average error was 15 ms. A special purpose 52t of routines was developed at this occasion, as the
system listener does not give meaningful results and tends o perturh the program.

It i3 worth (0 note that the [irst version of the program was naively written, launching many goals in paralle] in the
same processor. The main consequence of this was an breadth-first exploration of the program excecution tree and a guick
exhaustion of memory. Inserting internal synchronization has lead 1o a threefold increase of program specd and a nonmal

MEmory usage.
For our first cxperiment, we were basically interested in a measure of the speed up when the number of processor was
increasing. The time complexity we expect is of the form :

£ a2 1 M
T=(355+ sM(§+ﬁ+ﬂ—]E+Pu

So, at the first order, when there is no margin, we expect the time to be proportional to the inverse of processors and o
the square of %, the base of the bitmap dimension, This 13 demonstrated in figores 7 and 8,

In figure 7, we extracted the slope of the curve, for each bitmap size. These slopes have been reported in figure 8, where
we can check that they match the parable found for a single processor. According to thess figures, i = (.5 ms.

It is also possible to measure the communication cost a, if some care is taken. Figure 9 represents the time complexity
of 12 bitmaps operations for a 128x128 bitmap. We can see that the time is actually the sum of an hyperbole and a linear
function of the number of processors. The coefficient of the hyperbole, 341 ms, is not totally matching the previous

formula. In fact, some terms which arc small but linear according to the bitmap base size have been omitled in the
complexity formula. We can nevertheless consider that o = 20 ms.

i@ e} No Margin
40000 5

1=T27 + TE1T0/p

timM28
tim/256
ims12
tim/ 1024
lim/2048

t=140 + 20773/p
20000

I =240 + 5286/p
=286 + 1245/p

t=3354+54(p R=021

15/ processars

1 3] 7 o 1 13 15
Figure 7 : execution time according o the inverse of the number of processors

time (ms) No Margin
20000 - t= 0.0168%2
B timilp
A * ImZzp
gooco{ | ™ HmAp
& fim4dp
1 B imEp
o imM0p t = 000062
400004 | & Gimisp
& tim base t=0.007s"2
' I = 0.00495"2
20000 -
I= 0003752
t=0.00188%2
0 - | 1=00012s*2
0 1024 2048 base size (bits)
Figura B : execution time according to bitmap base
time {ms) No Margin
500
1 @ timM28 g
1 ® bitcost o
400 B com cost B =
¥ e rest _ @ t=21p
J00 -
200 1
t=102
100 4
i i t-:!dhlp
Q T I I Ll ¥ T T 1

recaessors
1 a 5 7 g 11 13 15 P

Figura @ : sa&t out of communication cost, for a 128x128 bitmap

It is interesting to check what happens if we use some margin. Figure 10 depicts execution time against the inverse of
the number of processors, for a 32 bits margin,

time (ms) 32 Bits Margin

g tim2048
* tim/1024
40000 - t= 3264 & TE4ET/p " tm/512
- & 1im/256
30000 = {im/128
1= 1554 + 21460/
20000 -
10000 t= %61 4 5950/p
I=700+ 1837p
5 — =565 +414p
1 15 15/ processors

Figura 10 : execution time according 1o the inverse of the number of processors

We can confront the slope coefficients and base of the lines pictured in the previous figure to the analylical complexity.
Figure 11 holds the comparison,

time (ms) 32 Bits Margin
10000 -

Te-502 = 458
8000 -

B base
& slopa - 52
® anal, base

6000

4000
t=111+1.5s

2000
t=5

U I L T '
512 1024 1536 2048
Figure 11 : modifications of slope and base coalficients of time brought by the margin

base size (bits)

We find again a 30% discrepancy between analytical base and measured base. This is due to some operations which
require a small time, which grows linearly with the base size. They have not been included in the complexity formula. As
to the slope of ime curve, we subtracted the quadratic figure 0.5 before plotting it in figure 11. This curve is much lower
than it should be : there is a theoretical tatio of 32 between the base and the slop coefficients. General shape s satislying,
but mare experiments should be conducted, with different values of the margin parameter.

From this experiment, we can infer some limits on performance, lor real data. Let's consider a rather large circuil, say
lcm?, described by using 1y units, Typically, we will perform about 2000 bitmap operations for an average set of DRC
rules, over 10 bitmaps of 10% by 10¢ bits, with a 32 bits margin. The formula giving time complexity of bitmap operations
is the following:

B s 2
T-q.2 I:‘JF + 2M) + aP
This value reaches a minimum Ty, for some value Py, of P. For s* » P, M?, an approximation of Py, is given by the
following formula :
o
f

This approximation is valid if sy%* » M2, It can be verified that in our case,with y = 1250, s = 104, M = 32, this condition

is broadly satisfied. So, we find Py = 283. An approximation of the time limil itself is then given by the following
formula :

Py = 5705 (1 4 M e85 y075) with y= 32

T = 0.25 (2af)25 g
For 2000 eperations, we Tind that about 30 minetes are necessary 1o perform DRC,

Let's now compute the number of available registers : we need 1P buts for a register (10 are already occupied by the original
circuit). With 283 processors, this lgure is decreased down (o 45 KBywes per processor, Sinve 40 MByies are nearly
available on each processor, a fow hundreds registers can be allocated without much problem, This may substantially
decrease the number of necessary operabons, if intermediary values are kepl

T be honest, in the current version, vectors are used instead of strings in order to store bitmap. The main consequence
ol this 15 a waste of memory. The above Dgure has 1o be meluplied by 2 or 3 0 reflect the exact memory cost, Sull, that
leaves us with a comlorable number of registers, il a clever compilation is done. Besides memory waste, vectors also cause
a degradation of the performance of the program. A factor of 2 or 3 can sull be gained in eaecution speed. Furthermore, the
next version of the parallel machine, PIM, uses integrated technology mstead of gate wehnology and should bring a fivefold
increase of execution speed. Allin all, measered time complexity can be decreased by a factor of 10.

The goal of the second set of caperiments was (o measure the time necessary to transform a sel of polygons into
bitmaps. We only checked that this tme was decreasing linearly with the number of processors, For the experiment, we
used a file with 100 identical squares. The size of squares and the number of processors changed during the experiment,
Figure 12 depicts the resulis,

time {ms} No Margin
1200004 | @ tim1024
11* tmSi2 1= 8330 + D561/
1000004 | @ 256
& timi2g

80000 -
60000

40000 [= 8455 + 24745/p

t= 8736 + 5704/p
N
t = BEYT + 1320/

20000

15/ processors

]
1 15
Figure 12 ; time of circuit analysis versus the number of processors.

Experimental conditions are not quite satisfying : the first point is that all squares are identical and cover the whole area.
Therefore, pipe-line effect is maximal., On the ather hand, as the squares are comparatively larpe, pipe-line is long to
initiate. If we compare the above complexity figure o the one for an average bitmap operation, we find that putting a square
in a bitmap is roughly twice faster, say il requires a time & = 8 psec per unit of area,

The constant factor above takes into account polygon splitting (which is fast in our case) and [ile operations. A constant
time of nearly 3 seconds has been experimentally observed to be necessary 1o open and close a file on the current version of
the systerm, Therefore, we can consider that square splitting takes about o = 30 ms. In the fulure version, o wcat N
polygens with E vertical edges and area A, on P processors, will require a time T, roughly described by the following
Formula :

1-,‘?_({25%;1_ 8A) + P

Wecan take N = [0F E = 10, A= 1000 and P = 500, Then, T = 500 seconds, i.e one third of the time required to perform
operaiions themselves, Unlike during bitmap operations, inler-processor communications don't become the botlencck
quickly, as basic operations keep a high cost

5, Conclusion

In this note, we presented the main algorithm used in our DRC program and some early experimental results. This
program is still in an immature swate, The next version, if ever scheduled, should bring more performances and user
facilities. Nevertheless, we showed a possible usage of a parallel machine w0 eat a problem which is currently handled by
sequential computers.

It is wue that most operations performed by our program could be performed on a SIMD machine, such as the
Connection Machine™., But we observed that a non negligible time, about one third, is spent to do initial circuit analysis,
whereas this sk is not easy to divide on a SIMD machine, A lincar speed-up is expected on a MIMD machine such as the
Mulu-PSI.

T would like to thank Mr Koichi Kimura and Dr Kazuo Taki for their kind help, and Ms Sungsoon Kim for tweaking
complexity minimum with me.

6. References

[1] 77, «Berkeley's CAD toolsw, user manual, 1987, pp 72,
[21 D Dure, «Eléments pour une CAO de circuits VLS » rapport de DE AL, Université d'Orsay, 1986

[31 C.R.Bonapace and C-Y. Lo, «Larc2: A Space-Efficient Design Rule Checker,» proceedings of JCCAD, 1987, pp.
298-301.

[4] L. Pierre, ECLTRI+FUSION, A Private Collection of Pascal Programs, Ecole Normale Supérieure, 1985,

[5] T.Y.Kong, D. M. Mounti and A. W. Roscoe, «The Decomposition of a Rectangle into Rectangles of Minimal
Perimeter,» SIAM journ. of Computers, 17(6), 1988, pp. 1215-1231.

