ICOT Technical Report: TR-531

TR-331

Evaluation of Inter-processor
Communication in the KI.1 Implementation
on the Multi-PSI

by
K. Nakajima & N. Ichiyoshi

February, 1990

© 1990, 1ICOT
Mita Kokusai Bldg 21F {03) 456-3181~5
|(:D | 4-28 Mita 1-Chome Telex ICOT]32964
Minate=ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Evaluation of Inter-processor Communication

in the KLL1 Implementation on the Multi-P5I

Katsuto Nakajimaf
Nobuyuki Ichiyoshif
i: Mitsubishi Electric Corporation

t: Institute for New Generation Computer Technology

Abstract

The Japanese fifth generation computer project has the target of building a highly
parallel inference machine (PIM) on which to construct large-scale knowledge informa-
tion systems. We developed a prototype, the Multi-PSI, for the purpose of providing a
practical tool for research and development of parallel non-numeric software. It also served
as a testbed for implementation of concurrent logic language KL1 on a loosely-coupled
multiprocessor. The design rationale was to obtain a high overall performance, taking
acconnt of garbage collection overhead, and to decentralize management information for
scalability.

"This paper gives the measurement results of inter-processor operations in the sys-
tem, both in absolute terms (cost of primitive operations) and in relative terms (rate of
communication overliead in benchmark programs), and determines the bottlenecks in the
performance of inter-processor aperations.

The measurements in the benchmark programs show that the bandwidih of the net-
work hardware is much larger than the actual message traffic, and it is expected to remain

so for larger configurations such as a 32 x 32 mesh network (1,024 processors).

1 Introduction

The Japanese fifth generation computer project has the targel of building a highly parallel
inference machine {PIM) on which to construct large-scale knowledge information systems.
We developed 2 prototype machine, the Multi- PSI system [Taki 88, MNakajima 89], for the
purpose of providing a practical tool for research and development of parallel non-numeric
software. It also served as a testbed for implementation of concurrent logic langnage KLI1
[Chikayama 88] on a Joosely-coupled architecture.

The Multi-I’ST is & non-shared memory multiprocessor, whose processing clements
(PEs) are the CPUs of the personal sequential inference (PST) machine [Nakashima 87].
There was an earlier version, the Multi-PSI/V1, but in this paper the name Multi-FPSI
represents only the Multi-PSI/V2.

Up to 64 PEs are connected by au §x8 mesh network with aulumatic routing capability.
The two-dimensional mesh network has a dense and simple implementation. It is also very
scalable in that network node degree stays a constant (4) as the number of nodes increases.
Thus, the Multi-P'SI architecture expand to larger-scale configurations (for instance, more
than 1,000 processors) with little modification.

A distributed KL1 implementation was developed on the machine. It is written in
the microcode for performance. The design rationale was to obtain a high overall perfor-
mance, taking account of garbage collection overhead, and to decentralize management
information for scalability.

This paper gives the measurement results of inter-processor operations in the sys-
tem, both in absolute terms (cost of primitive operations) and in relative terms (rate of
communication overhead in benchmark programs), and determines the bottlenecks in the
performance of inter-processor operations.

Section 2 of the paper outlines the Multi-P5ST hardware, the concurrent logic language
KL1 and its parallel implementation, Section 3 reports the evaluation results, and Section

4 conecludes the paper.

2 Overview of the Multi-PSI System

2.1 Hardware

2.1.1 Processing Elements

The processing element (PE) of the Multi-PSI is the CPU of the PSI-II [Nakashima 87).
It is a 40-bit {8-bit for tag, 32-bit for data) CISC processor controlled by the horizontal
micro-instruction. It enables a flexible implementation suited for incrementally enhancing
the performance and adding various functions. The cycle time is 200 nsec. It has up to

16 Mwords of local memory and a 4-Kword direct-map cache memory.

2.1.2 Network Controller

Each PF is paired with a specially designed network controller to support message passing
communication between PEs. It has five pairs of input foutput channels connected to the
four adjacent network nodes and to the PE of the node (Figure 1). Each channel consists
of 11 bits, U bits for data, one for a parity and one for a busy acknowledge signal of the
opposite direction.

The cycte time is 200 nsec and the bandwidth of each channel is 5Mbytes/sec. A
4%-byte buffer (Output Duffer) is installed at each output channel to retain messages
when the destination node is busy. A 4-Kbyte buffer (Write Buffer and Read Buffer) is
installed at each input and cutput channel for the PE of the node to reduce disturbance
of processing in the PE. As soon as a complete message (from a message header to a tail)
is written by the PE in the Write Buffer, it is shipped out by the controller as far as the
transmitting channel is not busy. When a complete message is taken in the Read Buffer
by the controller, the PE is informed by an interrupt signal.

The controller has an automatic routing function. It can route messages according to
the PE number in the message header. A software-defined table called the path table is
looked up to determine transmission direction. A fixed routing strategy called prioritized

coordinate ordering is adopted. It means to transmit a message along the z-coordinate

MW« Metwork contreller
wWh : Write buffer
BB : Read buffer

E : Processing
clemernit

Figure 1: Processor Inter Connections of the Multi-FSI System

until the distance in the coordinate becomes zero, then to transmit along the y-coordinate.

This prevents network deadlock as it is impossible to make a circle of nodes waiting for

one another?!

2.2 Parallel Language KL1

KL1 (kernel language version 1) is a stream AND-parallel logic programming language

based on Flat GHC[Ueda 86). A KL1 program is made up of a collection of guarded horn

clanses, whose form is:

H:-G..onGwm|Bry.. .y Ba. (m>0, n>0)
—_— e —————— ——
guard body

where I is ralled the head, G; the guard goals, and B; the body goals. The vertical
bar { |) is called the commitment operator. The guard part unification is to wait for the
instantiations to variables (synchronization) and to test them. When the guard unification
succeeds, the control proceeds beyond the commitment bar and the body goals are reduced

concurrently, those of which may communicate each other through their common variables.

1Note that even with this strategy, a deadlock may eccur if & PE fails Lo take in all the messages directed

to it.

KL1 body goals can have pragmas as the meta-programming functions.

(1) Priority pragma (..., B@priority(FPrio),...) To specify scheduling priority, which
rontributes to efficient problem solving.
(2} Throw goal pragma (..., B@processor(PE}, ..} : To move a goal to another PE

for load distribution.

2.3 Distributed KL1 Implementation

2.5.1 Execution Mechanisms in a PE

The following is the execution model of this implementation in a PE. Reduced KL1 body
goals are stored in the current priority goal pool, or other priority pools if priority pragmas
are specified. KL1 execution is done by choosing a goal from the highest priority pool. If
the goal is waiting for a variable, the goal is hooked in the variable (non-busy wait) and
wonld be stored back in the former poal pool when the variable is instantiated.

A KL program is compiled into KL1-B [Kimura 87] code which is similar to WAM
[Warren 83] for Prolog. KLI1-B code are interpreted by microcode of the PE. A list

concatenalion program in KL1 runs by 128 KRPS (Kilo Reduction Per Second) on a PE.

2.3.2 Inter-processor Processing Mechanisms

Inter-processor communication can be categorized into two, inter-processor data manage-
ment and inter-processor goal management (control of the distributed computation). This
paper will not describe the latter, which can be found in [Ichiyoshi 87], [Rokusawa 88|,
and [Nakajima 89).

The following is the outline of inter-processor data management. The details are in
[Nakajima 89].

A KL1 goal with a throw goal pragma is shipped out to another PE by Wthrow.goal
message, As the single assignment semantics of KL1 allows data copying, the atomic
arguments of the goal are copied into the message. However, if the argument is a structure,

it is encoded as an erternal reference pointer instead of copying it, because the goal might

not need the data. The structure elements are transferred lazily on request by Yread
messages. To generate an external pointer is called erporting, and to receive the external
pointer is called importing. Unbound variables are always exported as an external pointers
to retain the identity.

KIL1 has a fine grain parallelism and is suitable for massively parallel computation,
though its implementiation tends to consnme memory very rapidly. Efficient garbage
collection {(3C) is one of the most important issues for KL1 implementation. To collect
all the garbage in the system, a global GC would be necessary, which must be performed
by cooperation of all the PFs. However, the global GC has the serious disadvantage of
forcing all PEs to stop program execution. It takes a very long time, up to the longest
path of data references in the system multiplied by the network communication delay.
T'herefare, it is better to perform GOC locally {local GO} as far as it can reclaim enough
MEemory.

To perform local GC, we employed two level address spaces; the higher one is for
external pointers, the lower one is for inside PE. All the exported data must be known by
the PE so that they are not reclaimed as garbage. For this purpose, the export fable keeps
internal addresses of all the exported data in a PE. All the external pointers point to the
entries of the table from outside the PE{Figure 2). The external pointers are represented
in the form < n, € >, where nis the exporting PE number and e is the entry position in
the export table. This is the address (notation) in the higher level address space. This
address is not affected (changed) by local (3Cs. The export table is the translation table
from the < n, ¢ > form to the internal address of the exported data. The ezport hash
table is also installed to translate from internal address to external one to re-export the
same data, which prevents unnecessary duplication of the data between local memories.

To reclaim garbage cells pointed to by the export table, the entries of the table must be
deleted when they become garbage. A reference counting scheme based on the weighted
reference counting (WRC) [Watson 87] is used for the incremental GC of the entries. This
is called the weighted ezport counting (WEC) method [Ichiyoshi 88].

In this scheme, a weighted count of a positive integer, called WEC, is kept on the both

FProcessory Processory,

Import table Export table

EXREF cell Exported data

@_‘:‘:r{ﬂ,ﬂ = X J

Figure 2: External Reference and Export/Import Table

export and import sides. The system operates keeping the sum of the WEC in the messages
in transit and at the importing PEs equals to the VEC at the exporting PE. This scheme

has the following advantages:

« When an imported pointer is copied to another PE, the WEC is split. No message is

sent to maintain the WEC of the exporting P'E.

e There is no racing problem.

To keep WEC on the importing side, we have the import table(Figure 2). The WEC of the
imported pointer which is no longer used known by the intra-processor incremental GC
using MRB [Chikayama 87] or a local GC is returned 1o the exporting PE by a release
message. We have also the import hash table to translate from an external address to the

internal address of the cell representing the external pointer for re-importing.

2.4 Inter-processor Messages

2.4.1 Messages Handling

A low level microcoded routine in the PE is responsible for basic handling of the messages
to and from the network controller. It performs composition and decomposition of message
packets such as handling message header and tail, and arranging a 32-bit data in the
processor to/from four byte serial data in the network controller. The operations in this
routine are independent from the implementation of KL1.

When a series of message bytes reach to the node, they are queued in the Read Buffer

by the network hardware. The micro routine is invoked by an interrupt when the message

T

Table 1: Inter-processor Messages (part)

Message Note

Ythrow goal K L1 goal distribution
hread request to read the value of an external pointer

Yansver_value | response to a jread message

funify request to unily with an external pointer and an argument

lrelease return WEC value of an external pointer

tail is queued. It moves the complete message to a large memory area, called the Read
Facket Buffer. The aim is to prevent network deadlock by propagating the processing
delay to other nodes along the network path. The messages in the Read Packet Buffer are
decoded at a slit of reductions. On sending a message, if the routine cannot find enough
room to store the whole message in the Write Huffer, it will wait until more room becomes

available.

2.4.2 Summary of Inter-processor Messages

Table 1 and the followings summarize the typical inter-processor messages, some of which

have already been introduced in the previous sections.

¢ A Ythrow message transfers a KL1 goal with its arguments.

¢ A Yread message is sent to the exporting PE when a guard unification is attempted
with an imported external pointer. A Yread message has two arguments: the ex-
ternal painter address to read and a new external pointer pointing to the external

pointer cell where to be replied to.

¢ An Janswer_value message is immediately replied to the {read message if the con-
tents of the exported data is an instantiated value. If the value is an structured
data, the surface level (that is, the elements of the array or list) are encoded. If the
elements are structured data, they are encoded as external pointers. If the exported

data is still an uninstantiated (unbound) variable, the received Yread message is

8

suspended by hooking it in the variable. The arguments of {answer value are the
destination to reply and the value to reply.

s A Yunify message is to request a bady unification of two arguments, one of which

is an external pointer exported by the PE where the message is directed to.

e A Yrelease message carries WEC of an external pointer to return to the exporting PE.

YRelease messages are issued at intra-processar incremental GCs and local GCs.

3 Measurements and Evaluation

The major concern in cvaluating loosely coupled multiprocessors would be the cost of
inter-processor communication, the overhead by it, the traffic of the connection network
and the workrate of each processors. This section describes the evaluation results of them.

The Multi-PS! systems with 1, 4, 8, 16, 32 and 64 I’Es were used for the measurements.

3.1 Measurements of Primitive Inter-processor Operation

Cost
3.1.1 Inter-processor Operation Cost and Analysis

Figure 3 shows the micro instruction sieps obtained by microprogram traces. The time
was calculated by multiplying the number of micro steps by 200 nsec (cycle time) and
does nol include the memory access overhead (cache miss penalty).

The costs of sending and receiving a fithrow.goal message whose three arguments are
an atom and two external pointers in a typical cituation? are shown in Figure 3(a) and
(b). It takes about 85usec for sending such a goal and abont 130usec for receiving and
storing it to a goal pool.

The time taken in the basic message handling routine is almost the samne as that for

Encode/decode KL1 term, etc., which consists of the steps for encoding/decoding the

3The PE receiving the message is assumed to already have the program code,

goal arguments according to their data types, for encoding/decoding other gual informa-
tion such as code and priority, and for looking up the export/import table for the address
translation. It takes 14% of the total cost of (b} to move a 65-byte from the Head Buffer
to the Read Packet Buffer {Copy-to RPKB).

As it takes only 13psec (15% of the total cost of (a). 10% of (b)) to transmit a 65-byte
message by the network contraller, the large averhead exits both in the basic routine and
the operation depending on the KL1 implementation almost half-and-half.

As shown in Table 2 in 3.2.2, the Pentamino program runs at about 40 KRPS (25usec
pet reduction) on a PE. (a) and (b) are 3.4 to 5.2 times of that reduction cost.

Figure 3(c),(d),(e) and () describe the cost of sending and receiving a jread message
requesting the contents of an external pointer and an Janswer_value message answering
the request. The returned data is a list whose CAR is an atomic data and the CDR is an
external pointer.

It takes 25usec to send a 14-byte ¥read message and 35psec to receive it. It costs
42usec to send a 24-byte Yanswer_value message and 80pusec to receive it. They are]
to 1.7 times of the Pentomine reduction. A 14-byte or 24-byte message requires at least
2.8 or 4.8 usec, which is 6 to 11% of the cost for sending/receiving each message. The

make-up of the cost for these messages is quite similar to the jthrow_goal.

3.1.2 Possible Tune-ups

Copy_to APKE can be omitted by decoding messages directly from the Read Buffer when
there is enough room in the Read Buffer to get further messages. With this improvement,
the cost for the %throw_goal can be reduced by about 13.5%. According to our recent
estimation, the cost of sending it would be reduced by up to 15% and the cost of receiving
it by up to 30 % (with the elimination of Copy._to.RPKBE) by fully tuning up the microcode,
mainly in the basic message handling routine. For %read and Yanswer._value messages,

our estimations of the tuning up effect are also 15 to 30 % of the current version.

10

[65 bytes)

Send_throw { platom, EXREF,EXREF))
| B5psec (419 steps]

2 NN

Recelve_throw { platom, EXREF EXHEF)) [65 byles |
O NN | 1:1:,; poee
steps
Send_read [EXAFF} [14 bytes]
©] 2susec (117 steps)
Recelve_read (EXBEF) [14 byles]
(d) EE_\ ES | 35p sec {175 sleps)
Send_answer_value ([atem |EXREF]) [24 bytes]
OENNN| | 42 sec (208 steps)
Aeceiva_answer_valus [[atom | EXREF] } {24 bytas)
i -\\\\\\\\H | BOp sec (387 steps)
it i .t : : |
100 120 140 (1 sec)

]
A0 60 BO
EXAEF Exarnal pointer

I Copy_to RPKB
] Basic message handling routines
9 9

[:f Encode/decoda KL tarm, eto..

Figure 3: Message Handling Cost

11

3.2 DMeasurements of Inter-processor Communication by

Benchimark Programs

The previous section gave Lhe measarement results of individual inter-processor message
handling costs. The network traffic and the impact of inter-processor conumunication in
total execution time depend on programs that are v, We took measurements for two

dilferent tvpes of benclunark prograns.

3.2.1 Benchmark Programs
The followings are the two benchmark programs we usod,

 Pentomino: A program to find ont all solutions of 4 5 = 8 packing piece puzzle, That
i, it finds all the wayvs of packing a 5 % 8 rectangular box by ten various shaped

pieces, each made ap of fonr anit squares.

+ Bestpath: A 160 « 160 grid graph is given together with randomly generated non-
negative edge costa. A program determines the lowest cost path from a vertex to all

other vertices of the grapl (single-source shortest patl problem),

The Pentoming program does an exhanstive search of an OR-tree of possible plece
placements. Onpe master PE starts at the root node {corresponding to the empty bax)
anil searches the tree down to a certain Axed depth, and evenly distributes the subtrees
Below Lhat depth to all PEs by a dynamic load balancing scheme [Furnichi 90, When 64
s e wsed, they ave divided joto eight processor gronps each consisting of eight PFs,
Al the higher level, the processor groups are balanced by distributing super-subtasks to
then. and at the lower level, within cach processor growp, the load of the processors are
halanced by distributing subiasks to them.

The Bestpath program generates the grid first, and then performs a distributed short-
est path algorithm. The grid graph is divided into sixteen 40 x 40 superblocks, each of
which is again divided into s0 many blocks as the Multi-PSI PEs and statically mapped
onto them. For example, when 64 PEs are emploved, each PE is assigned sixteen 5 % 5

blocks from the sixteen superblocks. The inter-vertex cost information packets in the

12

distributed algarithm is represented by goals Lo utilize the priority mechanism of the kL]

implementation. We ook mcasurements of the second phase of the progran.

3.2.2 Message Profile

Table 2 shows the tolal number of the messages by message Lype and their average length.
The total number of reductions and the total reduction speed are also listed.

In Pentomino., the Yread, fanswer.value and Yrelease messages are dominant. In
Restpath. the junify and Ythrow_geal messages are also frequent.® The message sending
rates in program execution on 64 PEs are 1/88 messages per reduction for Pentomino and

I /6 messages for Hestpath.

3.2.3 Communication Overhead

This seclion analvzes to what extent inter-processor communication overhead degrades

the overall performance of the benchmark programs.

We break down the execution time in the fallowing way. Each PE of the Multi-P3I has
a built-in hardware for counting the number of steps execuled at specified micro addresses.
The PEs also have a calendar clock, all of which are simultaneously initialized when the
svatem starts np. By using them and logging the time of entering and exiting from idie

status at each PE, we can measure the following items.
) Total micro steps that are run outside of the idling loop (for each processor)
(b} Total micro steps that are run in message handling rontines {for cach provessor)
[} Total execution time
(o) Total idling time (for each processor)

The workmte of the PE is defined by {¢ = d)/c. The difference between ¢ and (a +

b) x eycletime (cycletime = 2)0nsec) is due to cache miss penalty. b x eyelelime is the

communication overhead less cache penalty involved.

3This is because inter-vertex packets that cross processur boundaries are translated into goal throwing.

13

Table 2: Message Frequency and Reductions

[Pentomino (39.3 KRPS on 1 PE)

INCSSage 4 PEs 16 PEs 64 PEs

read 10108 (27.7 %) | 24,746 (31.9 %) | 30,736 (324 %)
answer.value | 10408 (27.7 %) | 24,704 (31.9 %) | 30,581 (32.3 %)
release 6,843 (18.2 %) | 12,333 (15.9 &) | 13,641 (l4.4 %)
unify 2379 (63%) | 7,504 (9.7 %) [11,12¢ (11.7 %)
throw 1191 (3.2%) | 1677 (22%)| 1,768 (1.9%)
ete. 6396 (16.9%)| 6542 (84%)| 6835 (73%)
total 37,625 (100 %) 77,506 (100 %) 94,750 (100 %)

[avg. msg length

21.1 bvtes/msg

20.4 byles/msg

20.2 bytes/msg

total time 54,634 msec 14,615 msec 4,345 msec
total reductions 8317 K 8,332 K | 8,340 K
reductions (sec 152.2 KRPS 570.1 KRI'S 1,919.4 KRPS
reductions/msg 221 108 88
meg bytes/sec 145 K | 108.1 K 440.5 K
l Bestpath (23.4 KRPS on 1 PL)
message 4 PEs 16 PEs 64 PEs
read 12,396 (27.5 %) | 28,730 (27.8 %) | 66,899 (27.7 %)
answer value 10,156 (22.6 %) | 23,980 (23.2 %) | 56,980 (23.6 %)
unify 2,439 (18.8 %) 19,190 (18.6 %) | 43,370 (18.0 %)
release 6,198 (13.8 %) | 14,390 (13.9 %) | 33446 (13.9 %)
throw 6,198 (13.8 %) | 14,390 (13.9 %) | 33446 (13.9 %)
elc, 1,618 (3.5%)| 2694 (26%)| 7263 (29 %
| total 45,005 (100 %) | 103,424 (100 %) | 241,404 (100 %)
avg. msg lenpgth 27.0 bytes/msg 27.2 bytes/msg [27.0 bytes/msg
total time 10,655 msec 4,062 msec 1,691 msec
total reductions oR7.7T K 12136 K 1,505.2 K
reductions/sec 92.7 KHPS 298.8 KRPS 890.1 KRPS
reductions/msg 21.9 11.7 6.2
msg bytes/sec 114.0 K 692.5 K 3,854.3 K

14

oo - 100
ag B~
= z
E &0+ E &0 =
o [
S S 1
= 40 F 40+
209 20
o - o
1 2 4] 16 a2 B4 1 2 4 B 18 az a4
Num of PEs O idie Mum cf PES

El cacha miss
Mg handling
M Comparting

o T T T o T T T
a 20 40 a0 o 20 40 B0
Mum of PES Mum of PEs
o Speedup
- |daal I
Pentomino Bestpath

Figure 4: Workrate and Speed-up

15

The processor time breakdown is given i Figure 4. The braakdown in the bar graphs
is into: computing {a x 200 nsec), message handling (b x 200 nsec), cache miss penaliy
{¢— (a4 b)x eyeletinie) and idling times (d), avoraged for all PEs.

lu Pontomino. the overhead by the inter-processor commuuication and cache miss is
very small and the speed-up degradation was mainly caused by idling time, which is small
but still exists.

In Bestpath. thongh the idling ratio on 64 PEs are smaller than that of Pentomino. the
computing ratio is rather low. Net only the overhead of the inter-processor communica-
tion. but the cache miss penalty is very large due to large working set. As the number of
PLs gfmx-, the percentage of communication time also grows. More precisely, the numhber
of inter-processor vertex-tn-vertex packet sending is expected to be proportional to the
tatal length (in number of vertices) of the block honndaries. which is proportional to the
syuare root of the number of P'Es. This is supported by the tatal number of messages
{"Table 2} and by the measurement of communication time. This means, if we run the
same program for a much larger graph, the relative communication overhead will decrease.

In sunumary, the performance degradation by communication overhead is small for the
Pentomino program, aud is expected to be so for OR-parallel type of problems. For the
Bestpatl program. the relative communication overhead grows as the graph is decom-
posed into smaller blacks, but it should decrease for larger graphs. Nonetheless, message
handling mechanism must be optimized so that the graph can be decomposed into smaller

blocks ta increase processor atilization rate withont Large communication overhead.

3.3 Ewvaluation of Network Hardware
3.3.1 Network Traffic in Benchmark Programs

In Pentomino, since intra-processor-group nessages are dominant, the average message
traveling distance (the number of hops of the network channels) is estimated to be about

2. The average message traffic rate per channel on 64 PEs is estimated to be:

16

S Rhytes w0
{rumber of channels) = 224

= LORbytes fsec!

which is 0.08% of the SMbytes/sec bandwidth of a clianue] and extremely sinall. Message
sending and receiving centers al each subitask- distributor P12 in the processor gronps, bt
the minount is eight times the average, whicl is still very small.

[n Bestpatl, the average hops is estimated at a littie more than 1. sipee most inter-
block messages are {ron one PE to an adjacent PE. Therefore the average message trafhic
is calculated as:

3.55) lbyvtes = 1

571 = 17.2 Khytes/sec

which is 0.3% of the chanuel bandwidth. As PEs are ma.lmed‘. statically to the block of
the problem grid, there must be hot spots along the wavelront of short pass messages
traversing the processor plane, which makes the channel busier by a factor of the square
root of the number of PEs. Still, the real traffic rate would be very small.

[his means the network hardware has far too much capacity than required, al least

[for the two benclunarks.

3.3.2 Estimation for Larger-Scale Networks

I this section. we give an estismation of the network traffic on a more scaled-up machine,
for instance, up to 1,000 PEs. We assume 1o execile a fine grain paraliel program, in
which the average message frequency at each PE is 1/6 messages per reduction that s
Lhe same as in the Bestpath ou 64 PEs. [corresponds to 27hytesx (SPUKRPS/64)/0
=t3khytes sec,

We also assume the inter-provessor communications are performed randomly to take
account of the defect of the two-dimension network topology, where the number of mes-

sage traveling distance is almost proportional to the square root of the number of PEs.®

i{pumber of chanuels)=4- L -{L = 1) = 234 where L = +/ (number of PEs) =&
%9 (L —1)-(L41)/(3-L) =203 where L= /{number of PEs) = 32. (Assuming the processors are

aligned in a square.)

Tlis is o pessimistic asswmption compared with the message hops i Pentomino and Best-
path as deseribed o 33000 The towal message frequency in the sestem is proportional 1o
Uie pumber of PEs. The gumber of chanoels® that enlarges the network bandwidth of
the svstem is proportional te the nomber aof PEs. Thoes, the average chanuel traffic is
proportional to r_\;’,-f. NN = VA where X is the number of PFs.

I average channel traffic for 1.024 PEs can be calealated as:

Gd Rhytes = 024 = 21.3

3,065 = 36 Kbytes fsec

which js 6.9% of the 5 Mbyies/sec bandwidrh and is still small, However, we have 1o note
that unless the Jocality of the inter-processor communication is cousidered or unless the
hot spots in the network are avoided by program. the network could be saturated quite

easily,

4 Conclusions

We developed the Multi-PS51 system as a prototype parallel inlerence machine. The mesh-
connected architecture makes it a scalable multiprocessor. Much effort was made in the
K11 implementation on the machine (1) to minimize the overhead of garbage collection,
(2) to reduee the number of inter-processor messages, and (1) to decentralize inflormation,
an Lhat the systemn might be efficient and scalable,

This paper gave the measurements of inter-pracessor operations in the svstem. such
as A he cost of primitive operations, the message frequency and the rate of connmunication
overbead in benchmark programs,

The cost of owe message handling is 25usec to 130usec, which is roughly 1 to 5 times
that of a reduction at the PE performance of 40 KRPS. The workrate analvsis in the
parallel benchmark programs tells us that even with rather large cost of communication,
the overhead for inter-processor communication can be kept within one third of the oper-

ating steps. It can be reduced by a third by optimizing sowe of the lowest-level routines,

“4. L (L~1)=23965 where L =32,

18

I'he network traffic is very low and the network hardware is not limiting the svstem per-
formance in the corrent svstem, The network hardware with the same bandwidth per
channel is expected to be good enough in a much larger-scale system, even with more
pessimistic inter-procesior communication patterns.

This study shows that the Muelti-PSI architecture is indeed scalable. and communica
tion overhead is very small {for OR-parallel problems) or tolerable (for message-intensive
programs, il inter-process lacality in the program is preserved by the mapping on the
machine). However, our insight inte loosely-coupled nmitiprocessors and parallel pro-
gramming on them is still very limited. We will need to experiment with more prograws
with different runtime characteristics, and conduct more detailed measurements and anal-

VEI5.

Acknowledgments

We would like to thank the ICOT Director, Dr. K. Fuchi, and the chiel of the fourth
research laboratory, Dr. 5. Uchida, for giving us the opportunity to conduct this research.
We would also like to thank the researchers of ICOT and the cooperating companies,
who have worked with us in designing and implementing the KL1 system an the Multi-
PSI/V2. Lastly, We appreciate the offer of the benchmark programs to Mr. Furuichi and

Ms. Wada.

References

[Chikayama 871 T Chikavama and Y. Kimura. Multiple Reference Management in Flat
GHC. In Proceedings of the Fourth International Conference on Logic Progrm-
madag, 1987,

[Chikayama 28] T. Chikayama, H. Sato and T. Miyazaki. Overview of the Parallel In-
ference Machine Operating System (PIMOS). In Proceedings of the International
Conference on Fifth Generation Computer Systems, ICOT, Tokyo, 1985,

[Furuichi 0] M. Furuichi, N. Ichiyoshi and K. Taki. A Multi-Level Load Balancing
Scheme for OR-Parallel Exhaustive Search Programs on the Multi-PSI. In Pro-
ceedings of the Second ACM SIGPLAN Symposium on Principles and Practice of
Faralle Programming {PPoPP), 1990.

[Goto 88] A. Goto, M. Sato, K. Nakajima, K, Taki and A. Matsumoto. Overview of the
Parallel Inference Machine Architecture (PIM). In Proceedings of the International
Conference on Fifth Generation Computer Systems, ICOT, Tokyo, 1988,

19

[lehiwoshi 87] M. Ichiyoshi, T. Miyazaki. and K. Taki. A Distributed [miplementation of
Fiat GHO on the Multi-PSE In Procecd ings of the Fowrth fntermilional Conforenee
ot Logie Programnfng, 1987,

Mehivoshi 88] N. [ehivoshl. k. Roknsawa., K. Nakajina and Y. lnamura, A New External
Reference Management and Distributed Unification for KWL1. In Proceedings of the
{nternational Conferenee on Fifth Generation Computer Systcms, ICOT. Tokyo,
[S,

[Kimura 87] Y. Kimurz and T. Chikayama. An Abstract KL1 Machine and Its Instruction
Sct. o Procecdings of 1887 Symposivor an Logie Programating. Sept. 1987,
[Nakajima 59] K. Nakajima. Y. Inamura, N, Ichivoshi, K. Rokosawa and T. Chikavama.
stributed lmplementation of KL1 on the Mult-PSI/V2 In Provecdings of The

Kizth International Conference on Logic Programming, 1980,

[Nakashima 27] H. Nakashima and K. Nakajima. Hardware Architecture of the Sequential
Tnference Machine : PSI-IL. In Proceedings of 1887 Symposivm on Logic Progran-
ming, Sepl. 1987,

[Rokusawa 58] K. Roknsawa, N. Ichivoshi, T. Chikayama and H. Nakashima. An Effi-
cient Termination Deteclion and Abortion Algorithm for Distributed Processing
Svetems. In Proceedings of the (888 Inlernofionad Conference on Parallel Process.
g, Vol [, 1988,

[Takeda 38] Y. Takeda, H. Nakashima, K. Masuda, T. Chikayama and K. Taki. A Loaid
Balancing Mechanism for Large Seale Muoltiprocessar Systems and its Implemetta-
tion, In Proceedings of the International Conference on Fifth Generation Computer
Systems, [OOT, Tokve, 1988,

[Taki 88] K. Taki. The Parallel Software Research and Development Tool: Multi-PSI svs-
tem. Programming of Future Generation Computers, Elsevier Science Publishers
B.V. (North-Holland), 1988,

[Ueda 86] K. Ueda. Guarded Horn Clanses: A Parallel Logic Programming Language
with the Concept of a Guard. Technical Report TR-208, 1COT, 1986,

[Warren 53] D. H. . Warren. An Abstract Prolog Instruction Set. Technical Note 209,
Arlificial Intelligence Center, SRI, 1983.

[Watson B7] P. Walson and [Watson. An Efficient Garbage Collection Scheme for Paral-
lel Computer Architectures. In Proecedings of Pamlle! Avchitectures and Languages

Furppe, June 1987,

il

