ICOT Technical Beport: TR-529

TR-52%
FLIB User Manual

by
B. Burg & D. Dure

Drecember, 1989

{€ 1989, ICO1

Mita Kokusai Bldg. 21F 03 456-3191~35

|G CJT 4-28 Mita 1-Chome Telex ICOT]32964

Minata-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

FLIB User Manual
Version 1.0 - - 11/11/89

Bernard Burg & Daniel Dure

Ahbstract:

The FLIB library is a set of madules which is provided to help people programming in KL1 on
PDSS and on the Multi-PSI systerm. This manual describes in details the predicates found in these
modules and give guidelines on such issues as synchronization, parallel programming, ete. Our point
has been both to relieve the user from the tedium of rewriting trivial functions, and to underline
some problems commonly encountered. While we do not display any magic solution for the problem
of distributing an algorithm over a loosely coupled network of processors, we present some simple
examples which, we hope it at the least, set out the typical trade-offs to operate during and after
design of the program, and demonstrate that in the current environment, performance analysis is
999% experiment-driven.

9 -

454759 FLIB ix. PDSS & A% 4® 3 \wit Multi-PSI » 27 4@ L€ KLl % flwTtra”
SLPEL AmF—IC b o THAR N DOBDT R TLET a— AR BT ILOTHE, HFEY 2
—m¢ﬂmﬁﬁu#ﬂ&mm%ﬁﬁﬁE&ﬁﬂfﬂfﬁivfﬁﬂﬁ%ﬁﬂ@ﬁ%&EKHLfﬁ4F
34wk Eg e bl Lk bailn b LADR, 2—F—nEARM nifaEd Bah ol b miFElEd
Hakaiedace, LT 7458 Bck Ec sREMNEMEACELTEATIC LT
ﬂﬁnﬁ%ﬁ$yh?—?EIEvN?mefnty#—EBhfwEibh&TMfﬂiamﬂL
CTutA b M ERHEEE<EhtwiEECOWTHEATEARBTES DT THR WD, TO
L A= hTRAEC E b ne ohOMEARIFESF T v 2 7 ARRTE ARRARRICEL ATEL
E&MKﬂm&Ph—Ff?ﬂMﬂ&ﬂﬂmftaﬁfik&bHWf5ni&ﬂ—?#**yi
DT, BAEOWFIEEC 99% EHMcEN THORAELDTH S,

Institute for New Generation Computer Technology
Fourth & Fifth Laboratory

Copyright (C) 1989 by ICOT and both authors

Contents

Forewords

Acknowledgements

1 Introduction
1.1 Inside oTBamization o o o i b i e e e e e e e e e
1.7 Words of advices . . L L e e e e e e e e e e e e e e e e e e e

2 Module fel
2.1 Wirtual device openc . . . L L L L L e e e e e e e e e e
P 1 11T
23 Comparison . - Lo e e e e e e e e
oA OALOGIIE . . . o o e
2.5 (lndf. lllllllllllllllllllllllllllllllllllllll 1] r + * L] [] * ¥ * - ¥
B T T
P L o 1 C e h h e e e m e e e e e e

3 Module list

3.1 Basic list operations e e e e e e e e e
B B 1
3.3 Set Operations L L . e e e e e e e e e e e e e e e e e e e
B BOTHINE .« L L L e
35 Arithmetic L L L e e e e e e e e e e e e e e e e e e
A6 Data conversion e e e e e e e e e e e e i e e e e e e e e e e e e
B T

Matrix module

4.1 Type checking and creation c ALt r e d s ke b
4.2 Element access L L L . e i e
4.3 Basic matrix operations L L L L L L e e e e e e e e e e e e e
A Data conversion L L L e i e s
T T
Module par

5.1 Parallel processing L L L L L e e e e e
5.2 Synchronization L i i e e e e e e e e e e e e e e e e e e e
T

Medule string

6.1 Dasic string primitives _ . . . L. L e e e e e e e e e e e e e
6.2 Substrings L et e e e s
6.3 Sorting e e e e e e e e e e
f.4 Data conversion L L e e e e e e e e e e e e
B0 WemslO . . . o i e e e e e e e e e e e e e s

Module util

7.1 Integer to string and wice-Wersa i e e e e e e e e e e e
7.2 General copy & compaction 0L L i e e e e e e e e e e e s
7.3 Parallel processing L L e e e e e e e e e e e e e e e s
7.4 Synchronization e
7.5 Consoleoutput, e e e e o a e m e e e
7.6 Enhanced timer & statistics chs s e

7.7 Random numhber FENOTALOT .« 4 & 4 o 4 o v 4 s m e e e s e e s e s e e s e e m e
TR OWEIEION .+ v o v e
Module vect
.1 Dasic vertor prilmilivES . . . o . v v v ot e e e s e e e e e e e e e e e e e
Mo BUhWertOrs .« e
8.3 Set operations L .. L L e e i e e e s e e e e e
LT e T
MO Set arillmmelic o e
B Vector arithmetie . . . L . e
BT DHAl| COMVETSIOM .« » v v v v e e e e bt e e e e e e et e e e e e e e e e e e e e
A Worsion .o L L e e e e e e e e e e e e e e e e e e
Examples
0.1 Search of a subvector in & vecbor L . L e e e e e e e e e e e e e e e e e e e
91,1 Sequenfial version o0 o 0 e e e e e e e e e e e e
9,12 Naive parallel version oL L Lo Lo e e e e e
9.1.3 Final parallel varsion L L L. e e e e e e e e e e e e
9.1.4 Performanee measuremenbs o . s L oo it a et e e e e e e
8.2 Sorting and removing doubles © 00000 L0
B.2.1 Sequential version Lo
0,22 First parallel verzsion: Verl . . . 0 0 00 0 00 e e e e e e e e e e e
9.2.3 Second parallel version: Ver2 e e
021 Performance Measuremenis 0 v v v v v b e e b b e e e b e s e e e s
0.3 Conclusion 0 L e

ii

Index

documentation {.dvd). .o 2
FLIB description.cvoiiiriiimieniieens 1
FLIB AleS. . netnnnnsoanannsossiinnnnnnnes 2
multiple references ... 3
sequentiality . ooiiiei i B

VETEION . o v e veeeeee e vemenas e e 2
s = b o o R LR R EEEEEEEEEE 3
T P
add/Binmatris. ... e 13

andl/3 in 1istoooiiiiiiiiiiiee oo 1D
ANV IN VEOT ot vvnemraaiiire s aeanes 27
appand/3 in 148t ... e 0
append/3 in ¥aCh viiiiii s 25
appendatring/2in felo]
appendstring/3 infel..........ooiiiiiialn D
apply_2_tres of p/i2inpar............... 16
apply_list_of_p/8inpar................... 18
apply_list_of _p/8 inutilccovveennn 22

atom_to_namef2 in falooeiinan i 6
atom_to_number/2..iiiieiiiaiiiiainane. B
bas_int_to_name/3 inutiloocvrennnn. 21

bas_name_to_int/3 inutil................. 21
char_to_asciif/2infel........c.coiiniennan D
comparatoer/5 in list........ R
comparator/5 in string............oooooon.. 18
comparator/5 in vectieenee... 26
copy/Finutil ...l 22

create_2 tres_of_p/fdinpar............... 16
create_list_of _p/dinpar..........ccoeenus 15
create_list_of _p/&inutil................ 22
dac_int_to_name/2 inutil 21
dec_pame_to_int/2 imutil........coveeee.. 21
fal moduleo it 5

findsubstr/4 in string..........ccoveiiaan 19
findsubstr_bm/4 instring 19
findsubvact/5 in Wectovvvrvrnennoana. 26

flash_copy/4 inutil cerrsees 22
flash_p_console/3 inutil.......... easers 23
get_code/Binfel. ...]
hex_int_to_namef2 inutil.............. 21
hex_name_to_int/2imutil..........ccovnns 21
inter/4in 1isto viiiiiiiiiiiens Careaeen g
inter/4 in vect ciesesessresanna 26
length/3in 1i8t.....oovvviieniiniiiiiiniinns 7
list_to_string/3in liet................. .. 11
list_to_wvector/2in list...........c0vuvaes 11
listmodule,, . .ovieiie e T
Makafilec00vrniaiiinninnnnns ereae e 2
matriz/4inmatrix... ... 12

iii

matrix_col/2 in mMAtrik.......ccoovveiomann- 12
matrix_element/5 inmatrix........... ... 12
matrix_line/4 in matrix.......oivnerennens 12
matrix_to_vector/2 nmmatrix.............. 13
matrix modile .. .o ii i L2
maxi/3in fal.. ..o i G

maxi/3 in A6t ..ovviriviiiiiinaneeaaneeneeae M
maxi/3 in sync_listooveennnioieneano. 10

P T R LI 1 1= . |
membar/Ein vect oi.ieiens P 25
membar/6 in LigT ..ot ierrainnnnrrissarans "
minif3in fel. .. ooiiiiiii i vero B
MANE/3 I0 148t ovvnnr e e 10
MATAS3 Ml WECTE cn v vvrreererennnnnsonnsnnnns 20
mult/5 inmatrix... ... oo ieiininan verenens 13
name_to_atom/2 in fel....... R
new_matrix/3 in matrix...... R b
nodoub/2 in 1istoe oo 10
nodoub/2 In veCht cci e 26
object_to_string/3 inutil................ 22
open_file/4in fel...........coouanns cesenaes L)
open_window/3 infell o
orl/3in LiBE. .. i e 10
BEV 3 AN VecE.. . .o i 27
parmodule ... 14
product/3in 1ist.....ooviiiiiiiiraiioinas 10
product/3 I vect 27
p-console/Z inueil oo 23
quicksort_a/2in 1ist...........cooann, 9
quicksort_a/Zinveetiiiiiens 26
quicksort.d/2invect...........c.oiiiiiins 26
random/2 M UTiLl....oeoriiirnneianiniinaanes 24
random_bound/4 inutil......oovvmiiiiiiiies 24
rec_list_to_vector/Zin list...........cun 11
rec_remove/d in listiiiiiiiiiiiiann B
rac_ramove/4 In TECT ... oviuiiurrnrnarananas 25
rec_ravarsef2 in list i T
rec_Tevarse/2 in Yect ..o vaareiiianeeas 25
rec_subst/Bin List.. B
rec_subst/Ein vect ociiiiniiiniaanns 25
rec_vactor_to_list/2inwect.............. 27
rel_get_count_start message 23
rel_get_count message.............oooiiinnn 23
rel_on_at_start Messageoocceaen 23
remove/4 in 1ist........... haeereesirmeaanes 8
remove/d iN VECT .. ovirirrairrnniiarieinnaaas 25
req.red/2inutil............ SRais e 24
rag_rel_red/2inutil............... R 24
req_rel_time/2 inutil........ e 3

reg_time/2 in util. oo, 23
roaversa/2in List it T
reverse/2in String 19
reversef2 il VeCh. iiiuinarrners P
getsublist/6 in listoiiiiiininiin... 8
setsubstring/d4in fal ...t 5
setsubstring/7 in string................... 10
setsubvaect/E In vectciie.... 20
set_matrix_col/Sinmatrix...........oo0en 12
set_matrix_selement/6 in matrix 12
get_matrix_line/S in matrix........... eene 12
ghoan_evecute/7Tin fal.. ...t fi
shoen_raise/3 infeloiiiinnn G
gimple_comparator/6in list................ Y
SOTt_a/2in 148t .. iiiiian i e 9
sort_al2in vect 26
gort_d/2in list o iiiiiae... d
sort_d/2in et i 26
eplit/din etring. o 19
Split/4in vect .. it 26
SPLAt/S i 148t ... ivr e &
start_stats/3 inutil.........ccveieiiiennn 23
string_to_listfZinstring................ 20
string_to_object/3inutil................ 22
string_to_vector/2in string.............. 20
string module R 19
TR LIE) 7 o . S 13
Bublist/Bin LAst . . oo iiiiiiiiiiieae.. . B
subst/Bin 48T i i T
EA VL= o L (T - T oA 25
subvect/fdin vact 26
sub_string/Sin fel............ ..o, A
sub_string/5in string................ ceeno 19
suicksort_df2in 118t ... 0 ey S|
BUm/3 inm LiBL.. . coiiiuirrrnnrnanrintnrnnannns 10
sumf3 in vack. e 2T
gync_andl/3in 1i8t 10
syne_andv/3 in vect lilL 7
sync_append/3in list.......... ...l 7
eync_copy/3inutil ... 22
eync_create_Z_tree_of _pf4inpar......... 16
sync_create_list_of _p/d4inpar........... 15
gync_create_list_of _p/4inutil.......... 22
sync_inter/4 in list........ fererreras e O
sync_ length/3 in list T
sync_member/6 in list il H
eync_mini/3 in listoooiiiiiiiainns ..o 10
sync_nodoub/2 in 118tciiiiiiiiiiianns 10
sync_orlf3 in list. Sraseaees .10
Bync_orv/3in vect. iiiiiiaiie e, 27
gync_product/3in list............ovviunnns 10
sync_p_conselef/2inutil................... 23

v

eync_quicksort_af2in list 9
eync.quicksort d/2 in listl 9
sync_rec_list_to_vecter/2in list........ 11
sync.rec._remove/4 in list B
Eync_rac_remove 4 in Votoiiiaiiaia, . 2B
sync_rec_reversef2 in list T
eync_rec_reverse/2 invect 25
gync_rec_subst/5 in list .. .
aync_rec_subst/5 in vect. ceeeeee. 2D
sync_rec_vector_to_ 1:|.u1:..f'2 invect........ 27
sync_rec_walt/Zinutil.................... 22
sync_rec_wait_2_tree_of _p/2inpar....... 18
gync.rec_wait_list_of _pf2inpar......... 18
sync_rec_wait_list_of _p/2 mutil........ 22
gync_remove/4 in listl]
sync_setsublist/6 in listl b
eyne_sort_a/2 u list ..ol 9
eync_8oTt d/2 in 1i6T ..vvvvuins Cereens e 9
eync_split/5 in list . R
eync_string_to_ 1151:!2 im st.ring 20
gync_sublist/5in lisetol 8
sync_subst/Sin list.......... ... T
sync_sum/3 in List............ .o 10
gync_union/3 in ldst 9
sync_vector_to_list/2imvect............. 27
sync_wait/2 in util . e .22
sync_wait_2_tree_ nf,pf? in par . .. 18
pync_wait_list_of _p/2inpar.............. 17
gync_wait_list_of _p/2inutil............. 22
timarf1lin fel i B
timer/linutil i eeaas 23
tracef3 in matrix. cciiiiieiniainnaae.. 13
transpose/3 Inmatrix.....oviivnnrnnann, i3
mion/3in 16t .. i i, O
undon/3in vact e 26
utilmodule.......... ... oo |
vector_add/3 invect a7
vactor_scal_product/3in wvect............. 27
vector sub/3 invect, 27
vector_to_col_matrix/2 invect 28
vector_to_line_matriz/2 in vect.......... 28
vactor_to_list/2inwect..........oooviun.. 27
vector_to_string/4invect pic)
vect module .. . 25
version/2in fal e 6
vargion/2 im liBmt i 11
vergion/2 inmatrix 13
wergionf2inpar...l 18
version/2 in LTing ...ovvvvnravnrrrnranns .. 20
varsion/2 inutdl i iiiiiiiiiii i 24
version/2 In wectuie i iia s 28

Forewords

FLIB is a set of utility libraries, written in the KL1 language. It aims at improving various aspects of program
development under PDSS and Multi-PSI, such as portability, synchronization of parallel programs, etc. It
is by no mean a comprehensive library of functions, such as the ones commonly found in LISP systems, nor
an interface to the environment, such as the UNIX libraries. Rather, we point here some specific problems
with which we have been confronted during our development experiments. Therefore, some obvicusly uselul
functions were nol introduced. On the other hand. we took care to program demonstratively, and to test
both functionality and performance of these functions.

We dare think that the source code of these libraries can be usefully consuited by novice programmers.
It gives useful clues as to practical realization of simple, low-level functions, and as to management of
multi-processing. Of course, only the point of view of the authors is engaged here.

As a companion reading. we may advice our reader to order Technical Memorandum TM-0311 from
ICOT, A Collection of KLI Programs, by 5. Takagi, 1987, Other documents can he consulted usefully, such
as Technical Memorandum TM-0720 from ICOT, PDSS Manual, by K. Taki et 5. Uchida’, published in
1989, and the PIMOS user manual, which is not translated vet.

Acknowledgements

We would like to thank some people who helped us, either during the course of programming or debugging,.
or more directly. to write this document: Kawagishi Taro, Kimura Koichi and Yoshida Kaoru demonstrated
an endless kindness to lighten the tedium of discovering PSL, Multi-PST and PDSS. Inamura You and Sugino
Fiji were always willing to help us when the system was seemingly in defect. During the initial translation
of the PDSS user manual, much was due to Kohata Masaki and Wada Koichi, from Tsukuba University.

We are indeed forgetting many other helpful fellows. May them forgive us.

This work as been sponsored by INRIA, Rocquencourt, France through a grant and exchange program
with TCOT, Tokyo, Japan.

! Besides, there had been 4 other fellow tranlators, including one of ns.

2 i OINTRODUCTION

1 Introduction

This document deseribes in the large each library, and provides a list of the functions which can be found
therein. So far. 7 modules have been developed:

fel This module formes a =stable”™ laver around svstem-relatod predicates and a few built-in predicates whose
wsage or precise svntax varies from PDAS 1o Mults PSL s usage greatly relieves programmers from

partability problems
list This moduale sheliers sopne predicates 1o manage or convert. data organized into lists.

matrix This snodele intraduces o foonat Tor matvices and provide sonee basic predicate to make computa-

LS of FbeEer mat rices, oF colvert Hhenn

par This module helds predicaies which can be nsed for senchronization or to spread computation over
several processors, while taking care of duplicating dats or setling ap communicalion streams.

string iz module holds predicates 1o wmanage, recognice and convert character strings.

util This module contain: varions urilities. 1o monitor activity, copy data, send messages on the console,
S K

veet Last of all. this module contains some prodicates 1o manage or convert data erganized into vectors,

Hefore the list of modules and the deseription of predicates they contain. the sequel of this section holds
some comments on the lbrary and ity nsage. Alter module deseription. the whole section 9 is dedicated 1o
the detailed presentation of two programming examples,

Although source code of these madoles is {roelv aceessible, we would recommend not to modify it, except
whet a major Baw i encountered, the point being 10 avoid a erop of local versions and modifications. If
something seems 1o be of general interest. please feel free to express your desiderata, and function will he
added. as time allows 1.

Version and history tuformation are available through a separate predicate for each module, In rase
of problem or suspecied bug, don't forger to give the release number. Although there is no guarantes aof
upward compalibility {there iz none in PIMOS, basically, und we cannot do better than the host svstem at
a reasonable rost), predicates will not dizappear in the future. You are henceforth enconraged to use the
latest version of this ibrary, Comments ran be sent to burg@icot.icot.jp or daniel@icot. icot jp.

Have fun!

1.1 Inside organization

Two different organizations can be encountered, depending on the machine used: a UNIX system or a PSL
Originally. the library was developed on a UNIX system, and we used many facilities which are not available
on SIMPOS. the PSI's system. Therefore, FLIB should be first installed on a UNIX system., at the least in
order to get this documentation,

Organization is extremely simple: assuming that the directory contaiving FLIB is . /£1ib, all user files
(and makefile] are in directory L /£1ib and all source files are in directory . /flib/erc. More precisely,
directory . /f1lib conlains:

¢ Makefile which creates all the sav files necessary to PDSS users and the documentation. Defauli
targets are documentalion and user files. To tvpe make is enough to generate everything, assuming a
pidss compiler is available as well as IWITEX.

¢ intro.dvi which is the resnlt of a WTpX compilation. and can be printed to produce the documentation
you read now,

fel, list, matrix. par, string. util and vect, all with extension .sav, which are the modules to
he loaded by PI)SS. and thus will be accessed by users. “chown” them accordingly.

1.2 Words of advices 3

o Also, fel_util_test, list_test, matrix_test, par_test, string test and vect_test, all with
extension .sav, which are the test modules for the FLIB library. They are not included in the default
target of the makefile. You should type make test to generate them.

£1ib/sre is the directory containing source files and some intermediary TpXfiles:

e pdss_fel k11 is the source of the module fel for PDSS. mpsi_fel.k11 is the source of the same
module, on the Multi PSI. list.k11. matrix.kl1, par.kll, string.kll, util.kl1 and vect.kll
are the sonrces of the other modules.

s Files #_test.kl1 are source files for test of user modules.

s intro.tex is the master TpXfile nsed to produce this documentation. index.tex is the index file,
manually produced from a .idx file. File with suffix .pe are postscript files used to produce some of
the figures in this document. If you don’t have a postscript printer, that’s too bad — replace these
files with empty files. Other TpXfiles are generated by the makefile, and removed after the .dvi file
has been produced.

Note that access to the user modules can be made fairly easy to users if the proper path is set. To this
end, the following line should be added in the file .pdssre, in the home directory of each user:

getenv(loaddir, L}, setenv(loaddir,["path/flib" | LlJ.

where path is the file path leading to . /£1ib.

The sitnation is more complicated on Multi-PSI, where no makefile facility is provided. It is suggested
to dedicate a machine as a server. On this machine, some user, say £1ib, holds a PIMOS kernel with all
the flib files linked. Be careful to compile mpei_fel.kll and not pdss_fel.kli. Then, user can download
the kernel via either fip or psinet. If no net is available. since kernel file .kbn is large, users have no choice
but copying the source files on a floppy. and compiling on their own machine.

If a definitive release mechanism is set up, these problems should ease.

1.2 Words of advices

Some basic rules have heen followed during the craft of this library. We are conscious they can be argued,
but let’s summarize first a few pointe that motivated them:

e The first observation is that, due to the non-sequentiality of KL1, and quite independently from
parallel execution, it is difficult to know at a given moment what happens in a program. As long as
the program work. this is no major trouble as would say those people involved in semantics of KL1,
but the point is that sometimes yvou have to debug your program...

e Then, again because of non-sequentiality, it may happen that the part which is executing tail-
recursively in your program is not the one you'd like. This is especially excrutiating when you use
vectors, which can be referred even if their components are not bound, or I/Q which are slow and
whose priority cannot be totally controlled. If such a case occurs, you may see much dynamic code
generated, and the overall program speed can decrease much. Also, memory usage increases, due to
the stacking of goals, and in the worst case, i.e. breadth-first exploration of the program execution
tree, you will quickly run out of core.

e Multiple references to complex objects, especially vectors or lists, make the garbage collector load
more heavy, and are likely to cause problems during multi-processing, as no more than a few objects
can be referred by several processors at the same time.

This has contributed to a somewhat paranoiac view of KL1 programming, in which synchronization is
emphasized, and multiple references are banned. To this end, the following rules have been applied:

i J O INTRODUCTHON

o Whenever possible, i.e. when this is not demanding much extra code nor extra comp uting time, write
predicates returning a copy of their arguments, when they are not atomic. This will avoid multiple
references, and that will naturally allow sequential execution of tasks using the same data.

o Adopt a consistent layout of predicate arguments. In our case, mpuls are on the keft, output on the
right {in the documentation. outputs are following the caret sign ~), and copies of arguments are put

next to them.

o Make @ clear distinetion hetween predicates which work in an esynchronous manner, ie. which start
praducing results as structured arguments are progressively bound. and synchronous predicates, i.e,
which return values only after all work has been done and all structured argnments are internally
bound. Tn aur case. we put the prefix _sync to the name of predicates, when doubt was possible. or
both synchronous and asynchronous predicates exist.

« Consider synchranization of vour prograin, l.e. forcing sequentiality, from an early slage. or be ready
to consider major rewriting as soon as: you debug, you decide to make precise fiming measurements
of inside work or vour parallel implementation does not exhibit expected performances or behavior.

Let us emphasize that these rules can be subject 1o debate, and reflect the point of view of the authors
only.

2 Module fel

'The predicates in this section have been created to improve portability of KL1 programs between PDS5
and Multi-PSI systems. Some of i hem are already obsolete, as both systems glowly but hopefully converge.
They are kept for the sake of compatibility with previous Versions.

Predicates have been arranged according o the following topics:

2.1

virtual device open;
strings,

O PArlSon;

atorm;

code;

shoen:

Version.

Virtual device open

The following predicates provide device protocols which are similar to the latest version of the PIMOS
protocol.

2.2

fel:open.window(Stream, Nama, “Status)

Creates a window with Stream as a command stream. Name should be a default type string. It is
used to name the window. Status is unified with atom normal in case of success, of atom abnormal
otherwise. show and activate commands are implicit.

fal:open_file(Stream, Filename, Mode, “Status)

Opens a file with name Filename, which should be a default type string. Access mode is specified by
Mode. rhosen among atoms r (read), w (write) or 2 (append). Stream is the command stream. Status
.« ynified with atom normal in case of success, or atom abnormal otherwise.

fol :timer(Stream)
(reates a timer, with command stream Stream.

Strings

fel:appendstring(Si, S2, "R)
Like append_string/3 on PD35, or builtin#append_string/3 on Multi-PSL

fel:appendstring([si, 52, ...]. "R)
Like builtin#append_string/2 on Multi-PSL

fel:sub_string(String, Start, Length, "Sub, “Copy)
Like substring/5 on PDSS or builtin#substring/s on Multi-PSL

fel:setsubstring(String, Start, Replace, “Result)
Like set_substring/4 on PDS55 or builtin#set_substring/4 on Multi-PSL

fel:char_to_ascii(Char, Ascii)
Transforms a character Char in the default representation code (JIS or ASCII) into its ASCII equivar
lent. Result is unified with Ascii.

f

2.3

2.4

2 MODULE FEL

Comparison

fol:miniia, B, “Min)
Like min/3 on PDSS.

fel:maxi{a, B, "Max)
Like max/3 on PDSS.
Atoms

fael:atom_to_name(Atom, ~Name)
Like atom_name/2 on PDSS or atom_table:get_atom/3 on Multi-P5]

fel :name_to_atom{Name, ~Atom)
Like intern_atom/2 {with reversed arguinents}) on PTSS or atem_table:intern/2 oo Multi-Psl.

fel:atom_to_number(Atom, ~“Number)
Like atom_numbar/2 on F1IS5 or hash/3 on Multi P5l

It's too bad that there's no “number_to_atom”-like facility availahle

2.5

2.6

2.7

Code

fol :get_code(Module, Predicate, Arity, ~Code, "Status)
Like get_code message of module table protocol, on Multi-PSI. Status is anified with atom normal
if all is ok, abnormal otherwise.

Shoen

fel:shoen_sxecute(Code, Argv, MinP, MaxF, ExcpM, Ctl, “Rptl

Like executa/7T on I'DSS or sheoen:execute/7 on Multi-PSI. Messages sent i report siream are
system dependent, except raise, which has heen made compatible with the latest PIMOS spec. and
statistics, which has been kept compatible with the old PIMOS format (a single integer for the
statistics count).

fel:shoen_raise(Tag, Info, Data)
Like raize/3 on PDSS or ghoen:raisze/3 on Multi-P51.
Version

fol :varsion{ Num, ~Comment)
Num is unified with a vector holding version and release number. -1 and -2 correspond with beta and
alpha release. Comment holds a string with some information on the current release.

3 Module lList

This module contains predicates to help management of data organized as lists. Curiounsly. whereas this
data structure is highly suited to the representation of graphs, tree structures and dynamic data structures,
little support is found for it in KL1. Besides, in the current implementation of KL1 on the Multi-PSI, the
iransfer of lists is done element by element, which makes it very unsuited to exchange of Jarge chunks of
data. for which vectors, or even strings are to be preferred. I'm sorry to say that nothing indicates that this
would be about to change soon.

In the following, predicates are arranged according to the following topics:

¢ basic list operations:
s sublists operations;
o sel operations;

& sorting;

o arithmetic;

& data conversion;

& VErslon.

3.1 Basic list operations

¢ list:length(List,"Copy, “Rinteg)
Copy is unified with the original list List after the number of elements in this list has been unified
with Rinteg. Note that list elements don't need to be bound.

e list:sync_length(List, Copy, Rinteg)
As above, but Copy is honnd with a copy of List after the length has been com puted.

s list:append(ListA, ListB, "RList)
RLigt is unified with ListA and ListB is appended at the end of this list.

¢ list:sync_append(ListA,ListB, RList)
This works as the previons predicate, but RList is bound after the end of the append, ie. when the
end of Listh is encountered. Note that list elements don’t need to be bound.

e list:reversel{lList, RList)
List is reversed at the top level, and the result is unified with RList. Note that list elements don't
need to be hound,

¢ list:rec_reverse(List, RList)
As ahove, but List is reversed at all levels, recursively.

* 1:'|.E|t.:uync_rnc._rnvnrﬂt(Liut."RLiB.t}
As the previous predicate, but RList is bound only when all sub-lists have been reversed. Note that
list elements don't need to be bound.

e list:subst(List,01d, Copy,New, “RList)
All occurrences of 01d in List at the top level are replaced by New. The result is unified with RList.
Copy is a copy of 01d. Note that if New is not atomic, multiple references will occur. Note that 01d is
not necessarily atomic.

e list:sync_subst(List,01d, Copy,New, “RList)
Same as above, but RList is bound only when all substitutions are done and List has been closed.

3.2

3 MODULE LIST

list:rec_subst(List,01d, Copy ,New, RList)

All occurrences of 01d in List at all levels are replaced by New. The result is unified with RList. Copy
is a copy of 01d. Note that il New is nol atvmic, multiple references will occur. Note that 014 is not
necessarily atomic.

list:sync_rec_subst(List,01d, Copy,New, RList)
Same as above, but RList is bound only when all substitutions are done and List and its sublists
have been closed.

list:remave(List ,Elem, Copy, "RAlist)
Hemove all occurrences of ELem in List, al the top level, and puis the resull in RList. Copy is a copy
of Elem. Mote that Elem is not necessarily atomic,

list:sync_remove(List ,Elem, Copy, RList}
Same as above, bul RList is bounded when all suppressions have heen done.

list:irec_remove(List,Elem, Copy, RList)
Remaove all occurrences of ELem in Liet, a1 the top level. and puts the resuft in RList. Copy is a copy
of Elem. Note that Elem 1= not necessarily atomic.

liast:sync_rec_remove{List ,Elem, Copy, RList)
Same as above, but RList is bounded when all suppressions have been daone,

list :member(List ,Elem, "Copy, Before,Ebefore, From)

Finds the first occurrence of Elem in List. Before is the sublist of List ending at this point. Ebafore
ig the end of this list. From is the remainder of List, starting from the first ocenrrence of Elem. If
there is no occurrence of Elem in the list, From points to [], and this predicate works like append.
Copy is a copy of Elam. Note that Elem is not necessarily atomic.

list:sync_member (List,Elem, "Copy, Before,Ebefore, From)
A= above, but Before and From are bound when Elem or the end of the list is found.

Sublists

list:sublist{List,5tart,Lng, "RList ,ERList]

Extracts a sublist of length Lng, from position Start, starting at 0. ERLiat points to the end of the
extracted sub-list. Position of the first element is zero. List is completed on both sides with a virtual
void list. Hence. if Start or Start4Lng are out of the list, intersection with the actual list is returned
in RList,

list:sync_sublist(List,Start,Lng, "RList,ERList)
As above, but RList is bound only after the sublist has been closed. MNote that list elements don’t
need to he bound.

list:setsublist(List,Start,Lng, 0ldList,Inslist, "RList)

Replaces in List the sublist of length Lag from position Start, starting at 0, with the new list InsLiat.
if Start or Lng arguments are out of the boundaries of List, insertion occurs at the nearest boundary.
DldList is unified with the replaced sublist.

list:sync_setsublist(List,Start,Lng, 0ldList,InsList, RList)
As above, but RList and 0ldLiat are hound only after the sublist has been closed. Note that list
elements don’t need io be bound.

list:split(List,Pos, Before,EBefore, From)
Splits List after the element at position Pes, starting from (), Before is a pointer to the first list,
EBefore is a pointer to the end of the first list and From points to the second list.

3.3 Ser operations]

s list:sync_split(Liet,Pos, Before,EBefore, “From)
As above, but Before is bound only when splitting has been done. Note that list elements don’t need
1o he bonnd.

3.3 Set operations

A sel is basically a list of clements, in which there should not be any duplicated element, unless explicitly
mentioned.

e list:union(ListA ListB, RList)
The set union of Listh and ListB is put into AList. The same element can appear several times in
ListB without changing the result.

e list:sync_union(ListA,ListB, RList)
As above, but RList is bound when closed, Le. when union is over.

e list:inter(ListhA,ListB, CopyListB, Rlist)
The set intersection of ListA and ListB is put into RList. Elements in the result are taken from
ListA. Consequently, the same element can appear several times in ListB without changing the result.
CopyListB is a copy of ListB.

e list:sync. inter(ListA,ListB, CopyListB,“RList)
As abave, but RList is bound when intersection is over.

3.4 Sorting

In the following predicates, unless user predicate is used for the purpose of comparison, sorting order is
implementation dependent, especially between objects of different types. The point of these predicates s
mainly to eliminate identical elements, or to provide quick access.

¢ list:aimple_comparator(A,B,”S, L, Swapped)
This predicate can be used for atoms or integers only. It compares A and B, then unifies the smaller
element with S and larger with L. If B is strictly less than A, Swapped is unified with the atom yes,
and otherwise with ne.

s list :cumpa.rator(h.ﬁ.‘s."L,‘Swappad}
As above, but it can he used to compare lists of containing objects of arbitrary type.

» list:sort_a(List,”RAList)
list:sort_d(List, RList)
This predicate sorts List. sort_a returns an increasing list in RList, and sort_d a decreasing
one, for integers. Far other data types, this function provides an arbitrary order, according to the
comparatorsort operation. The obtained order is a total order though.

» list:sync_sort_a(List, RList)
list:sync_sort_d(List, RList)
As above, but RList is bound when the sort is over.

 list:quicksort_a(List,"RList)
list:quicksort_d(List, RList)
This is similar to sert_a and sort_d, but to gain speed it is assumed that all elements in List have
the same Lype, which is actually checked for the first element only. This causes a speedup of 2 to 3.

e list: njnﬂ_quicksort_a{Lint , “RLiet)
1ist:sync_guicksort_d(List, “RList)
As above, but RList is bound when the sort is over.

3.5

3 MODULE LIST

list:nodoub{List, RList)

Filters List into RList, such that all consecutive identical elements are reduced to a single oceurrence,
Its use, consequently Lo a sort, provides a simple way to remove multiple instances of the same ohject
in oa list,

list:sync_nedoub{List, RList)}
REList is bound after operations have been finished.

Arithmetic

list:mini(list, CopyList, Mini)
Mini is unified with the winimum element of List, which is assumed to hold integers. CopyList is
copy of List,

list:sync_mini{List, "CopyList, "Mini)
As above, but CopyList is bound only when minimum has been computed.

list:maxi(List, CopyList, Maxi)
As mini. but we get the maximum element . instead of the minimum.

list:sync_maxi(List, CopylList, Maxi)
As above, but CopyList is bound only when maximum has been computed.

list:sum{List, Copylist, Sum)
This predicate unifies Sum with the sum of all integers in List. CopyList is a copy of the initial List.

ligt:sync_sum({List, Copylist, “Sum)
As above, but CopyList is hound enly when sum has been computed.

list:product(List, CopyList, Prod)
As sum, but we get the product instead of the sum.

liat:sync_product({List, Copylist, Prod)
As above, but CopyList is hound only when product has been computed.

liat:andl(List, "CopyList, “Result)

This predicate operates the logic and of a list of booleans : if any element in List is zero, Result is
unified with 0, otherwise it is unified with I (notably if the list is empty). The list is scanned in usual
order, but asynchronous binding is supported. For example, the list [_]0] will produce a 0. CopyList
is u copy of List,

list:sync.andl(List, CopyList, Result)
This works the same as above, but all terms before 0 or the end of the list must be bound. The scan
is over hefore Result is hound.

list:orl(List, CopylList, Result)
This predicate is similar to andl. but 1 is returned if any 1 is in List. and 0 is returned otherwise.
notably if the list is empty.

liat:sync_orl{List, CopylList, Result)
This works the same as above, but all terms before 1 or the end of the list must be bound. The scan
is over before Result is bound.

3.4

Data ronversion 11

3.6 Data conversion

3.7

1ist:list_to_string(List,Type, String)
String is unified with a character string, with Type bits per character, mapping the list of integer
List.

list:list_to_vector(List, Vector)
Vector is unified with a vector mapping List, at the top level.

1igt:rec.list_to_vector(lList, Vector)
Same as above, but mapping is done at all list levels.

list.:s:.rnc._.raﬁ_list_tﬂ,vectnr{List,“J'm:tnr}
This is the same as above, but Vector is bound only when all mappings are over, i.e. List and its
sublists are closed.

Version

list:version(”Num, ~Comment)
Num is unified with a vector holding version and release number. -1 and -2 correspond with beta and
alpha release. Comment holds a string with some information on the current release.

|2

4 MATRIX MODULE

4 Matrix module

A 2 dimensional matrix of integers is represented as a vector of vector. Each element in the first vector
corresponds with a column. First element in 2 column or a row is denoted by 0.

Pradicates of this module are arranged according to the following topics :

¢ type checking and creation;

o access 1o elemonts;

¢ hasic matrix operations;

s data conversion:

* version.

All the following predicates are synchronous w.r.t. the elements of the source matzix they arcess.
We agree that matrices of integers are of limited use. Quite recently, floating points have been introduced

in KL1, but their usage requires syntactic sngar — there is little room for operator overloading in a language
in which there is no type. Considering the amount of dvnamic checks performed by the KL1 microcode, it
would have been possible to perform type checking during execution, thus relieving the programmer from
imserting § signs whenever he wants to perform a fleating point operation.

[n the current state of achievement of KL1, we can consider floating points as a kludgy wart. It has heen
deliberately chosen nol to use them in this library,

4.1

4.2

Type checking and creation

matrix:matrix(Mat, “CopyMat, Row, Col)
Row and Col are unified with the number of rows and columns in matrix Mat, whose copy is returned
through CopyMat.

matrix;new_matrix{ Mat,Row,Col)
Mat is unified with a new matrix, with Row rows and Cel columns, filled with 0.

Element access

matrix:matrix_element(Mat,Row,Col, Elem, CopyMat)
Elem is unified with the element in the Row-th row and Col-th column of matrix Mat. whase copy is

returned via CopyMat.

matrix:set_matrix_element(Mat,Row,Col, 0ldValue,NewValue, "NewMat)
Sets the value of element at row Row and columy Column to NewValue. 0ldValue is unified with the

old value of this element, and CopyMat points to the new matrix.

matrix:matrix_col(Mat,Col, "ColumnVector, “CopyMat)
In the matrix Mat. makes a copy of the column Col in ColumnVector. A copy of the matrix is unified

with CopyMat.

matrix:set_matrix_col(Mat,Col, 0ldCelummVector,NewColumnVector, NewMat)

In matrix Mat, set column number Cel with NewColumnVector, which is supposed to be a vector of
the right length, and unifies the old vector with 0ldColumnVector. The new matrix thus constructed
is returned in NewMat.

matriz:matrix_line(Mat LineNb, LineVector, CopyMat}
This is analogous to predicate matrix_col, for a line instead of a column.

matrix:set_matrix_line(Mat,LineNb, 0ldLineVector,NewLineVector, “NewMat)
This is analogous to predicate set_matrix_col, for a line instead of a column.

4.3

4.3

4.4

4.5

Basic matrix operations 13

Basic matrix operations

matrix:add(Matl, CopyMatl,Mat2, CopyMat2, "Rmat)

The result of the addition of matrix Mat1 and Mat2 is unified with RMat. Copies of the original matrices
can he found in the argument next to the input matrices. Note that matrices are supposed to be of
the same size.

matrix:sub(Mati, CopyMatl,Mat2, CopyMat2, “Rmat)
I'his is similar to the previous predicate, besides the operation, which is substraction instead of sum.

matrix:mult(Matl, CopyMatl,Mat2, CopyMat2, Rmat)
This is similar to the previous predicate, besides the operations, which is a product, and the constraint
on dimensions, which becomes the one common to matrix product.

matrix:transpose(Mat, CopyMat, Tmat)
This predicate unifies Tmat with the transposed matrix Mat. A copy of the original matrix can be
found in CopyMat.

matrix:trace(Mat, CopyMat, Trace)
Trace is unified with the trace of Mat, which should be a square matrix. A copy of the matrix can be
found in CopyMat.

Data conversion
matrix:matrix_to_vector(Mat,~Vect)
Transforms Mat, a matrix with a single line or column, into a vector, unified with Vaect.

Version

matrix:version{ “Num, “Comment)
Num is unified with a vector holding version and release number. -1 and -2 correspond with beta and
alpha release. Comment holds a string with some information on the current reloase.

14 5 MODULE PAR

5 Module par

The name of this modunle is derived from the word “parallel”, as some of the predicates therein may help

arhieving the high deed of using several processors on the Multi-PSL
The specification of some of these predicates is a little bit hairy, and we wonld advice our puzzled reader

to have a look on the examples or into the actual code. We shall improve the text according to requests..,
The following predicates are organized according to the following topics :

o parallel processing:
o svuchronization;
& VOTSION.

Same of the predicates therein were previously featuring in the module util. For the sake of compali-
bility, references are still present in the later. but actual code is in file . /flibfsrc/par.k11.

5.1 Parallel processing

The primitive proposed here help the user to create 2 kinds of distributed data structures — list and troe
~— then to apply a user predicate to those. in a parallel fashion.

Iu the most general view of the problem, several points have Lo be addressed: conunuuications between
processors, broadcasting of data used by several processors. ete. We [ollowed a rather simplistic approach.
in which communications are achieved along edges of the data strocture, or in a global fashion.

o In the case of list, as illustrated in figure 1. global communication exists prior to aclual computation.
l'ser-supplied data are broadcast to all processors from a single processor. Results of the computation
can then be collated globally,

P Pab—1)
P .
< e
e b —
\H..-::"_- P"} _.__,-o-"""-".-f
. m -

Figure 1: Spreading and collation in a list structure

¢ In the case of tree data strueture, as illustrated in figure 2, data are spread [rom each node of the tree
ta each children. Accordingly, results of computation can be collated in a hierarchical manner.

'_,..-F"'“ . -“""-;

R

-

Y Pl :/>. "
“*»-.,‘_\;

Fignre 2: Spreading and collation in a tree structure

It’s worth nothing that besides the initial duplication of user data, communication patterns of the list are
kept for the tree data structure, which actnally supports both types of communication.

5.1 Parallel processing 15

¢ par:create_list_of _p(Start, End, Data, “List)
This predicate creates a list List, containing {(End - Start + 1} pairs of elements. Each “pair” is made
of a processor number and data which are local to this processor. Processor numbers are consecutive,
from Start to End, and local data are copied [romn Data, which can be any complex or atomic object,
recursively bound. Data should not contain any ohject of code type. The time required to complete
this operation grows linearly with the number of processors, times the size of Data.

» par:sync_create_list_of_p(Start, End, Data, “List)
Same as above, but List is bound only when all copies are done, on all processors. Same remark as
above for the processing time.

There is clearly a trade-off here, for the matter of copying data from one processor to another. We said
that the computing time was growing like the number of processors times the sige of data. The reason is that
we copy the whole data structure on a processor before going to the next processor. This could be improved,
by copying part of the data structures on the local processor, then transferring to the next processor, which
can in turn start the copy, while we keep on with the remaining of the data stracture. That way, ie. using
asynchronous copy, the total computing time would be the sum of the transfer time of the last sub-data
alang the whole processors chain, which grows linearly with the number of processors, and of the transfer
time of the remaining data between the last processor and the previous processor. The trade-off lies in that
performing the copy that way would be slower, especially for vectors of constants, or strings. We did not
complete an implementation of this scheme yet, but it would be interesting to compare the alternative.

e par:apply_list_of_p(List, “Copy, Mod, Pred, Args, "MO, "S0, SI)

This predicate can he used with a list List, created using one of the two previous predicates: it
applies the user predicate identified using atoms Med, which identifies its module, and Pred, which
identifies the predicate, to the data in List, on relevant processors. The user predicate has arguments
specified by the vector Args, which is copied from one processor to another. Therefore, all of ils
elements should be bound, recursively, This vector should have a correct length, as it is used to find
the arity of the user predicate o call. Also, this predicate has to be declared publicin the modile Mod.
The calculations performed by the user predicate can be put back into the processor list, or inserted
in a stream which goes from oue processor to the other, or inserted in a stream which is subject to a
merge, for all processors. The (possibly) modified list is unified with Copy, and has a structure similar
to the one of List; the “merged” stream coming from all processors is unified with MO; the stream
which connects one processor to the other has two ends: if we put processors on a line, with increasing
processor numbers from the left to the right, the stream is going from the right to the left. Therefore,
S0 is the stream going out from the pracessor with the smallest number, while SI can be used to feed
data in the processor with the largest number.

Access to the list or streams is achieved by putting special atoms in the argument vector, which will
be replaced hefore starting the user predicate on each processor. More precisely:

~ ‘processor_in’ will be replaced by the current processor number;
— 'data_in’ will be replaced by the piece of data in List which corresponds to the current processor;

~ 'data_out' will be replaced by a variable which should be set within the user predicate. This
variable will be put back in the list, in liev of the data which was (maybe) accessed via 'data.in’.
If neither "data_in’ nor 'data_out’ is used, List will be left untouched, and Copy will be an actual
copy of List. If 'data_in’ only is specified, an undef variable *_" will be inserted in the list. If
‘data_out’ only is used, the original data in List will be garbaged.

— ‘merge.out’ will be replaced by a stream which should be filled by the user. This stream will be

merged with the ones of the same kind from other processors. We recall that merged stream is
available as M0. If this atom is not used, M0 will be unified with [J.

~ ’stream_out’ will be replaced by a stream which should be filled by the user. This stream is
connected to the input stream of the previous processor in the list. That way, all results can

=

5 MODULE PAR

he retrieved sequentially from all processors. We recall that the output stream from the first
processor is available as 0.

— ‘stream_in' will he ronversely replaced hy the outpat stream coming fram the next processor in
the list. The last processor’s input siream is sel to SI.

Note that the direction of the sequential streams linking processors is arbitrary. User is free to ouiput
things on the input stream. if more convenient. Also, il neither "stream_in’ nor ‘stream_out’ arc
nsed, 81 and 30 are unified together, throngh the whole processor chain,

Figure 3 pictures a list of 3 processors, with the connections and data available on them.

Lat=] B, Dy, . Dy Bl Dy |

Caprv = [Pk B P o', Pl L |

Figure 3: View of a 3 processors list

¢ par:create_2_tree_of_p(Start, End, Data, "Traa)
This is similar to the predicate create_list_of_p. but instead of a list, a tree is built. Overhead is
a little bigger, but more paralleliam is exhibited when spread data are large. Operation times grows
like logy(number of processors + 1), with a factor twice of create_list_of_p. The result of data
copy and so on is put in Tree. The tree is mapped on processors nsing the following recursive rule.
assuming s is the start processor and ¢ the end processor:

—e>s5+41
The head of the tree is allocated on processor s; left sub-tree ranges in [s + 1, [(s + ¢4 1}/2]] and
right one ranges in [[(s + ¢ + 3)/2).¢].

- =841
The head of the tree is allocated on processor s; left sub-tree ranges in [e,¢] and right sub-tree is
empiy.

- =&
The head of the tree is allocated on processor s; there is no sub-tree,

® par:sync.create_2_tree_of _p(Start, End, Data, “Tree)
Same as above, but Tree is bound only when all copies are over.

¢ par:apply_2_tree_of _p{(Tree, Copy,Mcd,Pred,Args, M0,"50,5I,"T0O,TI, BO,BI)
This applics a user predicate onto the tree created by one of the 2 previous predicates, in a similar way
to apply_list_of_p. The predicate is identified as well by Mod and Pred, and the arity is the length
of the argument vector Args. Arguments MO, S0, SI have the same funetion as in apply_list_of_p,
especially for the matter of convention on sequential stream direction, with respect to the processor
numbers.
Some more capabilities have been introduced:

5.2 Svnchronizalion 17

5.2

- Hroadcasting of messages
Each processor can send messages to all other processors, through the broadcast streams. On
the top-level, BO is a stream receiving broadcasts from all processors, and BI can be ured to send
messages to all processors in the tree.

— Up/Down communication
Fach processor can send messages to the left and right sub-trees, and receive messages from them,
through the tree streams. This is notably useful for a merged-sort, or an user implementation of
filtered broadcast.

— Position
Identification of the position in the binary lree.

Adequately, some special atoms can be used in the arguments list, besides the ones specified lor
apply.list_of_p. Namely:

_ broadecast_in’ will be replaced by the stream carrying all messages from other processors in the
LT,

_ “broadcast_out’ slot will conversely be replaced by a stream accepting messages to be duplicated
and sent to all other processors in the tree.

_ *tree_left_in' will be replaced by a stream of messages coming from the left sub-tree. Atoms
"tree_right_in’ and 'tree_up_in correspond to the right sub-tree and parent processor, re-
spactively.

_ ‘trea_left_out’ will be replaced by a stream which can be used to send messages to the left sub
tree. Atoms ‘tree_right_out’ and ‘tree_up.out’ correspond to the right sub-tree and parent
processor, respectively.

~ 'rank_in’ will be replaced by the depth of the current processor in the tree, starting at 0 for the
root.

— ‘path.in’ will be replaced by an integer, each bit of which corresponds to an ancestor node in
the tree. More precisely, n-th ancestor’s bit is at position » — 1, the least significant bit being at
position 0. If the subtree containing the current node is at the left of n-th ancestor, bit is set to
0, and to 1 otherwise. The root of the tree is arbitrarily given a path value of 0.

— ‘children_in’ will be replaced by an integer indicating the number of children trees to the current
node: () means the node is terminal, 1 means that only left child exists and 2 means that two
children are present.

Other atoms are treated as within apply_list_of.p. We have also to precise the ends of various
streams. for the top and end of the tree. For the top processor first: TO is connected to the up-
output of this processor, i.e. the stream replacing atom ‘tree_up_out’. Conversely, TI corresponds to
‘tree_up.in’. For the nodes which are at the bottom of the tree, the tree link is looped back. Otherly
said, a processor without right child sending a message to the stream which replaced "tree_right_ out’
would get this message back in the stream which has replaced *tres_right_in’ in the argument list.
Figure 4 pictures a tree with 4 nodes, with the conmections available between processors, and some of
the data not available in apply_list_of_p.

Synchronization

par:sync_wait_list_of _p(List, Copy)

Copy is unified with a copy of List when all data therein are bound, at the first level. This is similar
to util:sync_wait/2, but check operation respects the location of data on several processors. Using
util:sync_wait over a distributed list would cause misplacing of the cons cells, and further slowdown
of operations. One has to be careful, after an apply_list_of_p. that data have been written back or
untouched, otherwise, this predicate will deadlock upon an unbound variable.

18

5 MODULE PAR

procease: = 0
rank = 0
g =0

rara = 1
palth = 00

PROGEEND =
rank =2
paih =000

Figure 4: View of a 4 processors tres

¢ par:sync_rac_wait_list_of _p{List, Copy)
As util:sync_rec_wait/2, hut this is also suited to distributed list. No need to say that using
util:sync_rec_wait on a distributed list of data wonld wreck the aice single-puinter links belween
processors, Same remark as above about unbound variables, this time at al| levels.

* par:sync_wait_2_tree_of_p(List, Copy)

par:sync_rec_wait_2_trea_of _p(List, Copy)
This is similar 1o the two previous predicates, but operates properly upon the tree data structures
built by create_2_tree_of_p and possibly modified by apply_2_tree_of_p.

Version

o par:version("Num, ~Comment)

Num is unified with a vector holding version and release pumber. -1 and -2 correspond with beta and
alpha release. Comment holds a string with some information on the current release.

6 Module string

The following predicates are an attempt at patiern matching, for the main part. We also provide some
operations usually found for lists. Predicates are arranged according to the following Lopics:

6.1

6.2

‘hasic string primifives:

substrings:
sorting,
data conversion;

VETHEION.

Basic string primitives

string:reverse(String, RString)
RString is unified with the reverse | palindrom) of character string String.

Substrings

The following section holds mainly predicates (o find substrings in a character string, using Bover-Mopore or
Knuth-Morris-Pratt algorithmes, and predicates to use the position information thus provided.

6.3

string:findsubstr_bm(Pattern,5tring ,“CopyString, “Res)

Searches for the character string Pattern in the siring String. The result Res is a list containing the
position of the first element of each ocenrrence, starting at 0. A copy of the original string is unified
with CopyString. The Boyer-Moore algorithm is used to perform the task; it seems to be well suited
for long Strings. accordiug to the overhead of tahle construction.

string:findsubstr(Pattern,3tring, “CopyString, Res)

As above, but the Knuth-Morris- Pratt algorithm is used to perform the task. Its overhead to construct
the recognition antomaton is less than in the case of the Boyer-Moore algorithm, but it demands more
comparisons to operate upon String.

string:sub_string(String, CopyString,Start, Lng, RString)

Fxtracts a substring of length Log, from position Start, starting at 0, and unifies the result with
RString. A copy of String is nnified with CopyString. If Start and Lng arguments are put of the
boundaries of the character string String, sub_string performs the intersection between the actual
String, virtnally extended on both sides, and the specified substring.

string:setsubstring(String, ~CopyStr ing,Start,Lng,"Out3tring, InsString, “RString)
Replaces the substring of length Lag, at position Start, starting from 0, with InsString, and unifies
the former value of the substring with DutString. The modified string is unified with RString. If
Start of Lng arguments are out of the boundaries of String, setsubstring inserls at the boundary.
A copy of the original string is unified with CopyString.

string:split(String,Pos, Before, “From)
Splits String at position Pos, starting from 0, and returns Bafore and From as the two parts of
String.

Sorting

string:comparator(A,B,S, L, Swapped)
Compares strings A and B, then unifies the smaller element with S and the other with L. If L is unified
with A, Swapped is unified with atom yes, and with no otherwise.

2 i MODULE STRING

6.4 Data conversion

» string:string_to_vactor{String, Vect)
Vect is unified with a vector mapping string String.

¢ string:string to_list(String, List)
List is unified with a list mapping string String.

¢ string:sync_string_to_list(String, List)
As above, but List is bound only when the conversion is over.

6.5 Version

¢ string:version(Num, “Comment)
Num 15 unified with a vector holding version and release number. -1 and -2 correspond with heta and
alpha release. Comment holds u string with some information on the current release.

21

7 Module util

Tlis module is the historical startpoint of the FLIB library, as you could guess from its “yague” name. It
contains various predicates which can neither fit in another module nor contribute alone to a new module.
Some predicates were moved 1o other modules in the previous version, but we left here, for the sake of
compatibility, the original predicates, which are in fact calling the code in the newer modules.

Predicates are gathered according to the following topics:

L]

7.1

7.2

integer to siring and vice-versa;
goneric copy & compaction:
parallel processing;
svnchronization;

console aitput;

enhanced timer & statistics;
random number generator,

VErslo1.

Integer to string and vice-versa

util:dec_int_to_name{Int, String)
Returns String, a character string in the default representation, representing the integer Int in a
decimal notation. A negative number is headed by the character ',

util ;hex_int_to_name(Int, String)

Same as above, but representation is done using hexadecimal notation. As well, negative numbers are
appended to a 7. Note that the result does noi contain anything like 16# or 187 and is thus not
suited to read using gett command ar the like.

util:bas_int_to_name{Int,Base, String}
Same as above, but an integer base Base, between 2 and 36, can be used for the representation. Same
remarks as above about prefix and negative numbers.

util :dec_name_to_int (String, "Int)

Converts String, the decimal representation of an integer, into the integer Int. String should contain
characters in the default representation. A negative number should start with -’. Blank characters
are ignored.

util:hex_name_to_int(String, Int)
Same as above, but assumed representation is hexadecimal. There should be no prefix like 16# or 16",
Negative numbers start with .

util :bag_name_to_int (Int,Base, Int)
Same as above, but an arbitrary base, between 2 and 36, can be used. Same remarks as above about
prefix and negative numbers.

General copy & compaction

These predicates are useful to avoid multiple references to ecomplex objects which are to be used in different
operations, possibly on different processors.

7.3

P MODULE UTIHL

util:copy(Object, Copyl, Copy2)

Miakes a copy of Object. Copyl contains the initial argument while Copy 2 is freshly allocated. Copying
is done recursively, but only atom. vectors, list, integer and string datatvpes are supported (no code
datatype). If there are unbound terms, this predicate will deadlock.

util:sync_copy{Object, Cepyl, Copy2)
Same as above, but both results arc returned only after all copies have been finished. That requires
that all terms are bound at the bottom level hefare completion oecurs,

util:flash_copy{Object, Copyl, Copy2, Sync)

Same as copy/3, but if some source data is unbound at copy time, it is replaced in the copy by an
unbound data. There is no double reference generated. nor deadlock. For the matter of lists, end of
list is waited for. Sync is bound when copy is finished,

util:ebject_to_string(Dbject, Copy, "String)

Converts an arbitrary data Object into the string String, in an implementation dependant format,
This is useful to speed up communications, when an object is passed from one proceszor to another.
Copy i= a copy of Object. String is bound when the conversion is finished.

util :string_to_object(String, Copy, Object)

Conversely, this ronverts the string produced by the above predicated into the original ohject. Warn-
ing: atoms are not restored: they are repiaced hy the corresponding atom number. Copy 15 a copy of
the original String.

Parallel processing

The following predicates are code in the module par. For npward compatibility reasons, they are callable
from here also. See madule par for explanations.

7.4

util:create_list_of p(Start, End, Data, “List)
Like par:create_list_of_p/4.

util:sync_create_list_of _p{Start, End, Data, “List)
Like par:sync_create_list_of_p/4.

util:apply_list_of p(List, “Copy, Mod, Pred, Args, “MO, “S0, SI)
Like par:apply_list_of_p/8.

util:sync.wait_list_of _p(List, Copy)
Like par:sync_wait_list_of_p/2.

util:sync_rec_wait_list_of_p(Liat, Copy)
Like par:sync_rec_wait_list_of p/2.

Synchronization

As we said in our [orewords, it is better to think of synchronization when programming, in order to avoid
a situation in which a structure is bound whereas some of its elements may be unbound. But in some case,
e.g for a kludge, the only way to be sure that a computation is over is to wail recursively until all relevant
data are bound. The following predicates have this purpose:

.

util :sync_wait(Data, “Copy)
Returns in Copy a copy of Data when the latter is bound. If it is a list or a vector, its element should
also be bonnd. Check is not performed further deep in structures.

util :sync_rec_wait(Data, “Copy)
This is similar to the previous case, but the check is performed recursively, until all terms in structures
are found to be bound.

7.5 Console output 23

7.5 Console output

The guard predicate display_console/1 is rather limitated, and in order to print atoms or complex objects
in a readable format, we offer the following predicates:

» util:p_conscle(Data, ~Copy)
Prints Data on the console. and returns a copy of it in Copy. Data should be recursively bound, or
nothing will be print and the predicate will deadlock. Note that code datatype is not supported.

¢ util:sync_p_console(Data, “Copy)
Same as above, hut Copy is bound after the display Las been done.

» util:flash_p_conscle(Data, ~Copy, “Sync)
Same as above. but unhound data are print as an underscore sign ", and do not cause the predicate
to deadlock. Sync is bound only after that display has been completed. Copy contains a copy of Data.

7.6 Enhanced timer & statistics

For performance measurement, and especially to track synchronization prublems, a comprehensive debugging
environment could be wished. Very unfortunately, this would demand a long term effort in development
and the consideration of implementation details, both points often disregarded by most computer scientists.

For a good idea of what would be a minimal framework, our reader may read the enlightened paper of T.
Lehr, Z. Segall, D.F. Vrsalovic & al.. Visualizing performance debugging, in Computer Magazine of October
1959,

More modestly, we present here some simple predicates which allow the capture of time or statistical data
in an easier fashion than in the bare PIMOS. These primitives work also on PDSS, but the poor emulation
of both timer and multi- processing makes them of little use.

¢ util:timer(Straam)
Provides all commands of the usual timer device. In addition, starting time is kept, and additionnal
messages are offered:

- rel_gat_count(3tatus)
Waorks like get_count, except that the returned count starts from the last rel_ get_count mes-
sage, of from the timer invocation, for the first invocation.

- Tel_get_count_start{ Status)
Works like message get_count, except that the returned count starts from timer invokation.

— rel_on_at_sgtart({Count, ~Status)
Waorks like message on_at. except that the time is specified starting at timer involation,

For all of these commands, Status specification is similar to the one of the latest PIMOS release.

s util:start_stats{Code, Args, ~Stream)
Starts a shaen executing the predicate identified by code data Code, with argnments Args. When
timing or statistics requests are sent via the following predicates, corresponding results are inserted in
the stream Stream, as vectors of the form {P,Str,V}; P is the number of the processor on which the
start_stats predicate has been rum, Str is a user-supplied data and V is the result of the request.
Predicates which should be used to emit a request are:

~ util:req_time(Str, "Back)
This predicate requests elapsed time, in milliseconds, since the invocation of start_stats. Actual
request does not start before Str is bound. Back is bound when time is available and has the
form {P,V}. where V is the time. P as the same meaning as in the start_stats stream:

— util:req.rel_time(Str, "Back)
As above, but time is counted from the last invocation of this predicate, or from evocation of the
start_stats/2 predicate, in the case of the first invocation.

21 7OMODULE UTHL

= util:req_red(Str, “Back)
Instead of the time, this requests the number of reductions performed within the shoen created
hy start_stats/2.

~ util:req_rel_red(Str, “Back)

As ahove, but reductions are counted from the last call of this predicate, or from the creation of
the shoen, in the case of the first invocation,

7.7 Random number generator

o util :random(3eed, “NextSeed)
This predicate takes a random seed Seed, between -2 and 2*! — 1. and returns the next seed to use,
a pseudo-random integer in the same range.

¢ util :random_bound(Range, "Random, Seed, “NextSeed)
Seed and NextSeed have the same function as in the previous predicate. Range is an integer between
1 and 28 — 1. Random is a paendo-random integer in the range (| to Range-1.

7.8 Version

s util:version{ " Num, ~Comment)
Num is unified with a vector holding version and release number. -1 and -2 correspond with beta and
alpha release, Cemment holds a string with some information on the current release.

8

Thi

25

Module vect

s module offers predicates of similar shape to the ones a5 in the module 1ist, but is suited to evaluation

over vectors. Predicates are arranged according to the following topics:

hasic vector primitives;
s subvectors;

» sel operations;

+ s0Tting:

¢ set arithmetic:

o vector arilhmetic;

o data conversion;

* Version.

Be aware when you use vectors that multiple references to vectors cause indirections when modified

clements are further accessed. This implies increased acces time.

8.1

Basic vector primitives

s vect:append(VectA,VectB, AVect)
Appends vectors Vectd and Verb and puts the result in RVect. Note that vector elements don't need
to be bound.

s vect reversa(Vact, RVect)
Reverses of Vect at the top level and puts the result in RVect.

® vect:rec_reverse{Vect, AVect)
As above, but reversing is done atl all levels for vectors,

s vect:sync_rec_reverse(Vect, RVect)
Same as above, but RVact is bound only when reverse is over.

s vect:subst{Vect,01ld, Copy,New, RVect)
Operates substitution of 01d by New in Vect, at the top level. Result is unified with RVect. Makes
multiple references to New. Copy is a copy of 01d.

» vect:rec_subst(Vect,01ld, Copy,New, RVect)
Same as above, but subatitution is done at all levels.

e vact:sync_rec_subst(Vect,01ld, Copy,New, RVact)
Same as above, bul RVect is bound when all substitutions are done.

® vect :remove(Vect,Elem,”Copy, RVect)
Removes all occurrences of Elam in Vect., at the top level. The result RVect may therefore be shorter
than Vect. Copy is a copy of Elem.

¢ vect:rec_remove(Vect,Elem, Copy, RVect)
Same as above, but remove is performed at all levels.

» vect:sync_rec_remove{Vect,Elem, Copy, “RVect)
Same as above, but RVect is bound after all remove have been done.

vect :member (Vect, VectCopy ,Elem, ~Copy, “Pos)

Finds the first occurrence of Elem in Vect, and returns its position Pos. If no occurrence is found, the
Pos is set to -1. Copy is a copy of Elem, and VactCopy a copy of Vect.

M

A OMODULE VECT

£.2 Subvectors

vect :findsubvect {Subvect,SubVectlopy.Vect, CopyVect, "Res)

Searches for oconrrences of Subvector in Vector, The result Res is a list containing the position of
the first element of each ocewrrence, The Kouth-Morris-Prait algorithm is wsed to perform this task,
and any object may feature in SubVact and Vect as long as it is possible to check in the guard that
they anify together or not without inducing deadlock.

vect :subvect (Vect ,5tart ,Lng, "RVect}

Extracts the subvector RVect of length Lag from the vector Vect. starting from Start. Position of the
firet element is 0. Vect is completed virtually on the left and right by a void vector. Hence, if Start
or Start 4 Lng are out of Vect, intersection with the actual Yect is returned.

vect:setsubvect(Vect,S5tart,Llng, 0ldVact, InsVect, "RVect)

teplaces the subvector of length Lng starting at position Startverb InsVeet—, 0ldVeet contaius
the part which has been replaced. RVact contains the modified vector. If Start and Lng argnments
are out of the boundaries of Vect, this predicate inserts respectively at the beginning or at Lhe end of
the vector.

vect:split{Vect,Pos, "Bafore, From)
splits Vect alter the element at position Pos, starting from (. Befaore is a pointer ta vertor hefore the
split point, and From is the second part.

8.3 Set operations

As for sets represented as lists. a set in vector form is a veetor with no identical elements. except if explicitely
allowed in the following predicates.

B.4

vect :union(Vacth,VectB, "RVect)
Union of sets Vectd and VectB. the result, RVect, iz bound when union is nwver.

vect:inter{Vecth,VectB, CopyVectB, "AVact)
Ax above. but intersection is done instead of union.

Sorting

vect:comparator (A,B, S, L, Swapped)

For vectors containing only aloms or integers. Compares & and B, then unifies the smaller element
with S and the larger one with L. If L is unified with A, Svapped is unified with the atom yes, and ne
otherwise,

vect ;sort_a(Vect, "RVect)

vact:sort_d{Vect, RVact)

Sorts a vector, predicate sort_a produces an increasing order, sort_d the decreasing one, for integers.
For atoms, this function gives an arbitrary order, according to the atom number, The obtained order
is a tolal order though. The result of the sort operation is unified with RVact.

vect:quicksort_a{Vect, "RVect)

vect:quicksort_d(Vect, "RVact)

Sorts a vector of elements with the same datatype. It tests the type of the first element in the vector
and uses the specific sorting predicate. Iis speeds up sorting by roughly a factor of 2.

vect :nodoub{Vect , "RVect)
Eliminates consecutive repetitions in vector Vect. Its use consequently to quicksort provides an ordered
vector with unigue elements, RVect is bound with the result when operations are finished.

B.6

B.T

Eet arithmetic 27

Set arithmetic

vect :mini(Vect, “CopyVect, Mini) _
Mini iv unified with the minimum element in the vector of integers Vect, whose copy is returned in
CopyVect.

vect :maxi(Vect, CopyVect, Maxi)
As above, but we lnok for the maximum integer instead of the minimum.

vect :sum(Vect , “CopyVect, Sum) _
Sum is unified with the sum of all elements of the vector of integers Vect, whose cupy is returned in
CopyVect.

vect :product (Vect, “CopyVect, "Prod)
Az above, hut we look for the product instead of the sum.

vect :andv{Vect, CopyVect, "Result)

This predicate operates the logic “and” of a vector of booleans : if any element in Vect is zero, Result
is unified with 0, otherwise it is unified with 1 (notably if the vector is empty). The vector is scanned
it usual order, but asynchronous binding is supperted, For example, the vector {_10} will produce a
0. CopyVect is a copy of Vect.

vect :sync_andv(Vect, “CopyVect, “Result)
This is the same as above, but Vect is checked sequentially.

vact:orviVact ,“CopyVect, "Result)
This predicate is similar to andv, but 1 is returned if any 1 is in Vect, and 0 is returned otherwise,
notably if the vector is empty.

vect :sync_orv{Vect, "CopyVect, “Rasult)
This is the same as above, but Vect is checked sequentially.
Vector arithmetic

vact :vector_add(Vectl,Vect2, “AddVect)
Adds the two vectors of integer Vect1 and Vact2, which should have the same length, to produce the
vector AddVect.

vact :vactor _sub(Vecti,Vect2, SubVaect)
As above, but Vect2 is subtracted to Vectl.

vact :vector_scal_product(Vectl,Vectl, “Scal)
Scal is unified with the scalar product of vectors Vectl and Vect2.

Data conversion

vect :vector_teo_list(Vect, List)
Transforms the vector Veet into the list List, at the top level.

vact ;eync_vector_to_list(Vect, List)
As above, but List is bound when the conversion is over.

vect :rec_vector_to_list(Vect, List)
As vector_to_1ist/2, but transformation is done at all levels, for all vectors.

vect :sync_rec_vector_to_list(Vect, List)
As above, but List is bound when the conversion is over.

25

8.8

® MODULE VECT

vect:vector_to_string(Vect, Copy,CharLength, "St.rin_g}
Transforms the vector of integers Vector into the character string String. Characters have Charlength
bits, taken amongst 1, 4, 8, 16 or 32 bits per character.

vect vector_tu_cel_matrix{Vect, Mat)
Transforms the vector of integers Vector into the column matrix Mat, in a formatl compatible with
the one wsed in the module mat,

vect:vactor_to_line_matrix(Vect, "Mat)
Transformns the vector of integers Vector intn the line matrix Mat, in a format compatible with the
one used in the module mat,

Version

vect:version({ "Num, ~Comment)}
Num is unified with a vector holding version and release number, -1 aud -2 correspond with beta and
alpha release. Comment holds a string with some information on the current release,

29

9 Examples

Two toy problems are presented: searching occurrences of a subvector in a vector and sorting a list. We
introduce first the sequential version of these programs, then the parallel version. It shows the use of FLIB's
parallel facilities and highlights difficulties related to parallel programming. Time measurements follow, in
order to give some advice to the next programmers about the nature of the technical choices to do.

9.1 Search of a subvector in a vector

The basic algorithm used to perform the search is from Knuth-Morris-Pratt. We begin with the sequential
implementation, then we make a naive parallel version, splitting the task on the Multi-PSI processors.
Finally we develop a more sophisticated version, including data-compression, synchronization and time
measurements. 'I'hese versions have heen run on the multi-PSI and the results are commented.

8.1.1 Sequential version

The sequential version of Knuth-Morris-Pratt exists in FLIB. for strings and veclors.

§.1.2 Naive parallel version

To make the paralle]l version we use the par:apply_list_of _p/8 predicate. It distributes the data to all
the processors and gather results.

par_nkmp(Proln, PatV, Vect, Result) :-

vector (PatV, Patln),

vector(Vect, Vin) |
MaxPro := Vlin/Patln,
fel:mini(MaxPro, ProIn, Prol,
par:create_list_of_p(1, Pro, [PatV, Patlm, Vect, Prel], Datal,
par:apply.list_of_p(Data, _, exl, loc_nkmp,

{data_in, processor_in, merge_out}, Result, ., [I).

Predicate fel:mini/3 resiricts the number of processors in the case of short lists. create_list_of.p/4
takes the arguments list, duplicates it and spreads the arguments onto the processors from 1 to Fro.
apply.list_of_p/8 evaluates the loc_nkmp/3 predicate on every processor. The local results are merged,
then output via Result.

loc_nkmp([Pat, Patln, Vect, Prol, Cur_pro, STREAM_ out) :- true I
my_subvect(Vect, Patln, Pre, Cur_pro, My_part, 0ffset),
vect :findsubvect (Pat, _, My_part, _, Res),
add_offset(Res, Offset, STREAM out).

loc_nkmp/3 is the predicate applied by each processor. It extracts the data used by the processor Cur._pro
and gives it to the sub-vector search vect :f indsubvect/s. The add_offset/3 predicate inputs the position
of the occurrences relative to the local work and outputs the absolute positions.

my_subvect (Vect, Patln, Pro, Cur_pro, Resul, Start) :-
wait(Patln),
vactor (Vect, Vin) |
Seg:= Vln/Pro+i,
Start:= (Cur_pro - 1)= Seg,
{Start ¢ Vin ->
Len := Seg+Patln-1,
vect :gubvect(Vact, Start, Lemn, Resul);
othervise;
true -> Resul={}).

30 9 EXAMPLES

my_subvect/6 extracts the part of the vector which will be used Jocally by processor Cur_pro. add_offset/3
adds an offzet.

add_offset{[&!B], 0ffset, Res) :- true |
Res=["{& + Dffset) | Resi],
add_offset(B, Dffszet, Resl).

add_offset([], _, Res) :- true | Ras=[].

8.1.3 TFinal parallel version

The naive version performs tasks in a parallel manner, but does not take care of data iransmission. SVl
chronization and time measurements. To make an efficient version, these problems should be taken into
account. in order to debug the algorithm as well as to understand the parallel performances,

par_kmp(Proln, PatV, Vect, Resul, STREAM) :- true |
fel:get_code(exl, par_kmpl, 4, FctCode, normal),
util:start_state(FctCode, {Proln, PatV, Vect, Resul}, STREAM).

start_stats/3 bt‘giﬂﬁ a shoen and allows measurement facilities. STREAM collects the time measuremenis,
One has to ensure the good synchronization of the program to collect reliable measurements.

par_kmpl{Preln, Pat¥, Vact, Resull) :-
vector{PatV, Patln),
vector{Vact, Vin) |
MaxPro := ¥Vin/Patln,
fel:mini(MaxPro, Proin, Pro),
util:object_to_string{PatV, _, PatVi),
util:object_te_string{Vect, _, VectZ),
(wait(Prol), wait(PatVZ), wait(VactZ) ->
sync_create_list_of_p(1l, Pro, [PatVZ, Patln, VectZ, Pro], Datal),
apply_list_of _p(Data, _, exl, loc_kmp,
{data_in, processor_in, merge_out}, Resul, _, [J}.
measure_time(Resul ,Resull)}).

The util:object_to_string/3 compresses ohjects into strings. Because Multi-PSI sends vectors and
strings in one packet to the other processors, it is suggested to use these data-representations, or to compress
the data in the same manner as above. Notice the synchronization done before duplicating and sending the
data to the processors, it is requested for efficiency.

loc_kmp([PatZ, Patln, VectZ, Prol, Cur_preo, STREAM_out) :- true |
util:string_to_object(PatZ, _, Pat},
util:string_to_cbject(VectZ, _, Vect),
{wait(Pat), wait(Vect) -»
my_subvect (Vect, Patln, Pro, Cur_pro, My_part, Dffset),
vect:findsubvect(Pat, _, My_part, .. Res),
add_offesat(Res, Offsat, STREAM_out))}.

The data is decompressed by util:string_to_object/3. Again we synchronize,

sync_create_list_of_p(1, Pro, [PatVZ, Patln, VectZ, Pro], Data) :- true
util:req_rel_time("compreesion", Sync),
(wait(Sync) =->
par:gync_create_list_of_p(l, Pro, [PatVZ, Patln, VectZ, Pro],Data)).

Since two test structures cannot be nested, a new predicate is needed for the measurement synchronization.

4.1 Search of a subvecior in a vector 4l

apply_list_of p{Data, _, exl, loc_kmp, {data_in, processor_in, merge_outl},
Resul, _. [1} :-
wait{Datal |
util:reg_rel_time{'data spreading". 3ync),
{wait{Sync} -»
par:apply,list_uf-p{l}ata, _, exl, loc_kmp,
{data_in, processor_in, merge_out}, Resul, _, 1y

measure_time(Resul,Resull) :- true |
util:sync_rac.wait(Resul, Resull),
(wait(Resuli) -> util:req.time("Total time", _}).

9.1.4 Performance measurements

Three examples have been run on a Multi-PSI/V2. In these examples we search for a subvector of 15
elements in a 5000 elements vector, These vectors have been randomly generated, laking elements of a given
vocabulary. The vorabularies for the three examples arc:

exl {abod}
ex? {fa bocll[1.2.3.4] [applv.add.a,b.edfmult J12.3.4],5.6)
ex3 {lafbodefllfl23.4506][aaabodgh a1 ,a b [2,3],4].5. 6]

— kmp sequential | 2 processors | 3 provessors | 10 processors | 15 processors
naive | final | naive | final naive | final | naive final

exl Kred 201 54 109 T6 | 176 112] 288 | 150 | 406
: 5 0.5 1.3 2.3 2.1 3.2 3.7 A1 hd 7.2
ex? Kred 20 138 477 275 019 s01 1660 732 2410
:-._ 0.5] 0.0 244 | 17.8 49.3 115 T4.D 453.3

exd Kred 20 LG6 | G4 K41 =63 639 1 2277 037 | 3308
5 | 0.2 13.6] 13.5 29,4 25 568 44.4 8312 (5.4

Table 1;: Time and reduction measures of kmp

As a first comment of Table 1, let’s note that the sequential version runs i eonstant time, whatever the
vocabulary is. It is always faster than the parallel version, This is explained by Figure 5. First of al, to
speed-up the transmission, we compress the data. This takes approximatively 5 seconds. Then, this data is
spread over the processors. This takes between 5 to 55 seconds, according to the number of processors. The
data is then decompressed, in about 3 seconds, and finally the kmp algorithm is performed in less than 0.5
seconds,

Becanse of the high simplicity of kmp search, the sequential version is several degree of magnitude faster
than parallel implementations on Multi-PSI/V2. The ratio between data transmission and the work to be
carried out is too high. Time measures and the related listings show that the additional work to be done
by the parallel version is not reasonable (with 15 processors, we have to make 165.4 times more reductions
than the sequential version).

Another interesting point concerns the speed of the naive parallel version which is faster than the final
version of kmp in example 1. In fact, in the case of a simple vocabulary, the data compression used in the
final version does not change the transmission performances, but introduces some compression overhead.
The more the data becomes hairy, the more the compression is efficient. The two last examples show it. We
can note that the final version of kmp has a much higher reduction-rate = Beductions This illustrates the
vital role of synchronization and inter-processor communication. For a discussion of evaluation criteria, one
can refer the paper of K. Taki, Measurements and Evaluation of the Multi- PSI/V1 System, in Programmin-,
of Future Generation Computers, vol. 2, North-Holland, published in 1988,

H¥) 9 EXAMPLES

timein s
B0 =
B compression
] Bd data-zpread
60 - B decompression + work
40 -
20 4
ﬂ -
0 5 10 15

. i rocessars
Fighire 50 sedreli of a subvectar in er

9.2 Sorting and removing doubles

We implemented a sort to remove all the double elements in a list. For the sake of clarity. this program
has been designed fur integers only. The sorting algorithim we use in the sequential version is the quick-sort
proposed in the Technical Memorandun TR-209 from ICOT, introduction to (fuarded Horn € Touses. hy
h.Ueda, published in 1986. Subsequentiyv. a simple loop removes consecutive doubles.

We took this algorithm and put it in the parallel environment. The tree-spreading function of FLIB
provides an efficient data spreading structure 1o do that. The first paralle| version spreads the whole data
sel to the processors. Each of them performs a sort on its data and then merges the results with those issued
by the child-processors. The second parallel version differs by the data transmitted to processors. Each of
them takes its own part of the work and shares the data to be sorted hetween the children. Performance
measurements give an idea about the gained afficiency.

89.2.1 Seqguential version

Sort, then suppression of double, using FLIB predicates.

9.2.2 First parallel version: Verl

In short. it consists in a tree-spreading of all the data, local sorting, then a merging of the results.

par_sort(Proln, Xin, Xout, STREAM} :- true |
fel:get_code(ex2, par_sortl, 3, FctCode, normall,
util:start_stata(FctCode, {Proln, Xin, Xout}, STHEAM).

To allow time measurements.

par_sortl(Proln, Xin, Xout) :- true |
list:length(Xin, Xint, Xlmn),
fel:mini(Xln, Proln, Pro),
list:list_to_string(Xini, 32, KinZ),
(wait(Pro),wait(XinZ) ->
sync_create_2_tree_of p(1, Pro, [XinZ, Xln, Prel, Data),
apply.2_tree_of_p(Data, ex2, loc_sort,
{data_in, processor_in, tree_left_in,trea_right_in,

B

0,2 Sorting and renpeving lony felye.

tres_up_out}, Global_result),
string :string.te_list(Global_result, Final_result),
measure_timel(Final_result, Xout)).

The number of processors s lmited by the fel mini/2. Data are compressed by list:list_to_string/3
v reduee datatransoission. The data is spread over a tree. Bach processur gets the same data. The results
of sorting are onipul via Global_result. They are they decompressed by string:string_to.l ist/2.

loe_sert([%in?, %ln. Prol, Cur_pre, TLL, TRI, TUD) :- true |
string:string_to_list(XinZ, Xinj,
lpc_subliset(Xin, Xln, Fro, Cur_pro. My_part),
list:sync_guicksert_a{My part, Res),
list :nodoub{Res, Resdl),
1ist:list_to_string(Resdl, 32, Resi),
merge_resultiResZ, TLI, TRI,TUO).

Data coming from par_sort1/3 are decompressed by string:string_to_list/2. Thelocal work to he done
is extracted bv loc_sublist/5. The sorted result is compressed 1nto 4 string by 1ist:list_to_string/3
I'he merge_result/4 predicate takes this lacal result and the results of the left and right childs. merges
{hem. removes 1he redundancies and transmits the result to the father processar {we do not incluide its
listing here for the suke of brevity).

a:,.-m:_czrnan._wrtzct,,i_i.'.rnaua_ezuf_1:|{1+ Pro, Elem, Data) :- true |
util:req_rel_time('compression”, Syncl,
(wait(Sync) -» par:sync_create_2_tree_of_p{1, Pro, Elem, Data)).

Synchronization of rime measurements

apply_2_tree_of _pi{Data, Mod, Fred, Arg, Resul) :-
wait(Datal) |
util:req_rel time("data spreading"”, Syncl),
{wait{Sync) -»
par:apply.2_tree_of_p(Data, _, Mod, Pred, Arg. ., -, []. Resul, 0. .. 27,

lee_sublist(Xin, Xln, Pro, Cur_pro, Resul) :- true |
Seg:= Xln/Pro + 1,
Start:= (Cur_pro - 1)= Seg,
list:sublist(Xin, Start, Seg, Resul, []).

Extraction of the local work to be done.

£.2.3 Second parallel version: Ver2

The main difference with the preceding version is the data Lransmission. Here we transmit only the necessary
data. thus transmission speed should be improved.

par_sorti{ProIn, Xin, Xout) :- true |
list:length(Xin, Xini, Kln),
fel:mini(Xln, Proln, Prol,
list:list_to_string(Xinl, 32, XinZ),
{(wait(Pre),wait(XinZ) ->
Seg := Iln / Pro + 1,
sync_create_2_tree_of_p(1, Pro, Seg, Datal,
apply_2_tree_of _p(Data, XinZ, ex3, loc_sort, {data_in,tree_left_in,
tree_right_in, tree_up_in, tree._left_out,
tree_right_out, tree_up.out}, Global_result),
string:string_to_list(Global_result, F inal_result),
measure_time(Final_result, Xout)).

34 4 EXAMPLES

The data are transmitted in Awo different manoers, The small ones. X1n and Pro are written in a vector
which is spread over all processors. ‘T'he large data. the list to be sorted. is given to the first processor. The
latter extracts the data treated locally and splits the remaining one into two equal parts. Those are then
transmitied to the children processors,

apply_2_tree_of _p{Data, XinZ, Mod, Pred, Arg. Resul} :-
wait{Data} |
util:req_rel_time("data spreading", Sync),
{wait(Sync) -»
par:apply_2_tree_of_p(Data, _, Mod, Pred, Arg, _, _, (],
Resul, XinZ, _, [1J).

loc_sorti{Seg, TLI, TRI, TUI, TLD, TRO, TUD) :- true |
loc_sublist(TUI, Seg, My_part, TLO, TRO),
list:sync_gquicksort_a(My_part, Res),
list:nodoub (Res, Resdl),
list:list_to_string(Resdl, 32, ResZ),
ex2:merge_resul {ResZ, TLI, TRI,TUD).

TTUTis the data coming from the upper processor. it is the list to be treated.

loc_sublist(Xin, Seg, Resul, TLO, TRO) :-
string(Xin, Xinln, _), Xinln > Seg |
Middle := (Xinln - Seg)/2,
string:split(Xin, Seg, Resull, Next),
string:split(Next, Middle, Begin, End),
(wait(Resull), wait(Begin), wait(End) -> Resull=Resul, Begin=TLO, End=TRO).
othervise.
lec_sublist(Xin, _, Resul, TLO, TRO} :- true |
Reaul = Xin, TLO = string#"", TRO = string#"".

The data to be treated is cut in 3 parts. the first will be treated by the local processor. The remaining data
is cut into two equal parts, forwarded to left and right children.
8.2.4 Performance measurements

This program was run to sort 3 lists, from 100, 500 and 5000 atomic elements. The results are shown in
Table 2.

sort sequential | 2 processors | 5 processors | 10 processors | 15 processors
verl | verd | verl | wver2 | verl | verd | verl E ver2

1000 Kred 3.8 10 9.3 17 16 20 28 42 39
8 16} 0.27 | 035 0.3 0.36) 0.35 0.44 | 0.41 0.46

500 Kred fil 16 34 41 32 a3 42 69 53
] 4 0.8 | 0.51 0.6 41 | 046 0.5 0.47 | 0L51 (1.5

5000 Kred 5104 | 2650 | 1677 | 1197 | 841 | 764 3532 | 680 529
E 5.4 | 155 157 3.8 38| 23 28| 21 2.1

Table 2: Time and reductions measures with sorf

By dealing with 100 elements, the parallel implementation looses, compared to the sequential one. With
500 elements, the best performance is obtained with 5 processors using the first parallel version. To sort
5000 elements, the first parallel implementation using 15 processors turns out to be faster. The parallel

9.3 {orclusion

time ins
18 =

B compression
B dala-spread
B decompression + work

14 =

12 1

10 4

B =
6 -

4 =

o 5 10 15
processors

Figure 6: Sorting of 5000 elenents

performance increase is super-linear. One can observe the evolution of the number of reductions performed
by the program. It simply means that the sequential version is far from optimality (the number of reductions
gives obvious informatien). Figure 6 represents in detail, the work done to sort 5000 elements. Roughly,
the data compression time is constant, the data spreading increases slightly, the sorting time decreases
dramatically. This result is due to the complexity of the sorting algorithm. Although related to quicksort,
which is in Q(nlog(n)}, its complexity tends to (fn’) when data are not well distributed in the initial
list to sort. This figure of complexity becomes in parallel, considering the cost of the merge operation,
0 (1-;',‘,1 2) + @{nlogn). When sort involves 5000 elements, the detailed analysis predicts a slowdown for
more than 15 processors, since the transmission time increases more than the decrease of the processing
time. The tree-data structure used in this algorithm allows fast data transmissions and merging of the
partial results in parallel.

8.3 Conclusion

The two examples we showed above lead to some hints in parallel programming on the Multi-PST:

e The search of a subvector in a vector by the kmp algorithm is a brilliant counter-example of the
usefulness of parallelism. In the worst case, the parallel implementation with 15 processors takes 166
times longer (naive version), or makes 165 more reductions (final version) that the sequential version.
These awful results are due to the simplicity of the kmp algorithm, compared to the size of the data
to be transferred.

e The sorting algorithm showed in contrary a super-linear speed-up, when dealing with big examples.
In fact, the principle used by the parallel implementation transformed the sorting, breaking the com-
plexity of the original algorithm. The parallel algorithm shows however a speedup limit, with a certain
number of processors. By using more processors, time is wasted in communications, etc.

Conception of efficient parallel programs remains an art. More work has to be done towards a better
knowledge of the multi-PSI.

