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Abstract

(Good load balancing 15 the key to deriving maximal per-
formance from mu]tlpmctssnrs. Several successful d}'-
namic load balancing techniques on tightly-coupled mul-
tiprocessors have becn developed. However, load bal-
ancing is more difficult on loosely-coupled multiproces-
sors because inter-processor communication overheads
C{Hl ETIENEE ., D_}'Tlil.rll.ir. I.{]H.[! ]?R]FL'I'I.':'.III'.I.E tﬂt.l:lnltﬁ]“ﬂi lla.'r'r.
been emploved in a few programs on loosely-coupled
multiprocessors, but they are tightly built into the par-
ticular programs and not much attention is paid to
acalability. We hawve developed a dynamic load bal-
ancing scheme which is spplicable to OR-parallel pro-
grams in genmeral. Processors are grouped, and work
loads of groups and processors are balanced hierarchi-
cally, Moreover, it is scalable to any number of pro-
cessors because of this multi-level hierarchical strue-
ture. The scheme is tested for the allsolution exhaus-
tive search Pentomino program on the mesh-connected
loosely-coupled multiprocessor Multi-PSI, and spesdups
of 28.4 times with 32 processors and 50 times with 64
processors have been attained.

1 TIntroduction

Load balancing is essential in deriving maximal perfor-
mance from multiprocessors by efficiently utilizing the
processing power of the eotiee system. This s done
by partitioning a program into mutoally independent
or almost independent tasks, and distributing tasks to
processing clements (PEs) in order to balance work
loads. The study of effective load balancing scheme
has been intensely pursued in the last decade in many
different areas in the field of tightly-coupled multipro-
cessors, loosely-coupled multiprocessors and distributed
computer systems [1, 2, 4, 5, 6, 7, 9, 11, 14]. Several
successful dynamic lnad balancing techniques on tightly-
coupled multiprocessors have been developed [7]. How-
ever, dynamic load balancing on loosely-coupled mul-
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tiprocessors is more difficult because the cost of inter-
processor communication must be taken into account.

In certain application programs such as numerical
computations, granularity, communication patterus and
dependenc_!,r of tasks can be estimated before the execu-
tion, and the best load distribution can be decided stati-
cally, However, for many programs it is not the case and
dynamic load distribution is needed. A few successful
dynamic load balancing techniques on loosely-coupled
multiprocessors have been introduced [3, 6], but they
are Lightly built into the particular programs and scal-
ability is not discussed much.

In this paper, a dynamic load balancing scheme
which is in principle applicable to any OR-paralle]l ex-
haustive search program is described. In our scheme,
processors are grouped, and work load s balanced both
at the processor group level and at the processor level.
This scheme s scalable to any number of processors,
The scheme is tested for the all-sclution search Pen-
tomino program on the mesh-connected multiprocessor
Multi-PSI [10] and near-linear speedups were attained.

In the following sections, the dynamic load halanc-
ing schemes are discussed in detail. Section 2 describes
the on-demand load distribution scheme in general. Sec-
tion 3 describes the multi-level load balancing scheme.
Section 4 describes performance measurement and its
observation. Section & describes the requirements of
granularity for load distribution, the measurement anal-
¥sis, snd a method of applying this scheme to a given
program. Section 6 concludes the paper.

2 On-Demand Load Distribution

In this section, a simple dynamic load balancing method
is described. Load balancing 15 done by partitioning a
program into mutually independent subtasks (Subtask
Generation), and distributing subtasks to I'Es so as to
balance work loads (Subtask Allocation).
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Figure 1: Subtask Generation

2.1 Subtask Generation

Sublask generation is done on one particular processor,
which is called the master processor. Figure 1 shows the
structure of sublusk generation. The large triangle rep-
resent the entire search space, the OR-tree. The small
iriaugle covered with wertical lines is the subtask gen-
erator, and it is execuled on the master processor until
the search reaches the certain tree depth which is called
the distribution level. The circles are the generated sub-
tasks, and their sizes indicate the sizes of sublasks. The
size. or granularity of subtasks becomes smaller and the
uurnber of subtasks becomes larger as the distribution
level gets desper. Generated subtasks are distributed to
PEs according to the task allocation strategy.

There are conflicling requirements to the granularity
of subtasks. On the one hand, it should be small so
that there are a large number of subtasks to make lots
of processors busy. On the other hand, it should be
significantly larger than the distribution overhead, since
subtask supp'y becomes a bottleneck and much of the
processing power would be wasted otherwise.

For example, Figure [(a) illustrates a situalion
where the granularity of subtasks is large so that dis-
tribution overhead is low, but the number of subtasks
inay not be large enough to balance work loads. Figure
1(c} describes a situation where the mumber of gubtasks
is large enough to balance loads, but the distribution
everhead might be too large. Therefore, some aptimal
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Figure 2: On-Demand Dynamic Load Distribution

distribution level as in situation like Figure 1(b) should
be found which satisfies the requirements of low distri-
bution overhead and of large number of subtasks.

2.2 Subtask Allocation

Generated subtasks are distributed to idle PEs in order
to balance work loads. When a PE hecomes idle, it
sends a message to the master PE, requesiing a new
subtask. Figure 2 shows the structure of on-demand
dynamic load distribution, the detals are listed below,

1. Since all PEs ore idle at the beginning, they send
demand messages to the subtask generator.

9 Subtask generator distributes subtasks Lo idle
PEs.

1 Tach PE exccules the subtask, and when it has
completed execution of the subtask, it sends a de-
mand message to the subtask generator,

There iz some delay between the time when a PE
becomes idle and the time when it is supplied with a
new subtask, If it is not negligible compared to the
average execution time of a subtask, a double buffering
of sublasks should be introduced.

3 Multi-Level Dynamic Load Balancing
Scheme

3.1 Subtask Supply Dottleneck

The simple load balaneing method deseribed in the pre-
vious section has one problem: it does not seale. As the
number of processors increases, the rate of subtask ex-
ecution eventually becomes larger than the rate of sub-
task supply. In other words, sublask supply becomes a
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bottleneck. Let Ny, be the number of subtasks gener-
ated and supplied per unit of time, and N,y the num-
ber of subtasks solved per unit of time. Subtask supply
becomes a bottleneck when Nyan < Negee

The hottleneck can be removed by reducing Noge.
by making the subtask grains larger. [lowever, this also
makes the number of subtasks smaller, and loads cannat
L:e balanced. Thus, we should mereasec ;“M"gn L‘r}f F.J‘rlr}tn}'-
ing more processors for subtask generation.

3.2  Multi-Level Load Balancing

Figure 3 shows the structure of two-level subtask gener-
ation which solves this bottleneck problem, A super-
subtask generator is allocated to one master PE. Tt
divides the task into super-subtasks until the search
reaches the first distribution level. Subtask generators
are allocated Lo A PEs. They divide the super-subtasks
into subtasks to distribute over the processors.

Tn emr scheme, each subtask generators i in charge
of a certain fixed number of processors, which form a
processor group { PG). N processors are grouped inlo
M processor groups, therefore, cach PG s composed of
4 PEs and @ certain PTin a G is called the group
master PE.

AL the first level distribution, super-subtasks are dis.
tributed to idle group master PEs to halance the loads
of PUs. At the second level, subtazks are distributed Lo
idle PEs to balance the loads of PEs which belong to a
PG Frgure 4]

The two-level loal balancing overcomes the sublask
supply hottleneck. However, if the number of processors
N becomes still larger, b subtask generator must feed
an increasing number of processors, causing a subtask
supply bottlencck, In such a ease, three or more load
balancing levels (multi-level load balancing) should be
introduced,

3.3 Group Merging

The rulti-level load balancing scheme with processor
grouping is scalable, and has good locality because the
super-subtasks are local lo Lhe proecssor groups. In
practice, however, the number of super-sublasks may
not be large enough, causing a load imbalance between
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Figurc 4: Two Level Load Balancing

processor groups. To partially selve this problem, we
introduced the group merging mechanism.

Figure 5 describes the structures of group merging. In
Figure 5(1), N PEs are grouped into four PGs. There-
fore, at the first level distribution, super-subtasks are
distributed to 4 PGs dynamically. Suppese there are
five super-subtasks, and the first four are distributed
to PGy, PGa, PGs and PGy, If all subtasks on P,
are compleled in execution, the fifth super-subtask is
distributed 1o PGy, At this state, four PGs are all
busy with generating sublasks and executing subtasks.
When Pi7, finishes all work aud becomes idle, there is
na super-subtask left to be allocated. In such a case,
P(34 is merged into PG, ( Figure 5(2)). In the same
way, when PG5 becomes idle, P73 is merged into Py
(Figure 5(3)), and at last, all PEs are werged into P(7,.

The problems with group merging is that as the
groups are merged and become bigger, a subtask genera-
tor st feed an increasing number of processors, caus-
ing a snbtask supply bottleneck, Tor now, the group
merging scheme seems to work, but we will need to de-
vise a better scheme that does not cause subtask supply
bottleneck.
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Figure 5: Group Merging

4 Measurements and Evaluation

We lested a two-level load balancing using the all so-
lution search program of Packing Pieer Puzzle, an OR-
Paralle] exhanstive scarch program on the Multi-PSI,
a loosely-coupled mmltiprocessor. In this seclion, we
describe the program, the hardware and the parallel-
language used, then the measurements and observation
AF EI'VEI'I.

4.1 Description of the Mrogram

Packing Piece Puzzle is a puzzle, in which a reclangnlar
box of containing picces with various shapes arc given
(Figure 6). The problem 1s to find all possible ways to
pack the pieces into the box. This puesle is known as
the Pentomine puzzle when the pieces are sach made up
of b wijuares.
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Figure 6 Packing Piece Puzzle

To solve this puzzle, the program starts with the
empty box, and finds all possible placements of a piece

to cover the square at the top left corner, then, for each
of those placement, finds all pessible plucements of a
piece {out of the remaining pieces) to cover the uncov-
ered squarc which is the topmost leftmost, and so on
until the box is completely filled. Each partly filled box
defines an OR-node, where the possible placements of
a piece to cover the uncovered topmest |eftmost square
define child nodes.

The program docs a top-tlown exhaustive search of
this OR-trce. Here. deepening the tree depth corre-
sponds to packing one piece.  Number of OR-nodes
increases as the search level deepens, but sinee some
OR-nwdes are pruned when there are ne more possible
placements the number of OR-nodes decreases helow a
certain tree depth.

4.2 Multi-P5I and the Parallel Lunguage KL1

The performance is measured on the Multi-PSI [10] sys
temn developed in the Japanesc fifth generation computer
system (FGCS) project.  The Multi-PSI system is a
lonsely-ronipled multiprocessor running the concurrent
logic programming language KL1 [3]. The processing
element is the CPU of the PSI-T1, and up to 64 pro-
cessors ate connected by an # % 8 mesh network, The
parallel implementation is writlen in the micrecode, and
it attains 130K append BRPS! per processor.

The concurrent logic programoming lunguage KL1 is
based on Flat GHC, and is augmented by metaprogram-
ming and pragma facilities. Those capabilities are used
for wriling an operating system and [or load distribu-
tion. “I'he operating system of Multi-T'S1 system is PL-
MOS [3] which is wholly written in KLI, and it pro-
vides basic 08 funclions sucl s resonrce management,
1/0 management, programming environment, and mea-
surement capabilities. “Lhe performance reported in this
paper is measured with Lhese measurement capabilities
supported by PIMOS and KL1 implementation.

4,3 Detection of Ldle PEs

For the detection of idle PEs, the priority pragma capa-
bility of KL is used. Priority pragma is nsed for effi-
cient program exccution by scheduling tasks with broad
range (0 to 4005} priority. Subtasks to solve a problem
are scheduled with high priority, and tasks to send a de-
mand message to master PE are scheduled with low pri-
arity. TLow priority tasks arc scheduled only when PEs
beeome idle. This detection mechanism is very simple
and the implementation overhead is quite small, and no
operating system support is required.

1R eductions Per Sscond: A reduction is a lagioal inference step,
and roughly correspands tn the eavcution of a siznple statcment
n o provedural languags,



MNumber of Tustal Total Reduction | Total Reduction | § | Average Reduction
Subtasks | Reduction{R) | of Subtasks (§) | of Generator{G) of Subtasks
(N) | (x1,000) {x1,000) {x1,000) (%) (x1,000)
L1 13 8,208 8,267 1.7 0.0 636.0
L2 115 4273 HB2ET 5.4 0.0 T0.1
L3 485 8,239 8,253 35.9 0.4 17.0
L4 1,583 4,321 8,201 120.6 1.4 5.2
Ls 5,625 .44 4048 TS 18 T4
L& 16,124 8,854 7,774 1,080.4 12.2 0.5
1.7 38,105 - - - - -
L& £4, 950 - - - -
To | 41,560 - : N . -
Lo 3, 16 - - - -

Table 1: Number of Subtasks and Granolarity

44 Granularity Measurements Number of Subtasks

Table 1 gives the measurement results of number of sub- 3
tasks and their granularity. They are measured by exe-
cuting the program on one proecessor. In the table, L1
through LID in the row describe the tree depth corre-
sponding to the distribution levels.

Number of Subtesks (M) in the row correaponding to L3
Lu 1= the number of subtasks (OR-nodes) generated at
each distribution level. Total Heduetion (R} in the row
corresponding to Lo (o> 2) is the total number of reduc-
Lions wlien twoelevel load balancing T.1-Ln is dene, Total
Reduction {R) in the row corresponding to L1 is the to- & a0 s om0 o ume
tal mumber of reductions when one-level load balancing
I1 15 dene, Total Reduetion of Subtasks (5} is the total -
number of reductions for all generated subtasks. Total 200
Reduction of Generator ((3) 15 the total reductions of
super-subtask generator and subtask generators, and it 150,

15 calculated by i -~ 5. Rale of Generalor Reduclion 1.4

[% = 100} is the ratio of Tetal Reduction of Generator e

(3} to the Total Reduction (K}, Average Heduction of

Subtasks is the average granularity of sublasks, and it »

ie calculated by ﬁr Unit of Number of Sublasks is num-

ber, Hate of Generator Heduction is percent, and others P, R " P = TN
are kilo (=1, 000} reductions.

Figure T shows the number of subiasks agamst their
granularity. X-axis 13 the number of reductions of sub-
Laske, amd Yeaxin is the number of subtasks which cor-
responds to the number of reductions.

el
A

L1l

L5

A

40 e L L
Granularity (kilo Reductions)

Figure T: Graoularity Distribution Map



[ No. of PEs 1 1 I B

[ 16 | 32 | &4 |

Exec Time(sec) L3 | 2604 | 367 | 224 [ 168 | 13.2

Speedup L3 1 71 | 116 | 15.5 | 187

Speedup Rate{%) | L3 100 | BE.E | T2E | 484 | 308

Table 2: Performance of One Level Distribution

No. of PEs 1] Bl 1e ] a2 ] 64

Execution Time (seconds)
L1-L3 2592 | 337 | 188 | 10.4 T
L1-L4 BA1.2 | @42 | 1T.E 9.2 5.3
MTLs 2624 | 37.8 | 1AT ok 5.8
. Li-Lg 278.4 | 469 | 265 | LTE | 4.2
L2L3 | 2603 345 157 109 6.6
L2-L4 2645 | 3.4 | 176 9.4 £3
1215 265.1 | 37.3 | 188 uT 5.4
L2-Li 2737 | Ep& | 287 | 155 | 11.2
Speedup
L1-L3 1| (77l 138 ] e8] 332
L1-L4 1 7.6 | [14.9] | [284]] 493
L1-L5 1 6.9 | 140 | 268 | 452
Li-Le 1 5.9 10.5 15.6 156
L2-L3 1 7.5 | 132 | 238 | a9.a
L2-L4 1| [7.7] ] [15.0] ! [28.2] ] 500
L2-L5 1 70 M| zra | lsow
L2 L6 1 54 103 177 244
) __Speedup Rate(%)
Li-L3 100 [[esa]| mea | 778 | s1s
Li-L4a wo | seso | [eza]|[ss8]| 770
(B 100 | 863 | BTSH | #3.8 | 706
Li-L& 100 T1.8 656 40,8 30.6
Li-L3 100 [ 935 | 8251 74T 6L6
L2-L4 100 | [96.3] | 9381 [asa]] |78
L2-Ls 100 | 87.5 B5.1 85.3 | |78
L2-LG 100 | 67.5 | G643 | 553 | 381

Tabile 3 Performance of Twe Level Distribulion

4.5 Performance Measurements

Fuceution times are measured on a 64 processor
Multi-PS1 system. For one-level load distribution, they
are measured for various numbers of processors (1, 8, 16,
32, 64 PEs), for distribution level L3, which obtained
the best performance; it is shown in Table 2. For two-
level load distribution, they are measured for various
wumbers of processors, for the varous pairs of the first
distribution level (L1, L2) atd second distribution level
(L3, L4, LS, Lb). Notation Li-Lj stands for the two-level
load halancing with Li the first balancing level, and Lj
the second.

=% R

e

T ¥ T T T T T
L L] is 32 L2

Number of Processors

Fignre & Specdups

Oue processor group (PG) containg 4 PEs in all of
the two=level load balancing. Therefore, 64-PE is formed
by 16 PGs, 32-PE by 8 PCs, 16-PE by 4 PGs and -PE
].‘:lj’ 2 PGs. As for the messurements for 1 PE, every
subtasks are distributed to the same PG and same PE.
Maensured and calcolated items are as follows, They are
given in Table 3. Speedups are shown in Figure 8.

Execution Time {Tw) is measured by system clock of
Multi-PST system. Speedup (Swy) is defined as the ratio
of execution time on 1 PE {T)) to & PEs {Ty), and
calculated by Jl: Speedup Hate (SHy) 15 caleulated

hy %;‘.1 w 100,

4.6 Obscrvation of Measurements Rlesults

In Table 1, Number of Subtasks indicates that 13 sub-
tasks arc generated at distribution level L1, and it in-
creases for up to level LA, it decreases because a lot
of OR-nodes are pruned, and 3,106 at L10 is the total
mumber of solutions,



Total Reduction (R) increases as the distribution
level gets deeper. Here, the cost required for distribut-
ing one subtask 15 uniform, and it 1s about 35 reductions,
therefore, as number of sulitasks increases, the number
of total reductions increases. It is also indicated by the
increase of lotal Heduetion of Generator,

In Table 2, Exccutton Time with one-leve] load bal-
ancing decreases as the number of processors increases,
but at 32 'Lz or 64 TEs, Speedup Hates are saturated
at less than 50%

Tu Table 3, Execution Time of two-level load halanc-
ing decreases as the number of processors increases in
any pair of Li-Lj, and near-lincar speedups are oblained.
The hest performance on B PEs are L2-L4 and L2-L5,
and 50 times speedups are oblained, Comparing the
speedups of two-lovel lond balancing with those of one
leve] Jowd balancing, the performance of 32 PFs and 64
FFs was moch improved. In this table, for each number
of processors, the best and the sccond best speedops are
marked with a rectangular baox,

5 Discussion

As we have described in Section 2, there are conflicl-
ing requirements on the grapularity ol sobtasks: a large
number of sulitasks for a good load balance aod large
granularity to avoid the subtask supply hottleneck. In
this section, we will clarify these requirements using
ecguations and o graph, and give apolher view o the
multi-leve! load distribution. We also try to analyze the
measurements result. A tentative plan, which describes
bt apply this scheme to a given problem, is also
presented.

5.1 Degquirement on the Number of Subtasks

The number of subtasks has to be large enough to make
Ints of processors husy. This can be controlled by in-
creasing the load distribution level. We will derive an
equadion wiich gives an approximate lower bound of
the muniber of subtasks required to guarantee the pro-
cessors’ average work rate above a certain given value.

In the follewing, we fix an OR-parallel problem and
the number of processors. We assume that response
titne From subtask request to subtask delivery 13 neghi-
gible compared to the subtask grain size. Subtash gen-
erators have enough throughpot not to become a bot-
tleneck. _

Suppose there are Npp, processors, each of Npg, —1
processors processes I subtasks with uniform grain size
cqual to Average_granularily Ave gran), and the last
processor processes [ subtasks of the same size first and
processes a task with Maz_granularity( M az-gran) at
last. The Npp, — 1 processors will be ddle while the last
processor processes the |ast subtask. 'This results in the
levwesl processor work rate for the given average size of

subtasks. To guarantes a certain expected average work
rate of processors (Work.rate) in this worst case, the
number of subtasks must be large enough. We deter-
mine below precisely how many subtasks are needed.

There are J = Npp, subtasks (excluding the biggest
subtask.)

Neubrasks = K % Npp, (1)

The actual work rate in the worst situation is given
by the following formula.

fi.. = AI?E_HI'IJH.
K = Ave_gran 4 Mar gran

Actual work.rate = (2)

The condition Aclual.work-rate = Work_rale is
equivalent to the following, using the above two equa-
tions.

Wark_rate

|HGI_HTEI Tl
w
— Work.rate  Ave.gran

Nsuttasks = Npgs = 1 (3}

Here, Workorate is given by the user as a desired
value, Mar.grenularity and Average_granularify de-
pend on the program,

Suppose a system has 64 PEs, Maz.granularity
of a program is estimated ten times larger than
Awverage_granularily, and the user wishes an average
work rate of at least 80%. Then, the condition

'ﬁ"r-ﬁuﬁtustl 2 ﬁ‘; 4 8 S w Il — 2, Hedd {4}

must be satisfied to guarantee the 80% work rate. This
gives a guideline to choose the load distribution level
which determines Nyypeases of a program. Condition (3)
guarantees the expected work rate in the worsl case. In
average cases, however, a smaller Nyyprq.6, may suffice
to attain the expected work rate.

5.2 Neguirement on the Subtask Granularity

Let us now consider a sunple case where both subtask
generation cost (Cg.n) and distnbulion cost (Cpis)
are pard only by the master processor. When there
are Npg, processors and the subtask granularity is just
{Npp, - 1] times larger than {(Tgem + Chiee), a mas-
ter processor always generates and distributes subtasks,
and others exccute them. In Lhis situation, subtask
supply does not become bottleneck, and {Npg, — 1)
times speedup oul of N, processors can be attained,
When the granularity is smaller, subtask supply be-
comes a bottleneck, and il cannot make all processors
busy. Thus, the lewer bound of average granmlarity
(Avegran), which keeps the subtask generation from
becoming a bottleneck, can be expressed by the follow-
ing inequality.



Ave_gran 2 {(Cgen + Cpiat) © (Npgs = 1) (5)

This condition comes from the requirement on the
average throughput of subtask generation and supply,
and does not guarantee that the processors are al-
ways kept busy. In a bad situation, sublasks of smakl
grain sige are generated in the cacly stage of execution,
resulting in a subtask supply battleneck. Therefore,
Average_granularity should be sufficiently larger than
the value determined by condition (3).

5.3 DProblem Size and Speedup

Condition (1) gives a lower hound of number of sub-
tasks, or cquivalently, an upper bound of average granu-
larity, to keep the system work rate above some expected
value. Condition (5) gives a lower bound of average
graoularity, or equivalently, an upper bound of number
of subtasks to prevent subtask supply bottlapeck. Let
us now consider the relationship between these upper
and lower bounds of granularity, the problem size, and
speedup.

Figure 9 illustrates the relation between spesdap ver-
sus subtask granularity and number of subtasks intu-
itively, and (a) for a large problem and (b} for a small
problem. Solid curved lines correspond to speedup when
one-level load balanecing is done.

In region A, the speedup curves decline to the left
beeause of the subtask supply bottlencck (condition (5)
i not satisfied ). In region C, the speedup curves decline
to the right because of load imbalance (condition (3) is
not satisfied).

When Figure 9(b} is put upon 9(b}, the two curves
for different problem sizes are close to each other in
region A, because the performance deerease is affected
by small granularity itself described in condition (5). On
the other hand, the two curves lie far apart in region C,
because the performance decrease in region C is caused
by the small number of subtasks which have a relation
with Problem size and Average_granularity as below:

Problem.size
Average.granularity

Noubiasks = (6)

For the large problem size, there is a wide plateau
{region B} between A and € in which the highest
speedup is obiained. The larger the problem is, the
wider the plateau. It indicates that load balancing of
large problems is much easier than that of small one,
since the optimal point of the granularity is widely
spread,

For the small problem size, region A and C may
overlap, the entve shows a peak, and there is no plateau
(region B). So it is more difficult to find a suitable gran-
ularity for the best speedup. This is cansed by both
subtask supply bottleneck and load imbalance.
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Figure 9: Granularity and Specdup

Let us look at our multi-level load balancing scheme
again using Figure 9. The scheme solves the subtask
supply hottleneck which is caused by small granularity
in region A. The scheme replaces the factor Npg, in the
condition (5) with the number of PEs in the processor
group (Npgs inpc) where Npg,_inpe € Neg.. Hence,
the Average_granularity can be reduced. That is, the
multi-levelling widens the region B in the speedup curve
for the large problem, and moves the peak up for the
smiall problem. These are shown as dotted curved lmes
in Figure 9(a) and (b).

Applying this scheme to problems showing speedup
saturation, peak speedup will be improved. Thus, the
multi-level distribution scheme has wider applicability
to various sizes of problems than a single-level scheme
does.

5.4 Analysis of the Measurement Results

We now try to derive the required number of sub-
tasks for the Pentomino program from condition
(3). Let Workrate be 80%, Mazgranularily be:
180 from Figure 7 (granularity date of L3 is used),



Average_granularity be 17 from Lable 1, and Npg, be
£4. Then the required Number of Subtasks { Nsubtasks)
s 2,710

Nexi, we try to derive the required average gran-
ularity of subtasks from condition (5). In this condi-
tion, Cien depends on the application programs which
s about 40 reductions for this Pentomino program,
while (Tpie: does not change for all programs which is
about 35 reductions. In our measurements, we have
fixed the number of PEs in a PG {(Vepainrs) at 4.
Average-granularity must be at least 225 reductions
by condition (5).

Table 1 gives the number of subtasks and granularity
for each level. The required number of subtasks 2,710
is sutisficd by L5 and L6, and the required granularity
is satisfied by L1 to L6. Hence, L5 and L6 seem to be
the optimal distribution level.

Table 3 gives the performance of two level distribu-
tion. The number of subtasks at L3 is too small, which
canses the load imbalance, therefore, good speadups are
not obtained for L1-1.3 and L2-L3. The number of sub-
tasks at L4 is rather small, but the load imbalance prob-
lew does not show itself (tecall condition (3] was not a
tust), and geod speedups are obtained for L1-14 and
L2I-L4.

Both requirements are salisfied for LG and LG, and
good speedups are obtained for L1-L& and L2-L3, but
not for L1-L6 and L2-L6. This is caused by the following
problem of current group merging mechanism,

When the PEs in a PG are merged to other PG,
becoming larger group, Npg, in condition (5) also be-
cores larger. For example, Npg, 15 4 at the beginning,
but az it becomes 64, then the required average granu-
larity becomes 4,625 reductions.

Then L5 and L6 do not satisfy this requirement. Ob-
serving Table 3, subtask supply bottleneck limits the
performance at the distribution leve] of L1-L6 and L2-
Li. However, good speedup is obtained at L1-L3 and
L2-L5, the group merging seems not to make the sub-
task supply bottleneck.

Tastly, let us consider where L3, L4, L5, and L are
located in the graph of Figure 9{b). Looking at both Ta-
ble 3 and the graph, it is observed that L corresponds
to the region C*, since speedup is saturated because of
load imbalance. L6 corresponds to the region A" since
it is saturated becanse of the subtask generation bottle-
neck, L4 and L5 correspond to the region B and the
best speedups are cbtained.

5.5 Determination of Optiinal Load Balancing
Levels

Here, let us present how to apply the multi-level load
balancing scheme to a given OR-parallel problem. Op-

timal number of subtasks, granularity of subtasks, and
load balaneing level can be determined by the following
procedure.

{a) Find the size of the problem by estimation or mea-
surernent .

i) Give a certain expected work rate, and derive the
required number of subtasks from condition (3).

{¢] Derive the average granularity frem (a} and (b).

{d) Find the cost of subtask generation by estimation
or measurements. Determine the cost of distribut-
ing a subtask which is constant. Then derive the
number of PEs in a processor group from condi-
tion (5).

(&) When the size of the problem is large, the number
of PEs in the condition {5) becomes equal to or
larger than that in the condition (3), then one
level distribution suffices.

i(f} When 2 < Npg, (i the condition (5)) < Npg,
(in the condition (1)), a multi-level load balancing
15 suitahle.

(g} When Npg, (in the condition {5}) < 2, the prob-
lem sige s too small and efficient speedup may net
be expected. So, decrease the number of subtasks
with decreasing the number of processors to be
used, and try one-level distribution.

Programmers may derive near-maximum speadup by
applying the described procedures to the given problem.
They can get the hest speedup by tuning the distribu-
tion level with a few trials-and-errors.

& Conclusions and Future Works

A multi-level dynamic load balancing scheme for OR-
parallel problems on loosely-coupled multiprocessors is
proposed. Processors are grouped in our scheme, and
work loads of groups (P(s) and processors (PEs) are
balanced dynamically in each hierarchy level. This
scheme is scalable Lo any number of processors.

Loads of Pls and PEs can be balanced when enough
number of super-subtasks and subtasks are supplied,
however, when the number of super-subtasks is not large
enough, load imbalance between processor groups is oc-
eurred. We introduced group merging to solve this prob-
lem partially.

These schemes are implemented and tested for
the all-solution exhaustive search Pentomino program
on the mesh-connected loosely-coupled muliiprocessor
Multi-P51, and near-linear speedups are obtained: 7.7
times with & PEs, 15 with 16 PEs, 28.4 with 32 PEs, 50
with 64 PEs. The relations between granularity, num-
ber of processors and speedups are discussed, and this



would be an esscntial guide to think about the load
balancing for ONl-parallel problems on loosely-coupled
multiprocessor in general. This scheme is efficient not
only for OR-parallel search problems, but also applica-
ble o some types of search problems such as alpha-beta
pruning problems, which do not invalve frequent inter

processor comnunication. Applying the multi-level load
balancing scheme to such programs is our future work,
Tmprovement of the group merging scheme is also the
future work.
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