TR-525

A Probabilistic Interpretation for Lazy Nonmonotonic Reasoning

by K. Satoh

December, 1989

© 1989, ICOT

Mita Kokusai Bldg. 21F 4-28 Mita 1-Chome Minato-ku Tokyo 108 Japan

(03) 456-3191~5 Telex ICOT J32964

Institute for New Generation Computer Technology

A Probabilistic Interpretation for

Lazy Nonmonotonic Reasoning

Ken Satoh
Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
email: ksatoh@icot.or.jp

December 4, 1989 Revised: December 20, 1989 Revised: May 30, 1990

Abstract

This paper presents a formal relationship for probability theory and a class of nonmonotonic reasoning which we call *lazy nonmonotonic reasoning*. In lazy nonmonotonic reasoning, nonmonotonicity emerges only when new added knowledge is contradictory to the previous belief.

In this paper, we consider nonmonotonic reasoning in terms of consequence relation. A consequence relation is a binary relation over formulas which expresses that a formula is derivable from another formula under inference rules of a considered system. A consequence relation which has lazy nonmonotonicity is called a rational consequence relation studied by Lehmann et al. [7].

We provide a probabilistic semantics which characterizes a rational consequence relation exactly. Then, we show a relationship between propositional circumscription and consequence relation, and apply this semantics to a consequence relation defined by propositional circumscription which has lazy nonmonotonicity.

1 Introduction

This paper is concerned about a formal relationship between nonmonotonic reasoning and probability theory. Nonmonotonic reasoning is a formalization of reasoning when information is incomplete. If someone is forced to make a decision under incomplete information, he uses commonsense to supplement lack of information. Commonsense can be regarded as a collection of normal results. Those normal results are obtained because their probability is very near to certainty. So commonsense has a statistical or probabilistic property.

Although there are a lot of researches which simulate a behavior of nonmonotonic reasoning based on probability theory [12, 13, 14], there is no formal relationship between nonmonotonic reasoning and probability theory, as Lifschitz [9] pointed out.

In this paper, we consider nonmonotonic reasoning in terms of consequence relation [2, 5, 6, 7]. Consequence relation is a binary relation over formulas and expresses that a formula is derivable from another formula under inference rules of the considered system. The researchers consider desired properties in a consequence relation for nonmonotonic reasoning.

Gabbay [2] was the first to consider nonmonotonic reasoning by a consequence relation and Kraus et al. [5] gives a semantics for a consequence relation of nonmonotonic reasoning called *preferential* consequence relation. The semantics is based on an order over possible states which is similar to an order over interpretations in circumscription [10] or Shoham's preference logic [16].

Lehmann et al. [7] define a more restricted consequence relation called rational consequence relation and shows that a consequence relation is rational if and only if it is defined by some ranked model. A model is ranked if a set of possible states is partitioned into a hierarchical structure, and in a rational consequence relation the previous belief will be kept as long as the new knowledge does not contradict the previous belief. This nonmonotonicity can be said to be lazy because only contradictory knowledge can cause a belief revision.

Moreover, they investigates a relationship between Adams' logic [1] (or equivalently, ε -semantics [13]) and rational or preferential entailment in which conditional assertion is followed by a set of conditional assertions. Although Adams' logic is based on probabilistic semantics, it only considers consistency and entailment for a set of conditional assertions and does not consider probabilistic semantics for a consequence relation. To give a probabilistic semantics to nonmonotonic reasoning, we have to go beyond Adams' logic because most nonmonotonic reasoning systems define a consequence relation in the sense that the systems can define a derived result from a given set of axioms by the inference rules of those systems.

In this paper, we provide a probabilistic relation which characterizes a rational consequence relation exactly. To do so, we define a closed consequence relation in the limit. This property means that there exists a probability function with positive parameter x such that a conditional probability of a pair of formulas in the consequence relation approaches 1, and a conditional probability of a pair of formulas not in the relation approaches α except 1 as x approaches 0.

Then, we can show that a consequence relation is closed in the limit if and only if the consequence relation is rational.

We apply this result to giving a probabilistic semantics for circumscription [10], because circumscription has a similar semantics for a rational or preferential consequence relation and circumscription can define a consequence relation each of pair of which consists of original axiom and derived result. Although we can show that consequence relation defined by circumscription is a preferential consequence relations, it is not always rational. Especially, we can show that if there are some fixed propositions or if we minimize more than three propositions in parallel, then consequence relations defined by this circumscription is always non-rational.

However, in some cases, we can separate a set of interpretations into a hierarchy, and so, we can provide a probability function so that a consequence relation defined by the circumscription in those cases is equivalent to a consequence relation defined by the probability function.

2 Consequence Relations and Their Models

In this section, we briefly review a work on consequence relation by Lehmann, Kraus and Magidor [5, 7]. A summary of the work is found in [6].

We consider a propositional language. In the propositional language L, we shall use a set of propositional symbols (finite or infinite). Then, formulas in L are defined as follows.

- A propositional symbol is a formula.
- If A and B are formulas, then ¬A and A ⊃ B are formulas.
- An expression is a formula only if it satisfies the above conditions.

If A and B are formulas, then $A \wedge B$, $A \vee B$, $A \equiv B$ are abbreviations for $\neg (A \supset \neg B)$, $\neg A \supset B$ and $(A \supset B) \wedge (B \supset A)$, respectively. We use **F** for false and **T** for true.

We use a set of all possible worlds, \mathcal{U} , to give a truth value to every propositional symbol. We define a satisfaction relation \models over \mathcal{U} and L as follows. $u \in \mathcal{U}$ satisfies a formula A (written as $u \models A$) if and only if the following conditions are satisfied.

- If A is a propositional symbol P, then u(P) is true.
- If A is of the form ¬B, then u does not satisfy B (written as u ≠ B).
- 3. If A is of the form $B \supset C$, then $u \models B \supset C$, then either $u \not\models B$ or $u \models C$

We consider a binary relation over formulas called *consequence relation* $\[\sim \]$ which has some desired property in a considered reasoning system. Intuitively speaking, $A \[\sim \]$ means that if a state of knowledge is A, then B is derived from A by inference rules defined in a considered reasoning system.

Definition 1 (Kraus, Lehmann and Magidor) Let V and U be a set and $V \subseteq U$ and \prec be a strict partial order on U (for any $s \in U, \neg(s \prec s)$ and for any s, t, u, if $(s \prec t)$ and $(t \prec u)$, then $(s \prec u)$). We shall say that $t \in V$ is minimal in V if and only if there is no $s \in V$, such that $s \prec t$.

Definition 2 (Kraus, Lehmann and Magidor) Let $V \subseteq U$. We shall say that V is smooth if and only if $\forall t \in V$, either $\exists s$ minimal in V, such that $s \prec t$ or t is itself minimal in V.

Definition 3 (Kraus, Lehmann and Magidor) A preferential model W is a triple $\langle S, l, \prec \rangle$ where S is a set, the elements of which will be called states, $l: S \mapsto \mathcal{U}$ assigns a world to each state and \prec is a strict partial order on S satisfying the following smoothness condition: for all $A \in L$, the set of states $\hat{A} \stackrel{\text{def}}{=} \{s | s \in S, l(s) \models A\}$ is smooth.

Definition 4 (Kraus, Lehmann and Magidor) Let W be a preferential model $\langle S, l, \prec \rangle$ and A, B be formulas in L. The consequence relation defined by W will be denoted by \triangleright_W and is defined by: $A \triangleright_W B$ if and only if for any S minimal in $\widehat{A}, l(S) \models B$.

Definition 5 (Kraus, Lehmann and Magidor) A consequence relation that satisfies all six properties below is called a preferential consequence relation.

There is the following relationship between a preferential consequence relation and a preferential model.

Proposition 1 (Kraus, Lehmann and Magidor) A binary relation \vdash on L is a preferential consequence relation if and only if it is the consequence relation defined by some preferential model.

Definition 6 (Lehmann and Magidor) A ranked model W is a preferential model $\langle S, l, \prec \rangle$ for which the strict partial order \prec may be defined in the following way: there is a totally ordered set Ω (the strict order on Ω will be denoted by \prec) and a function $r: S \mapsto \Omega$ such that $s \prec t$ if and only if r(s) < r(t).

Intuitively speaking, a model is ranked if a set of states is partitioned into a hierarchical structure.

Definition 7 (Lehmann and Magidor) A preferential consequence relation \succ is said to be rational if and only if it satisfies the following condition.

$$\frac{A \triangleright C, A \triangleright \neg B}{A \land B \triangleright C}$$
 (Rational Monotony) (7)

Rational monotony was proposed by Makinson as a desired property for nonmonotonic reasoning system [7] and corresponds with one of fundamental conditions for minimal change of belief proposed by Gärdenfors [3].

An intuitive meaning of the condition of rational monotony is that the previous conclusion stays in the new belief if the negation of the added information is not in the previous belief.

An alternative view of rational monotony is obtained by the contrapositive form of the above definition:

$$\frac{A \triangleright C, \ A \land B \not \triangleright C}{A \triangleright \neg B}$$

This means that if adding B makes the previous belief being retracted, B will be exceptional when the state of knowledge is A.

There is the following relationship between a rational consequence relation and a ranked model.

Proposition 2 (Lehmann and Magidor) A consequence relation is rational if and only if it is defined by some ranked model.

3 Relationship between Rational Consequence Relation and Closed Consequence Relation in the Limit

From this point, we assume the set of propositional symbols in L is always finite.

Definition 8 Let L be a propositional language. Then probability function P_x on L with positive parameter x is a function from a set of formulas in L and positive real numbers to real numbers which satisfies the following conditions.

- 1. For any $A \in L$ and for any x > 0, $0 \le P_x(A) \le 1$.
- 2. For any x > 0, $P_x(T) = 1$
- 3. For any $A \in L$ and $B \in L$ and for any x > 0, if $A \wedge B$ is logically false then $P_x(A \vee B) = P_x(A) + P_x(B)$.

If we ignore a parameter x, the above definition becomes the standard formulation for probability function on L [3]. We introduce a parameter x to express the weight of the probability for every states. Spohn [17] uses a similar probability function to relate his Natural Conditional Functions to probability theory.

Definition 9 Let $A, B \in L$. We define the conditional probability of B under A, $P_{x}(B|A)$ as follows.

$$P_x(B|A) = \begin{cases} 1 & \text{if } P_x(A) = 0\\ \frac{P_x(A \land B)}{P_x(A)} & \text{otherwise} \end{cases}$$

Definition 10 A probability function P_x on L with positive parameter x is said to be convergent if and only if for any $A \in L$, there exists α such that

$$\lim_{x\to 0} P_x(A) = \alpha.$$

Now, we define a consequence relation in terms of the above probability function P_x .

Definition 11 A consequence relation \succ is said to be closed in the limit if and only if there exists convergent probability function P_x on L with positive parameter x such that for all $A \in L$ and $B \in L$,

$$A \triangleright B$$
 if and only if $\lim_{x\to 0} P_x(B|A) = 1$.

Intuitively speaking, if a pair, (A, B) is included in the closed consequence relation in the limit, then we can let the conditional probability of B under A approach 1 as much as possible and if not, the conditional probability will approach some value except 1. This intuitive meaning will be justified later.

Now, we show the equivalent relationship between a rational consequence relation and a closed consequence relation in the limit.

Theorem 1 If $\[\]$ is rational then $\[\]$ is closed in the limit.

Proof:

From Proposition 2, if $\[\sim \]$ is rational, then there exists some ranked model $W = \langle S, l, \prec \rangle$ such that for every pair of formulas A and B, $A \[\sim \]$ if and only if $A \[\sim \]$. Since the language is logically finite, there exists a finite ranked model with a finite number of ranks. Let the number of ranks be $n(n \ge 1)$. Let η_i be the number of states at the i-th rank (States which are higher in \prec is in a higher rank).

Let a function P_x on L with positive parameter x be defined as follows:

$$P_x(A) \stackrel{\text{def}}{=} \frac{\sum_{i=1}^n \eta_i^A * x^{i-1}}{\sum_{i=1}^n \eta_i * x^{i-1}}$$

where η_i^A is the number of states at the *i*-th rank that satisfies A.

This assignment is obtained so that the following conditions are satisfied.

- If all states of the same rank, they have the same probability.
- The probability of a state in the (i+1) th rank is x times as much as that of a state in the i-th rank.

¹This assignment is suggested in [7].

Then, P_x is a convergent probability function.

- 1. For all $A \in L$ and for all x > 0, since $0 \le \eta_i^A \le \eta_i$ and there exists i such that $\eta_i > 0$, $0 \le P_x(A) \le 1$.
- 2. For all x > 0, since $\eta_i^{\mathbf{T}} = \eta_i$, $P_x(\mathbf{T}) = 1$.
- 3. For all $A \in L$ and $B \in L$ and for all x > 0, since if $A \wedge B$ is logically false, $\eta_i^{A \vee B} = \eta_i^A + \eta_i^B$, $P_x(A \vee B) = P_x(A) + P_x(B)$.
- 4. For all A, since $\lim_{x\to 0} P_x(A) = \frac{\eta_1^A}{\eta_1}$, $\lim_{x\to 0} P_x(A)$ always exists.

Consider a relation over L, \triangleright' defined as follows.

$$A \triangleright' B$$
 if and only if $\lim_{x\to 0} P_x(B|A)$

We will show that $\succ' = \succ_w$.

If $P_x(A) = 0$, there is no state which satisfies A and therefore, for any $B \in L A \triangleright_W B$. In this case, since $P_x(B|A) = 1$, $A \triangleright' B$.

Let $P_x(A)$ be not equivalent to 0. There exists a state which satisfies A. Let mr(A) be the minimum rank where some state satisfies A. Then,

$$\lim_{x \to 0} P_x(B|A) = \lim_{x \to 0} \frac{P_x(A \land B)}{P_x(A)} = \frac{\eta_{m\tau(A)}^{A \land B}}{\eta_{m\tau(A)}^A}$$

If $A \vdash_W B$, then for any s minimal in \widehat{A} , $l(s) \models A \land B$. And any s minimal in \widehat{A} is at the minimum rank in ranked model. Therefore, $\eta_{mr(A)}^{A \land B} = \eta_{mr(A)}^{A}$, and so,

$$\lim_{x\to 0} P_x(B|A) = 1.$$

Thus, $A \triangleright' B$.

If $A \not\models_W B$, then there exists some s minimal in \widehat{A} , $l(s) \not\models A \land B$. Therefore, $\eta_{mr(A)}^{A \land B} \neq \eta_{mr(A)}^{A}$, and so,

$$\lim_{x\to 0} P_x(B|A) \neq 1.$$

Thus, $A \not\vdash B$.

Therefore, \succ_W is closed in the limit. \square

Now, we prove the converse of the above theorem.

Lemma 1 Let P_x be a probability function with positive parameter x. If $P_x(A) \neq 0$, then

$$\lim_{x\to 0} P_x(B|A) = 1 \text{ if and only if } \lim_{x\to 0} P_x(\neg B|A) = 0$$

Proof:

Since if
$$P_x(A) \neq 0$$
, $P_x(B|A) = \frac{P_x(A \wedge B)}{P_x(A)}$. Then, since

$$1 - P_x(B|A) = \frac{P_x(A) - P_x(A \land B)}{P_x(A)} = \frac{P_x(A \land \neg B)}{P_x(A)},$$

$$\lim_{x\to 0} P_x(\neg B|A) = 1 - \lim_{x\to 0} P_x(B|A) = 0 \ \Box$$

Lemma 2 Let P_x be a probability function with positive parameter x. If $A \supset B$ is true and $\lim_{x\to 0} P_x(A \wedge C|B) = 1$, then $\lim_{x\to 0} P_x(A \wedge C|A) = 1$.

Proof:

If $P_x(B) = 0$, then $P_x(A) = 0$ since $P_x(A) \leq P_x(B)$ from $A \supset B$. If $P_x(A) = 0$, then the conclusion is always true. Let neither $P_x(A)$ nor $P_x(B)$ be equivalent to 0. Since $A \supset B$, $P_x(A) \leq P_x(B)$. Thus, since

$$\frac{P_x(A \land B \land C)}{P_x(B)} \le \frac{P_x(A \land B \land C)}{P_x(A)} \le 1,$$

if $\lim_{x\to 0} P_x(A \wedge C|B) = 1$, then $\lim_{x\to 0} P_x(A \wedge C|A) = 1$. \square

Lemma 3 Let P_x be a probability function with positive parameter x. If $A \supset B$ is true and $\lim_{x\to 0} P_x(A \wedge C|A) = 0$, then $\lim_{x\to 0} P_x(A \wedge C|B) = 0$.

Proof:

If $P_x(B) = 0$, then $P_x(A) = 0$ since $P_x(A) \leq P_x(B)$ from $A \supset B$. If $P_x(A) = 0$, then the assumption is always false. Let neither $P_x(A)$ nor $P_x(B)$ be equivalent to 0. Since $A \supset B$, $P_x(A) \leq P_x(B)$. Thus, since

$$0 \le \frac{P_x(A \land B \land C)}{P_x(B)} \le \frac{P_x(A \land B \land C)}{P_x(A)},$$

if $\lim_{x\to 0} P_x(A \wedge C|A) = 0$, then $\lim_{x\to 0} P_x(A \wedge C|B) = 0$. \square

Lemma 4 Let P_x be a probability function with positive parameter x. If $A \supset B$ is true and $\lim_{x\to 0} P_x(A|C) = 1$, then $\lim_{x\to 0} P_x(B|C) = 1$.

Proof:

If $P_x(C) = 0$, then the conclusion is always true. Let $P_x(C)$ be not equivalent to 0. Since $A \supset B$, $P_x(A \land C) \leq P_x(B \land C)$. Thus, since

$$\frac{P_x(A \wedge C)}{P_x(C)} \leq \frac{P_x(B \wedge C)}{P_x(C)} \leq 1,$$

if $\lim_{x\to 0} P_x(A|C) = 1$, then $\lim_{x\to 0} P_x(B|C) = 1$. \square

Lemma 5 Let P_x be a probability function with positive parameter x. If $A \supset B$ is true and $\lim_{x\to 0} P_x(B|C) = 0$, then $\lim_{x\to 0} P_x(A|C) = 0$.

Proof:

If $P_x(C) = 0$, then the assumption is always false. Let $P_x(C)$ be not equivalent to 0. Since $A \supset B$, $P_x(A \land C) \leq P_x(B \land C)$. Thus, since

$$0 \le \frac{P_x(A \wedge C)}{P_x(C)} \le \frac{P_x(B \wedge C)}{P_x(C)},$$

if $\lim_{x\to 0} P_x(B|C) = 0$, then $\lim_{x\to 0} P_x(A|C) = 0$. \square

Lemma 6 Let P_x be a probability function with positive parameter x. If $\lim_{x\to 0} P_x(B|A) = 1$ and $\lim_{x\to 0} P_x(C|A) = 1$, then $\lim_{x\to 0} P_x(B \wedge C|A) = 1$.

Proof:

If $P_x(A) = 0$, then the conclusion is always true. Let $P_x(A)$ be not equivalent to 0. Since $\lim_{x\to 0} P_x(B|A) = 1$, $\lim_{x\to 0} P_x(\neg B|A) = 0$ from Lemma 1. Since $(\neg B \wedge C) \supset \neg B$, $\lim_{x\to 0} P_x(\neg B \wedge C|A) = 0$ from Lemma 5. Since $P_x(A \wedge C) - P_x(A \wedge \neg B \wedge C) = P_x(A \wedge B \wedge C)$, $\lim_{x\to 0} P_x(B \wedge C|A)$

$$= \lim_{x \to 0} \frac{P_x(A \land B \land C)}{P_x(A)}$$

$$= \lim_{x \to 0} P_x(C|A) - \lim_{x \to 0} P_x(\neg B \land C|A)$$

$$= 1 - 0 = 1 \square$$

Lemma 7 Let P_x be a probability function with positive parameter x. If $\lim_{x\to 0} P_x(C|A) = 1$ and $\lim_{x\to 0} P_x(C|B) = 1$, then $\lim_{x\to 0} P_x(C|A\vee B) = 1$.

Proof:

If $P_x(A) = 0$ or $P_x(B) = 0$, then the above statement becomes a tautology. Let neither $P_x(A)$ nor $P_x(B)$ be equivalent to 0. Since $\lim_{x\to 0} P_x(C|A) = 1$, $\lim_{x\to 0} P_x(\neg C|A) = 0$ from Lemma 1. Since $P_x(\neg C|A) = P_x(A \land \neg C|A)$ and $A \supset (A \lor B)$,

$$\lim_{x\to 0} P_x(A \wedge \neg C|A \vee B) = 0 \tag{1}$$

from Lemma 3.

Since $\lim_{x\to 0} P_x(C|B) = 1$, $\lim_{x\to 0} P_x(\neg C|B) = 0$ from Lemma 1. Since $(\neg A \land \neg C) \supset \neg C$, $\lim_{x\to 0} P_x(\neg A \land \neg C|B) = 0$ from Lemma 5. Since $P_x(\neg A \land \neg C|B) = P_x(\neg A \land B \land \neg C|B)$ and $B \supset (A \lor B)$,

$$\lim_{x\to 0} P_x(\neg A \wedge B \wedge \neg C | A \vee B) = 0 \qquad (2)$$

from Lemma 3.

Since $P_x(A \lor B) - P_x(A \land \neg C) - P_x(\neg A \land B \land \neg C) = P_x((A \lor B) \land C),$ $\lim_{x \to 0} P_x(C|A \lor B)$

$$= \lim_{x \to 0} \frac{P_x((A \lor B) \land C)}{P_x(A \lor B)}$$

$$=1-\lim_{x\to 0}P_x(A\wedge\neg C|A\vee B)-\lim_{x\to 0}P_x(\neg A\wedge B\wedge\neg C|A\vee B)$$

=1-0-0=1
from (1) and (2). \square

Lemma 8 Let P_x be a probability function with positive parameter x. If $\lim_{x\to 0} P_x(B|A) = 1$ and $\lim_{x\to 0} P_x(C|A) = 1$, then $\lim_{x\to 0} P_x(C|A \wedge B) = 1$.

Proof:

If $P_x(A)=0$ or $P_x(B)=0$, then the conclusion is always true because $P_x(A \wedge B)=0$ from $P_x(A \wedge B) \leq P_x(A)$ and $P_x(A \wedge B) \leq P_x(B)$. Let neither $P_x(A)$ nor $P_x(B)$ be equivalent to 0. Since $\lim_{x\to 0} P_x(B|A)=1$ and $\lim_{x\to 0} P_x(C|A)=1$, $\lim_{x\to 0} P_x(B \wedge C|A)=1$ from Lemma 6. Since $P_x(B \wedge C|A)=P_x(A \wedge B \wedge C|A)$ and $P_x(A \wedge B) = 1$ from Lemma 2.

Therefore,

$$\lim_{x\to 0} P_x(C|A \wedge B) = \lim_{x\to 0} P_x(A \wedge B \wedge C|A \wedge B) = 1 \square$$

Lemma 9 Let P_x be a convergent probability function with positive parameter x. If $\lim_{x\to 0} P_x(C|A) = 1$ and $\lim_{x\to 0} P_x(\neg B|A) \neq 1$. then $\lim_{x\to 0} P_x(C|A \wedge B) = 1$.

Proof:

Since $\lim_{x\to 0} P_x(C|A)=1$, $\lim_{x\to 0} P_x(\neg C|A)=0$ from Lemma 1. Since $(B\wedge \neg C)\supset \neg C$,

$$\lim_{x\to 0} P_x(B \wedge \neg C|A) = 0 \tag{3}$$

from Lemma 5.

Since $\lim_{x\to 0} P_x(\neg B|A) \neq 1$, $\lim_{x\to 0} P_x(B|A) \neq 0$ from Lemma 1. Therefore, since P_x is convergent, there exists α such that

$$\lim_{x \to 0} P_x(B|A) = \alpha \neq 0 \tag{4}$$

Since

$$P_x(\neg C|A \land B) = \frac{P_x(A \land B \land \neg C)}{P_x(A \land B)} = \frac{P_x(A \land B \land \neg C)}{P_x(A)} * \frac{P_x(A)}{P_x(A \land B)}$$

$$\lim_{x \to 0} P_x(\neg C|A \land B) = \frac{\lim_{x \to 0} P_x(B \land \neg C|A)}{\lim_{x \to 0} P_x(B|A)} = \frac{0}{\alpha} = 0$$

from (3) and (4).

Therefore, $\lim_{x\to 0} P_x(C|A \wedge B) = 1$ from Lemma 1. \square

Theorem 2 If \triangleright is closed in the limit then \triangleright is rational.

Proof:

If \strut is closed in the limit, then there exists some convergent probability function with positive parameter x such that

$$A \triangleright B$$
 if and only if $\lim_{x\to 0} P_x(B|A) = 1$

We show that \vdash satisfies seven properties which every rational consequence relation satisfies.

1. Left Logical Equivalence:

From the definition of probability, it is always valid.

2. Right Weakening:

From Lemma 4, if $A \supset B$ is true and $\lim_{x\to 0} P_x(A|C) = 1$, then $\lim_{x\to 0} P_x(B|C) = 1$. Therefore, if $A\supset B$ is true and $C \triangleright A$, then $C \triangleright B$.

3. Reflexivity:

From the definition of probability, it is always valid.

4. And:

From Lemma 6, if $\lim_{x\to 0} P_x(A|B) = 1$ and $\lim_{x\to 0} P_x(A|C) = 1$, then $\lim_{x\to 0} P_x(A|B \wedge C) = 1$. Therefore, if $A \triangleright B$ and $A \triangleright C$, then $A \triangleright B \wedge C$.

Or:

From Lemma 7, if $\lim_{x\to 0} P_x(C|A) = 1$ and $\lim_{x\to 0} P_x(C|B) = 1$, then $\lim_{x\to 0} P_x(C|A\vee B) = 1$. Therefore, if $A\triangleright C$ and $B\triangleright C$, then $A\vee B\triangleright C$.

6. Cautious Monotony:

From Lemma 8, if $\lim_{x\to 0} P_x(B|A) = 1$ and $\lim_{x\to 0} P_x(C|A) = 1$, then $\lim_{x\to 0} P_x(C|A \wedge B) = 1$. Therefore, if $A \triangleright B$ and $A \triangleright C$, then $A \wedge B \triangleright C$.

7. Rational Monotony:

From Lemma 9, if $\lim_{x\to 0} P_x(C|A) = 1$ and $\lim_{x\to 0} P_x(\neg B|A) \neq 1$, then $\lim_{x\to 0} P_x(C|A \wedge B) = 1$. Therefore, if $A \triangleright C$ and $A \not\models \neg B$, then $A \wedge B \triangleright C$.

From the definition of rational consequence relation,

is rational. □

Note that the first six properties do not need convergence of probability function. So, in the definition of closed relation in the limit, if we drop the condition of convergence, we can show that the relation is not always rational but still preferential.

From Theorem 1 and Theorem 2 we have the following 2.

Theorem 3 \(\sigma \) is closed in the limit if and only if \(\sigma \) is rational.

There is another characterization for a closed consequence relation in the limit as follows.

Definition 12 Let L be a finite propositional language and \succ be a consequence relation. \succ is said to be ε -definable if and only if there exists a function $\lambda: L^2 \mapsto [0,1]$ such that

for all $A, B \in L$, $A \triangleright B$ if and only if $\lambda(A, B) = 1$ and for all $\varepsilon > 0$, there exists a probability function P such that for all $A, B \in L$, $|P(B|A) - \lambda(A, B)| < \varepsilon$.

An ε -definable consequence relation fits our intuitive meaning stated above and as the following theorems show, it is actually equivalent to a closed consequence relation in the limit and therefore, equivalent to a rational consequence relation.

Theorem 4 \vdash is closed in the limit if and only if \vdash is ε -definable.

Proof:

Suppose
 is closed in the limit. Then there exists a convergent probability function P_x with positive parameter x such that

$$A \sim B$$
 if and only if $\lim_{x\to 0} P_x(B|A) = 1$.

²Independently, Morris, Pearl and Goldszmidt have obtained a similar result to this theorem, as have Lehmann and Magidor.

Let $\lambda : L^2 \mapsto [0, 1]$ be defined as follows.

$$\lambda(A, B) \stackrel{\text{def}}{=} \lim_{x \to 0} P_x(B|A)$$

Then, for all $A, B \in L$, $A \triangleright B$ if and only if $\lambda(A, B) = 1$.

And for all $A, B \in L$ and for all $\varepsilon > 0$, there exists $\delta_{\varepsilon,(B|A)}$ such that for all x, if $\delta_{\varepsilon,(B|A)} > x > 0$, $|P_x(B|A) - \lambda(A,B)| < \varepsilon$.

Take any arbitrary $\varepsilon > 0$. Let δ_{ε} be the smallest value among the above $\delta_{\varepsilon,(B|A)}$. Let a probability function P for ε be defined as follows:

$$P = P_{\frac{\delta_{\epsilon}}{K}}(B|A).$$

Then, for all $A, B \in L$, $|P(B|A) - \lambda(A, B)| < \varepsilon$.

Therefore, \sim is ε -definable.

(2) Suppose \succ is ε -definable. Then, there exists a function $\lambda: L^2 \mapsto [0,1]$ such that

for all $A, B \in L$, $A \triangleright B$ if and only if $\lambda(A, B) = 1$ and for all $\varepsilon > 0$, there exists a probability function P such that for all $A, B \in L$, $|P(B|A) - \lambda(A, B)| < \varepsilon$.

Take any arbitrary $\varepsilon > 0$. And let P be the above probability function for ε and define the value at ε for a probability function P_x with positive parameter x as follows.

$$P_{\epsilon}(A) \stackrel{\text{def}}{=} P(A).$$

For all $A, B \in L$ and for all $\varepsilon > 0$ and for all x, if $\varepsilon > x > 0$, then $|P_x(B|A) - \lambda(A, B)| < \varepsilon$.

Therefore, since for all $A, B \in L$, $\lim_{x\to 0} P_x(B|A) = \lambda(A,B), P_x$ is a convergent function, and $\lim_{x\to 0} P_x(B|A) = 1$ if and only if $A \triangleright B$.

Therefore,

is closed in the limit. □

From the equivalence of closed relation in the limit and ε -definable relation, we also have the following theorem.

Theorem 5 \triangleright is rational if and only if \triangleright is ε -definable.

Adams [1] and Pearl [13] present a probabilistic treatment of nonmonotonic reasoning called ε -semantics. This treatment is similar to our work in the sense that it gives an infinitesimal analysis for nonmonotonic reasoning. However, we can show that ε -definability implies ε -consistency if we regard a consequence relation as a set of conditional assertion S so that $A \triangleright B$ if and only if $A \Rightarrow B \in S$, where $A \Rightarrow B$ is a conditional assertion.

Definition 13 (Adams)

A set of conditional assertions S is said to be ε -consistent if and only if for all $\varepsilon > 0$, there exists a probability function P such that

if
$$A \Rightarrow B \in S$$
, then $P(B|A) \ge 1 - \varepsilon$

If we regard a consequence relation as a set of conditional assertions S, we can say that Adams considers a probability function P for a pair of formulas in \triangleright so that $P(B|A) \ge 1 - \varepsilon$ but does not exclude a probability function P such that $P(B|A) \ge 1 - \varepsilon$ even if $A \not\models B$. This means that ε -consistency does not characterize a consequence relation exactly. The following result shows that ε -definability implies ε -consistency.

Theorem 6 Suppose a consequence relation \vdash is regarded as a set of conditional assertions. If \vdash is ε -definable, then it is ε -consistent.

4 Consequence Relation and Circumscription

4.1 Preferential Consequence Relation and Circumscription

Here, we refer circumscription to the following definition. This is a slightly modified version of generalized circumscription [8] as we use < instead of \le .

Definition 14 Let A be a propositional formula and P be a tuple of propositions and p be a tuple of propositional variables. Then $Circum(A; <^{\mathbf{P}})$ is defined as follows:

$$A(\mathbf{P}) \wedge \neg \exists \mathbf{p} (A(\mathbf{p}) \wedge \mathbf{p} <^{\mathbf{P}} \mathbf{P}),$$

where $A(\mathbf{p})$ is obtained by replacing every proposition of \mathbf{P} in $A(\mathbf{P})$ by every corresponding propositional variable, and $\mathbf{p} <^{\mathbf{P}} \mathbf{P}$ is a binary relation over formulas which satisfies the following two conditions:

- 1. For any P, ¬P < P
- 2. For any P, Q and R, if P < P Q and Q < P R, then P < P R

Then, interpretation order in circumscription is defined as follows. $I_1 <^{\mathbf{P}} I_2$ if and only if for every proposition P not in \mathbf{P} , $I_1[P] = I_2[P]$, and $p <^{\mathbf{P}} q$ is true if we replace $I_1[P]$ whose P is in \mathbf{P} for p and $I_2[P]$ whose P is in \mathbf{P} for q.

Then, we can think of the following preferential model $W = \langle S, l, \prec \rangle$ where a set of interpretations for propositional symbols (in other words, a set of possible worlds, \mathcal{U}) is S, and l is an identity function and \prec is a strict partial order $<^{\mathbf{P}}$ over those interpretations. We say the preferential model is defined by $<^{\mathbf{P}}$. As Kraus et al. [5] pointed out, if S is finite, the smoothness condition is always satisfied. Here, we consider a finite set of possible worlds, so the smoothness condition is always satisfied.

Then we can have the following relationship between circumscription and preferential consequence relation.

Definition 15 Let $<^{\mathbf{P}}$ be a strict partial order over interpretations. The consequence relation defined by $<^{\mathbf{P}}$ is denoted as $|\!\!\!\mid_{<\mathbf{P}}$ and defined as: $A|\!\!\!\mid_{<\mathbf{P}} B$ if and only if $Circum(A;<^{\mathbf{P}}) \models B$.

Proposition 3 Let $<^{\mathbf{P}}$ be a strict partial order over interpretations. The consequence $\succ_{<\mathbf{P}}$ defined by $<^{\mathbf{P}}$ is a preferential consequence relation.

However, there are some differences between preferential consequence relation and circumscription. In propositional circumscription, for any satisfiable formula A, $A\not\models_{<\mathbf{P}}\mathbf{F}^3$ (we say $\not\models$ is *proper*), but in preferential consequence relation, this is not always the case.

And since we use an identity function for l in circumscription, there is a preferential consequence relation in a language which can not be represented by circumscription in the same language.

³F is falsity

For example, Suppose L contains only two propositions P and Q, and S consists of five states $s_1...s_5$ which satisfies the following conditions:

- l(s₁) |= P ∧ ¬Q.
- 2. $l(s_2) \models \neg P \land Q$.
- 3. $l(s_3) \models P \land Q$.
- 4. $l(s_4) \models P \land Q$.
- l(s₅) |= ¬P ∧ ¬Q.
- s₁ ≺ s₃ and s₂ ≺ s₄ and there is no other pair which satisfies ≺.

Note that s_3 and s_4 are mapped to the same interpretation. Let us consider a consequence relation $\\[baselow]_W$ where $W = \langle S, l, \prec \rangle$. Then, although $P \lor Q \\[baselow]_W (\neg P \land Q) \lor (P \land \neg Q)$, $P \\[baselow]_W P \land \neg Q$ and $Q \\[baselow]_W \neg P \land Q$. And this relation can not be expressed in circumscription of L because for any order < over interpretations if we have $P \lor Q \\[baselow]_< (\neg P \land Q) \lor (P \land \neg Q)$, then we must have an order between interpretations $\{P,Q\}$ and $\{P,\neg Q\}$ or between interpretations $\{\neg P,Q\}$ and $\{P,Q\}$, that is $P \\[baselow]_< P \land \neg Q$ or $Q \\[baselow]_< \neg P \land Q$. This is because we have the states mapped to the same interpretation.

We say a formula A is *complete* if for every formula B in L, $A \models B$ or $A \models \neg B$. A complete formula corresponds with an interpretation. Then, the following property excludes a preferential consequence relation such that two or more states are mapped to the same interpretation in a corresponding preferential model.

If C is complete and $A \vee B \triangleright \neg C$, then $A \triangleright \neg C$ or $B \triangleright \neg C$ ⁴.

Theorem 7 \vdash is a proper preferential consequence relation and satisfies the above property if and only if there is some $<^{\mathbf{P}}$ such that $\vdash_{<\mathbf{P}} = \vdash$

Proof:

We can easily show that every consequence relation defined by a circumscription is a proper preferential consequence relation and satisfies the above property.

⁴This property corresponds with (R8) in [4]

We show the converse. Suppose $\[\]$ is a proper preferential consequence relation and satisfies the above property. Let $\alpha(\mathbf{P})$ and $\beta(\mathbf{P})$ be complete formulas. We construct $\[\] \[\] \]$ as follows. Define $\alpha(\mathbf{P}) \prec \beta(\mathbf{P})$ if and only if $\alpha(\mathbf{P}) \lor \beta(\mathbf{P}) \[\] \[\] \]$ $\alpha(\mathbf{P}) \lor \beta(\mathbf{P}) \[\] \[\] \]$ and $\alpha(\mathbf{P}) \ne \beta(\mathbf{P})$. Then $\[\] \]$ is a irreflexive and transitive relation. Suppose we collect all pairs in $\[\] \]$: $\alpha_1(\mathbf{P}) \prec \beta_1(\mathbf{P}) ... \alpha_n(\mathbf{P}) \prec \beta_n(\mathbf{P})$. Then, $\mathbf{p} < \mathbf{P}$ is defined as follows: $(\alpha_1(\mathbf{p}) \land \beta_1(\mathbf{P})) \lor ... (\alpha_n(\mathbf{p}) \land \beta_n(\mathbf{P}))$.

First, we show if $A \triangleright B$ then $A \triangleright_{\leq} B$. Suppose $A \triangleright B$. We collect all complete formulas $C_1, ..., C_n$ which do not imply B. Then, we can write B as $\neg C_1 \land \neg C_2 \land ... \land \neg C_n$.

If $A \models \neg C_i$ then $A \triangleright_{<} \neg C_i$.

Otherwise, that is, in the case of $C_i \models A$, we can write A as $(A_1 \lor C_i) \lor (D_1 \lor C_i)$ where $A_1 \models \neg D_1 \land \neg C_i$ and D_1 is a complete formula which is not equivalent to C_i . Then, from the above property, $(A_1 \lor C_i) \models \neg C_i$ or $(D_1 \lor C_i) \models \neg C_i$.

If $(D_1 \vee C_i) \triangleright \neg C_i$, then we stop this process. Otherwise, we continue this process until we find D_k such that $(D_k \vee C_i) \triangleright \neg C_i$. This process will stop because A can be represented as a finite disjunction of complete formulas.

Then we can write A as $D_k \vee C_i \vee E_1 \vee ... \vee E_m$ where $D_k \vee C_i \triangleright \neg C_i$ and E_i is a complete formula such that $E_i \models A \wedge \neg C_i$. Then, from the construction of $\langle , D_k \vee C_i \triangleright_{\langle} \neg C_i \rangle$. And since $E_i \models \neg C_i, E_i \triangleright_{\langle} \neg C_i \rangle$ Then the fifth property of preferential consequence relation, $A \triangleright_{\langle} \neg C_i \rangle$

Therefore, $A \sim \neg C_1 \wedge ... \wedge \neg C_n$, that is, $A \sim B$.

Now, we show if $A \triangleright_{<} B$ then $A \triangleright_{B}$. Suppose $A \triangleright_{<} B$. We collect all complete formulas $C_1, ..., C_n$ which do not imply B. Then, we can write B as $\neg C_1 \land \neg C_2 \land ... \land \neg C_n$.

If $A \models \neg C_i$ then $A \not\models \neg C_i$.

Otherwise, that is, in the case of $C_i \models A$, Then there exists a complete formula D such that $D \models A$ and $(D \lor C_i) \triangleright_{\prec} \neg C_i$. Then, from the construction of <, $(D \lor C_i) \triangleright_{\neg} C_i$

Then we can write A as $D \vee C_i \vee E_1 \vee ... \vee E_m$ where $D \vee C_i \triangleright \neg C_i$ and E_i is a complete formula such that $E_i \models A \wedge \neg C_i$. Then the fifth property of preferential consequence relation, $A \triangleright_{C} \neg C_i$

Therefore, $A \sim \neg C_1 \land ... \land \neg C_n$, that is, $A \sim B$. \square

4.2 Rational Consequence Relation and Circumscription

Unfortunately, although a consequence relation defined by circumscription is always preferential, it is not always rational. We show it by using the following lemma.

Lemma 10 Let S be a set and \prec be a strict partial order. The following are equivalent.

- There is a totally ordered set Ω whose total order is denoted as < and a function r: S → Ω such that s ≺ t if and only if r(s) < r(t).
- For all s ∈ S, for all t ∈ S and for all u ∈ S, if s ≺ t then either s ≺ u or u ≺ t.

Proof:

Suppose 1.

Then, there is a totally ordered set Ω and a function r from S to Ω such that $s \prec t$ if and only if r(s) < r(t). Suppose $s \prec t$. Then, for all u, r(s) < r(u) or r(u) < r(t) because Ω is a totally ordered set. Therefore, $s \prec u$ or $u \prec t$.

Suppose 2.

We define a binary relation \sim over S as follows:

$$s \sim t \stackrel{\mathrm{def}}{=} \neg (s \prec t) \wedge \neg (t \prec s).$$

Then, we can show \sim is an equivalence relation. reflexivity and symmetry is trivial. We prove transitivity. Suppose $s \sim t \wedge t \sim u$. Then,

$$\neg(s \prec t) \land \neg(t \prec s) \land \neg(t \prec u) \land \neg(u \prec t).$$

From 2, if $\neg(s \prec t) \land \neg(t \prec u)$ then $\neg(s \prec u)$ and if $\neg(u \prec t) \land \neg(t \prec s)$ then $\neg(u \prec s)$. Therefore, $s \sim u$.

Suppose Ω is S/\sim and a binary relation < over Ω is defined as follows:

$$x < y$$
 if and only if $\exists s \exists t (s \in x \land t \in y \land s \prec t)$.

Then, < is a total order.

Let r be a function from S to Ω be defined as follows.

$$r(s) = x$$
 such that $s \in x$

Then $s \prec t$ if and only if r(s) < r(t). \square

Now, we give a class of circumscription whose consequence relation is not rational.

Theorem 8

- If a tuple of variable proposition, P does not contain all propositions in L and for any non-trivial partial order < P (there are some interpretations, I and J such that J < P I), the consequence relation defined by < P is always non-rational.
- 2. If P contains all propositions in L, then a consequence relation defined by minimizing one or two propositions in parallel is rational.
- Even if P contains all propositions in L, a consequence relation defined by minimizing more than three propositions in parallel is always nonrational.

Proof:

- Since <^P is non-trivial, there exist some interpretations, I and J such that J <^P I. And there exists some proposition P which is not in P. Let K be a truth assignment which is the same as J except the assignment of P. Then since J <^P I, the assignment of P in I is the same as in J from the definition of <^P. Then, K is different both from J and from I in the assignment of P. Therefore, ¬(J <^P K) and ¬(K <^P I). From Lemma 10, the preferential model defined by <^P is not ranked. Therefore, consequence relation defined by <^P is not rational from Proposition 2.
- We can easily check that a preferential model defined by minimizing one or two propositions is ranked.
- Let P contain the following minimized propositions be P, Q and R. And let the following three interpretations I, J and K satisfy the following conditions:

- (a) Every assignments are the same except assignments for P, Q and R.
- (b) $I \models \neg P \land \neg Q \land R, J \models P \land Q \land \neg R \text{ and } K \models \neg P \land Q \land R.$

Then $I <^{\mathbf{P}} K$, but $\neg (I <^{\mathbf{P}} J)$ and $\neg (J <^{\mathbf{P}} K)$. From Lemma 10, $<^{\mathbf{P}}$ is not ranked. Therefore, consequence relation defined by minimizing more than three propositions is not rational from Proposition 2. \square

Although rational monotony corresponds with one of fundamental conditions for minimal change of belief proposed by Gärdenfors [3], there are several examples in commonsense reasoning which correspond with the third case of Theorem 8. For example, consider the following axiom ⁵.

```
A_1 \stackrel{\mathrm{def}}{=} \\ ((Japanese \wedge \neg Ab1) \supset \neg Big) \wedge \\ ((Hockey\_player \wedge \neg Ab2) \supset Strong) \wedge \\ ((Professor \wedge \neg Ab3) \supset \neg Strong) \wedge \\ (Strong \supset Big) \wedge \\ Japanese \wedge Hockey\_player \wedge Professor.
```

(If a man is a Japanese, he is normally not big, and if a man is a hockey player, he is normally strong, and if a man is a professor, he is normally not strong, and if a man is strong, he is big, and the man is a Japanese professor who plays hockey.)

If we minimize Ab1, Ab2 and Ab3 in parallel with every proposition allowed to vary and consider the consequence relation \vdash defined by this minimization, then we can show the following.

$$A_1 \sim (\neg Big \wedge \neg Strong) \vee (Big \wedge Strong),$$

and

$$A_1 \not \vdash \neg Big$$
.

However,

$$A_1 \wedge Big \not\vdash (\neg Big \wedge \neg Strong) \vee (Big \wedge Strong).$$

So, this case does not satisfy rational monotony.

⁵This example was suggested by David Poole.

Another example is a closed world assumption. In that case, we minimize all propositions and so, we do not have rational monotony if a number of propositions is more than three.

Note that if we minimize more than three propositions in a prioritized circumscription, there is a case where rational monotony is obtained. For example, if we minimize Ab1 prior to Ab2 and Ab3 in the above Japanese-professor-playing-hockey example, rational monotony is obtained.

So, one may argue that a rational consequence relation is not practically rational. However, what we would like to say here is not whether it is rational or not, but that circumscription in general does not have the probabilistic semantics which we have defined so far and that if an order defined by circumscription is ranked, then it has a probabilistic rationale.

4.3 Probabilistic Interpretation for Lazy Circumscription

In this subsection, we consider the following kind of circumscription.

Definition 16 Circumscription $<^{\mathbf{P}}$ is lazy if the preferential model defined by $<^{\mathbf{P}}$ is ranked.

We can show that a consequence relation \vdash is proper and rational if and only if there is some $<^{\mathbf{P}}$ of lazy circumscription such that $\vdash_{<\mathbf{P}} = \vdash$. If a circumscription $<^{\mathbf{P}}$ is lazy, the consequence relation $\vdash_{<\mathbf{P}}$ is rational. That is, for all formulas, A, B and C, if $A \vdash_{<\mathbf{P}} C$ and $A \not\models_{<\mathbf{P}} T$ then $A \land B \vdash_{<\mathbf{P}} C$. This means that in lazy circumscription, belief revision does not occur if the added information is consistent with the current belief.

And, if a circumscription is lazy, we can attach a probability function used in the proof of Theorem 1 because the preferential model defined by $<^{\mathbf{P}}$ is ranked. In this case, we consider a set of interpretations \mathcal{U} as a set of states.

Example 1.

Let a set of proposition be $\{P,Q\}$. Then, \mathcal{U} consists of four possible worlds:

$$\{\langle \neg P, \neg Q \rangle, \langle P, \neg Q \rangle, \langle \neg P, Q \rangle, \langle P, Q \rangle\}.$$

Suppose we minimize P and Q in parallel. We denote the strict partial order relation by this minimization as $<^{(P,Q)}$. Then the consequence relation defined by $<^{(P,Q)}$ is as follows:

$$A(P,Q) \vdash_{\prec^{(P,Q)}} B(P,Q)$$
 if and only if
$$A(P,Q) \land \neg \exists p \exists q (A(p,q) \land ((p,q) < (P,Q))) \models B(P,Q),$$

where (p,q) < (P,Q) is the following abbreviation:

$$(p,q)<(P,Q)\stackrel{\mathrm{def}}{=}(p\supset P)\wedge (q\supset Q)\wedge \neg ((P\supset p)\wedge (Q\supset q)).$$

The preferential model defined by $<^{(P,Q)}$ is ranked (Figure 1). In the figure, a lower interpretation is more preferable than an upper interpretation. In probabilistic semantics, we regard this order as an order of probability. This means that a lower interpretation is more probable than an upper interpretation. Moreover, we make the probability function of an interpretation in (i+1)-th rank be x times as much as that of an interpretation in i-th rank so that we can ignore less probable interpretation as x approaches to 0.

Let η_i be a number of interpretations in *i*-th rank and η_i^A be a number of interpretations satisfying A in *i*-th rank. From Figure 1, $\eta_1 = 1$, $\eta_2 = 2$ and $\eta_3 = 1$.

Let probability function P_x with a positive parameter x be defined as follows.

$$P_x(A) \stackrel{\text{def}}{=} \frac{\sum\limits_{i=1}^{3} \eta_i^A * x^{i-1}}{\sum\limits_{i=1}^{3} \eta_i * x^{i-1}} = \frac{\eta_1^A + \eta_2^A * x + \eta_3^A * x^2}{1 + 2x + x^2}$$

Then, this function is convergent and

$$\lim_{x\to 0} P_x(B|A) = \begin{cases} 1 & \text{if } P_x(A) = 0\\ \frac{\eta_{mr(A)}^{A \land B}}{\eta_{mr(A)}^A} & \text{otherwise} \end{cases}$$

where mr(A) is the minimum rank where some interpretation satisfies A.

Intuitively, making x approach to 0 means that we consider only the most probable interpretations which satisfy A and the fact that $P_x(B|A)$

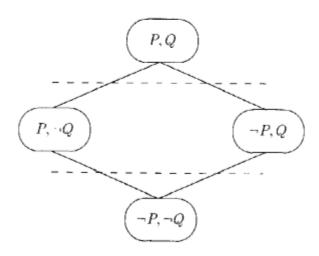


Figure 1: Strict Partial Order by Minimizing P and Q.

approaches to 1 means that in all the most probable interpretations which satisfy A, B is extremely probable. This is a probabilistic semantics for lazy circumscription.

Let be a consequence relation as follows.

$$A \triangleright B$$
 if and only if $\lim_{x\to 0} P_x(B|A) = 1$

Let us check if $P \lor Q \triangleright \neg P \lor \neg Q$.

Since $\langle P \wedge \neg Q \rangle \models P \vee Q$, $mr(P \vee Q) = 2$. And since $\eta_2^{P \vee Q} = 2$ and $\eta_2^{(P \vee Q) \wedge (\neg P \vee \neg Q)} = 2$,

$$\lim_{x\to 0} P_x(\neg P \vee \neg Q | P \vee Q) = \frac{\eta_2^{(P\vee Q) \wedge (\neg P \vee \neg Q)}}{\eta_2^{P\vee Q}} = 1.$$

Therefore, $P \lor Q \not\sim \neg P \lor \neg Q$. This corresponds with the result of $P \lor Q \not\sim_{<(P,Q)} \neg P \lor \neg Q$.

However, suppose we check if $P \lor Q \triangleright P \land \neg Q$.

Since
$$\eta_2^{(P\vee Q)\wedge(P\wedge \neg Q)}=\eta_2^{P\wedge \neg Q}=1,$$

$$\lim_{x\to 0}P_x(P\wedge \neg Q|P\vee Q)=\frac{\eta_2^{P\wedge \neg Q}}{\eta_2^{P\vee Q}}\neq 1$$

Therefore, $P \lor Q \not\models P \land \neg Q$. This corresponds with the result of $P \lor Q \not\models_{\prec(P,Q)} P \land \neg Q$. Actually, $\not\models$ is equivalent to $\not\models_{\prec(P,Q)}$ from Theorem 1.

Example 2.

Another example is the "flying bird and non-flying penguin" example.

Suppose that we consider a set of proposition $\{B, P, F\}$ where B expresses "bird", and P expresses "penguin" and F expresses "flying", and we maximize $P \supset \neg F$ prior to $B \supset F$. We denote the strict partial order relation by this maximization as $<^{(B,P,F)}$. Then the consequence relation defined by $<^{(B,P,F)}$ is as follows:

$$\begin{split} A(B,P,F) & \hspace{-0.2cm} \vdash_{<(B,P,F)} B(B,P,F) \text{ if and only if} \\ A(B,P,F) & \hspace{-0.2cm} \land \neg \exists b \exists p \exists f (A(b,p,f) \land (b,p,f) < (B,P,F)) \models B(B,P,F), \\ \text{where } (b,p,f) < (B,P,F) \text{ is the following abbreviation:} \end{split}$$

$$\begin{split} (b,p,f) &< (B,P,F) \stackrel{\mathrm{def}}{=} \\ &\quad ((P \supset \neg F) \supset (p \supset \neg f)) \land \\ &\quad (((P \supset \neg F) \equiv (p \supset \neg f)) \supset ((B \supset F) \supset (b \supset f))) \land \\ &\quad \neg (((p \supset \neg f) \supset (P \supset \neg F)) \land \\ &\quad (((p \supset \neg f) \equiv (P \supset \neg F)) \supset ((b \supset f) \supset (B \supset F)))). \end{split}$$

Then the consequence relation defined by $<^{(B,P,F)}$ is rational, because the preferential model by $<^{(B,P,F)}$ is ranked(Figure 2).

Let η_i be a number of interpretations in *i*-th rank and η_i^A be a number of interpretations satisfying A in *i*-th rank. From Figure 2, $\eta_1 = 4$, $\eta_2 = 2$ and $\eta_3 = 2$.

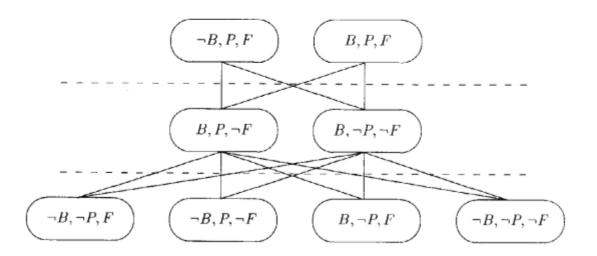


Figure 2: Strict Partial Order for Flying Bird and Non-flying Penguin.

Let probability function P_x with a positive parameter x be defined as follows.

$$P_x(A) \stackrel{\text{def}}{=} \frac{\sum_{i=1}^3 \eta_i^A * x^{i-1}}{\sum_{i=1}^3 \eta_i * x^{i-1}} = \frac{\eta_1^A + \eta_2^A * x + \eta_3^A * x^2}{4 + 2x + 2x^2}$$

Then, this function is convergent and

$$\lim_{x \to 0} P_x(B|A) = \begin{cases} 1 & \text{if } P_x(A) = 0 \\ \frac{\eta_{mr(A)}^{A \land B}}{\eta_{mr(A)}^{A}} & \text{otherwise} \end{cases}$$

Let \(\simes \) be a consequence relation as follows.

$$A \triangleright B$$
 if and only if $\lim_{x\to 0} P_x(B|A) = 1$

Let us check if $B \wedge (P \supset B) \triangleright F$.

Since $\langle B, \neg P, F \rangle \models B \land (P \supset B), \ mr(B \land (P \supset B)) = 1$. And since $\eta_1^{B \land (P \supset B)} = \eta_1^B = 1$ and $\eta_1^{B \land (P \supset B) \land F} = \eta_1^{B \land F} = 1$,

$$\lim_{x \to 0} P_x(F|B \land (P \supset B)) = \lim_{x \to 0} P_x(F|B) = \frac{\eta_2^{B \land F}}{\eta_2^B} = 1.$$

Therefore, $B \wedge (P \supset B) \triangleright F$. This corresponds with the result of $B \wedge (P \supset B) \triangleright_{c(B,P,F)} F$.

And, suppose we check if $P \wedge (P \supset B) \triangleright \neg F$.

Since $\langle B, P, \neg F \rangle \models P \land (P \supset B)$, $mr(P \land (P \supset B)) = 2$. And since $\eta_2^{P \land (P \supset B)} = \eta_2^{P \land B} = 1$ and $\eta_2^{P \land (P \supset B) \land \neg F} = \eta_2^{P \land B \land \neg F} = 1$,

$$\lim_{x\to 0} P_x(\neg F|P \wedge (P\supset B)) = \lim_{x\to 0} P_x(\neg F|P \wedge B) = \frac{\eta_2^{P\wedge B \wedge \neg F}}{\eta_2^{P\wedge B}} = 1.$$

Therefore, $P \wedge (P \supset B) \triangleright \neg F$. This corresponds with the result of $P \wedge (P \supset B) \triangleright_{\prec (B,P,F)} \neg F$.

5 Conclusion

We propose a probabilistic semantics called closed consequence relation in the limit for lazy nonmonotonic reasoning and show that a consequence relation is closed in the limit if and only if it is rational. Then, we apply our result to giving a probabilistic semantics for a class of circumscription which has lazy nonmonotonicity.

We think we need to do the following research.

- Lazy circumscription is defined in terms of order over interpretations. But we do not have syntactical characterization for lazy circumscription. We would like to know which binary relation over formulas characterizes a lazy circumscription.
- 2. As we pointed out in the proof of Theorem 2, even if we remove convergent condition of probability function P_x in the definition of closed consequence relation in the limit, a consequence relation is still preferential. We would like to know which preferential consequence relation is characterized by this weaker condition.

- We would like to know a probabilistic semantics which characterizes a consequence relation defined by whole class of circumscription exactly.
- 4. We can not apply our result to Default Logic[15] or Autoepistemic Logic[11] because a consequence relation defined by those logics is not even preferential. We must extend our result to apply those logics.

Acknowledgments

I would like to thank Kurt Konolige, Moises Goldszmidt and Johan van Benthem for instructive comments on an earlier version of this paper and especially, David Poole for pointing out an error of Definition 12 and providing an example which does not satisfy rational monotony, and Daniel Lehmann for pointing out an error of Definition 9 in an earlier version of the paper.

References

- Adams, E.: The Logic of Conditionals, D. Reidel, Dordrecht (1975).
- [2] Gabbay, D.: Theoretical Foundations for Non-monotonic Reasoning in Expert Systems, Logics and Models of Concurrent Systems, K. R. Apt ed., Springer-Verlag, pp. 439 – 457 (1985).
- [3] Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States, MIT Press, (1988).
- [4] Katsuno, H., and Mendelzon, A. O.: Propositional Knowledge Base Revision and Minimal Change, Dept. of Computer Science, University of Toronto, Canada, Technical Report, KRR-TR-90-3 (1990).
- [5] Kraus, S. Lehmann, D. and Magidor, M.: Preferential Models and Cumulative Logic, Dept. of Computer Science, Hebrew University, Jerusalem, Israel, Technical Report, #TR-88-15 (1988).
- [6] Lehmann, D.: What Does a Conditional Knowledge Base Entail?, Proc. of KR-89, pp. 212 – 222 (1989).
- [7] Lehmann, D. and Magidor, M.: Rational Logics and Their Models: a Study in Cumulative Logics, Dept. of Computer Science, Hebrew University, Jerusalem, Israel, Technical Report, #TR-88-16 (1988).

- [8] Lifschitz, V.: Some Results on Circumscription, Proc. of Nonmonotonic Reasoning Workshop, pp. 151 – 164 (1984).
- [9] Lifschitz, V.: Open Problems on the Border of Logic and AI, Unpublished Manuscript (1989).
- [10] McCarthy, J.: Circumscription a Form of Non-monotonic Reasoning, Artificial Intelligence, Vol. 13, pp. 27 – 39 (1980).
- [11] Moore, R. C.: Semantical Considerations on Nonmonotonic Logic, Artificial Intelligence, Vol. 25, pp. 75 – 94 (1985).
- [12] Neufeld, E., and Poole, D.: Probabilistic Semantics and Defaults, Proc. of 4th AAAI Workshop on Uncertainty in AI, pp. 275 – 281 (1988).
- [13] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann (1988).
- [14] Pearl, J.: Probabilistic Semantics for Nonmonotonic Reasoning: A Survey, Proc. of KR-89, pp. 505 516 (1989).
- [15] Reiter, R.: A Logic for Default Reasoning, Artificial Intelligence, Vol. 13, pp. 81 - 132 (1980).
- [16] Shoham, Y.: Reasoning about Change: Time and Causation from the Standpoint of Artificial Intelligence, MIT Press (1988).
- [17] Spohn, W.: A General Non-Probabilistic Theory of Inductive Reasoning, Proc. of 4th AAAI Workshop on Uncertainty in AI, pp. 315 322 (1988).