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Abstract

This paper presents a formal relationship for probability theory
and a class of nonmonotonic reasoning which we call luzy nonmonno-
tonie reasoning. In lazy nonmonotenic reasoning, nenmonotonicity
emerges only when new added knowledge is contradictory to the pr
vious beliel.

In this paper, we consider nonmonotonic ressoning in terms of
consequence relation. A consequence relation is a binary relation over
formulas which expresses that a formula is derivable from another for
mula under inference rules of a considered system. A CONECGUencs
relation which has lazy nonmonotonicity is called a rational conse-
guence relation studied by Lehmann et al, [7].

We provide & probabilistic semantics which characterizes a rational
consequence relation exactly. Then, we show a relationship between
propositional eircumscription and consequence relation, and apply this
semantics to a consequence relation defined by propositivnal circum-
scription which has Jazy nonmonotonicity.



1 Introduction

This paper is concerned about a formal relationship between nonmonotonic
reasoning and probability theory. Nonmonotonic reasoning is a formalization
of reasoning when information is incomplete. If someone is forced to make a
decision under incomplete information, he uses commonscense to supplement
lack of information. Commonsense can be regarded as a collection of normal
results. Those normal results are obtained because their probability is very
near Lo cerlainly. So commonsense has a statistical or probabilistic property.

Although there are a lot of researches which simulate a behavior of non-
monotonic reasoning based on probability theory [12, 13, 14], there 15 no
formal relationship between nonmonotonic reasoning and probability theory.
as Lifschitz [9] pointed out.

In this paper, we consider nonmonotonic reasoning in terms of conse-
guence relation (2, 5, 6, 7]. Consequence relation is a binary relation over
formulas and expresses that a formula is derivable from another formula un-
der inference rules of the considered system. The researchers consider desired
properties in a consequence relation for nonmonotonic reasoning.

Gabbay [2] was the first to consider nonmonotonic reasoning by a con-
sequence relation and Kraus et al. [5] gives a semantics for a consequence
relation of nonmonotonic reasoning called preferential consequence relation.
The semantics is based on an order over possible states which is similar to
an order over interpretations in circumscription [10] or Shoham’s preference
logic [16].

Lehmann et al. [7] define a more restricted consequence relation called
rational consequence relation and shows that a consequence relation is ratio-
nal if and only il it is defined by some ranked model. A model is ranked if
a set of possible states is partitioned intc a hierarchical structure, and in a
rational consequence relation the previous belief will be kept as long as the
new knowledge does not contradict the previous belief. This nonmonotonic-
ity can be said to be lazy because only contradictory knowledge can cause a
belief revision.

Moreover, they investigates a relationship between Adams’ logic {1] (or
equivalently, e-semanlics [13]) and rational or preferential entailment in which



conditional assertion is followed by a set of conditional assertions. Although
Adams’ logic is hased on probabilistic semantics, it only considers consistency
and entailment for a set of conditional assertions and does not consider prob-
abilistic semantics for a consequence relation. To give a probabilistic seman
fics to nonmonotonic reasoning, we have to go bevond Adams’ logic because
most nonmonotonic reasoning systems define a consequence relation in the
sense that the systems can define a derived result from a given set of axioms
by the inference rules of those systems.

In this paper, we provide a probabilistic relation which characterizes a ra-
tional consequence relation exactly, Lo do so, we define a closed consequence
relation in the {imit. This property means that there exists a probability
[unction with positive parameter x such that a conditional probability of a
pair of formulas in the consequence relation approaches 1, and a conditional
probability of a pair of formulas not in the relation approaches a except | as
x approaches 0.

Then, we can show that a consequence relation is closed in the limil if
and only if the consequence relation is rational.

We apply this result to giving a probabilistic seinantics for circumserip-
tion [10], because circumseription has a sinilar semantics for a rational or
preferential consequence relation and circuinsceriplion can define a conse-
quence relation cach of pair of whicl consists of original axiom and derived
resull. Althengh we can show that consequence relation defined by circum-
scription 15 a preferential consequence relalions, it is not always rational.
Fspecially, we can show that il there are some fixed propositions or if we
minimize maore than three propositions in parallel, then consequence rela-
tions defined hy this circumscription is always non-rational,

However, in some cases, we can separate a set of interpretations into a
hierarchy, and so, we can provide a probability function so that a conse-
quence relation delined by the circumseription in those cases is equivalent to
a consequence relation defined by the probability function.



2 Consequence Relations and Their Models

In this section, we briefly review a work on consequence relation by Lehmann,
Krans and Magidor {5, 7. A summary of the work is found in [6].

We consider a propositional language. In the propositional language [..
we shall use a set of propositional symbols (finite or infinite). Then, formulas
in L are defined as follows.

I. A proposttional syibaol is a formula.
2. Il A and B are formulas, then =A and 4 5 B are formulas.
3. An expression 1y a [ormula only if it satisfies the above conditions,

If Aand B arc formulas, then A A B AV B, A = 7 are abbreviations [or
~(AD-B), ~A> Band (A2 B)A (B 3 A), respectivelv. We use F for
false and T for trne.

We use a set of all possible worlds, ¥, to give a truth value to EVery
propositional symbol. We define a satisfaction relation |= over If and I as
follows. u € If satisties a formula A (written as u = A)if and only if the
following conditions are satisfied.

L. If A'is a propoesitional symbol P, then u( ) is true.
2. If A'is of the form - B, then u does not satisfly B {written as = B).

4. Af Ais of the form B O C. then v = B > (', then either u £ B or
up=C

We consider a binary relation over formulas called conseguence relation p-
which has some desired property in a considered reasoning system. Intuitively
speaking, ApvB means that if a state of knowledge is A, then B is derived
from A by inlerence rules defined in a considered reasoning svstem.

Definition 1 (Kraus, Lehmann and Magidor) Let V and U be @ sel
and V. C U and < be a strict partial order on {7 (for any s € U =(s = 5)
and for any s, t,u, if (s < t) and (t < u). then (s < u)). We shall say that
t €V is minimal i V' if and only if there 1s no s € V, such that s ~< ¢,



Definition 2 (Kraus, Lehmann and Magidor) et V C U, We shall
say that V' is smooth if and enly if W1 € V, either 35 minimal in V, such
that s <t ort s itself munimel in V.

Definition 3 (Kraus, Lehimann and Magidor) 4 preferential model W
is a triple (5,1, <) where 5 is @ scl, the elements of which will be called states,
25— U assigns w world to cach state and < 15 a sirict partial order on S
satisfying the following smoothness condition: for all A € L, the set of states
4 {sls € 5,15} E A} is smooth.

Definition 4 (Kraus, Lehmann and Magidor) Let W be a preferential
model (S.{. <) and A, B be formulas in L. The consequence relation defined
by W will be denoted by b~y and is defined by: Abey, B if and only if for any
s minimal in Al(s) = B,

Definition 5 (Kraus, Lehmann and Magidor) A consequence relation
that sutisfies all s1z properties below is called a preferential consequence rela-
tion.

A j}i{“ ANC (Left Logical Equivalence) (1)
E A :;:'E},‘ A (Right Weakening) (2)
Al A (Reflexivity) (3
;1:5;; :tg (And) (1)
A:(\:‘B‘E;F (Or) (3)
%ﬂ;ﬁ (Cautious Monotony) (6)

There is the lollowing relationship between a preferential consequence
relation and a preferential model.

Proposition 1 (Kraus, Lehmann and Magidor) 4 binary relation |~
on L 15 a preferential consequence relation if and only if il is the consequence
relation defined by some preferential model.



Definition 6 (Lehmann and Magidor) A ranked model W iz a prefer-
ential model (5,1, <) for which the strict partial order = may be defined in
the following way: there is a totally ordered set ¥ (the strict order on (b will
be denoted by <) and a function v @ 5 () sueh that s <t if and only if
rla) < rid).

Intuitively speaking. a model is ranked if a set of states is partitioned into
a hierarchical structure,

Definition ¥ (Lehmann and Magidor) 4 preferential consequence rela-
tion = 15 said to be rational of and only if it satisfies the following condition.

ApC, Ap-B
A BRC

Rational monotony was proposed by Makinson as a desired property for
nonmonotonic reasoning svstem [7) and corresponds with one of fundamental
conditions for minimal change of belef proposed by Gardenfors [3].

An intuitive meaning of the condition of rational monotony is that the
previous conclusion stays in the new belief if the negation of the added in-
formation iz not in the previons belief.

An alternative view of rational monotony is ohtained by the contraposi-
tive form of the above defimilion:

ARC, AN BRC
AR—B

(Rational Monotony) (7T)

This mcans that if adding B makes the previous belief being retracted, B
will be exceptional when the state of knowledge is A.

There is the following relationship between a rational consequence relation
and a ranked model.

Proposition 2 (Lehmann and Magidor) A consequence relation is ra-
tional if and only 1f it is defined by some ranked model.

fi



3 Relationship between Rational Consequence
Relation and Closed Consequence Rela-
tion in the Limit

From this point, we assume the set of propositional symbols in L is always

finite,

Definition 8 Let [ be a propositional language. Then probability function
F: on L with positive parameter & is a function from a sel of formulas in
L and positwe real numbers to veal numbers which satisfies the following
condilions.

1. Forany A€ L and for anyz > 0,0 < P{A) < |.
2o Foranyx =0, P{T)=1

3. Forany A& L and B € L and for any x = 0, if AA B is logically false
then P.(Av B) = P.(A)+ P.(B).

If we ignore a parameter x, the above definition becomes the standard for-
mulation for probability function on L [3]. We introduce a parameter r to
express the weight of the probability for every states. Spohn [17] uses a
simmlar probability function to relate his Natural Conditional Functions to
probability theory.

Definition 9 et A, B € L. We define the conditional probability of B
under A, P.{B[A) as follows,

1 if Pe(A) =10
PB|A) = { P.AAB)
P.(A)

otherwise

Definition 10 A probability function P. on I with positive parameter x 1s
said to be convergent if and only if for any A € L, there erists o such that

:h-I.tA FiA) = o

Now, we define a consequence relation in terms of the above probability
function F..



Definition 11 A consequence relation b is said o be closed in the limit if
and only if there exisls convergent probability function P, on L with positive
parameter » such that for all A € L and B ¢ L,

AREB of and anly if liﬂ}jF,(BH] =1.

Intuitively speaking, if a pair, (A, B) is included in the closed consequence
relation in the limit, then we can let the conditional probability of B under
A approach 1 as much as possible and if not, the conditional probability will
approach some value except 1. This intuitive meaning will be justified later.

Now, we show the equivalent relationship between a rational consequence
rclation and a closed consequence relation in the limit.

Theorem 1 If ~ is rational then |~ is closed in the himit,
Proof:

From Proposition 2, if | is rational, then there exists some ranked model
W = (5.1, <) such thal for every pair of formulas A and B, A~ B if and only
if Abep B. Since the language is logically [iuite, there exists a finite ranked
model with a finite number of ranks. Let the number of ranks be n(n > 1).
Let #, be the number of states at the ¢-th rank (States which are higher in
- 1z 1n a higher rank).

Let a function F; on L with positive parameter z be defined as follows:!

L
St e

P.(A) ¥ =1

ETL' !

=1
where nf' is the number of states at the i-th rank that satisfics A.
This assignment is obtained so that the following conditions are satisfied.

I. If all states of the same rank, they have the same probabhility.

2. The probability of a state in the (:41) th rank is = times as much as
thatl of a state in the i-th rank.

"This assignment is suggested in [7].



Then, P, is a convergent probability function.

1. For all A € L and for all z > 0, since 0 < p? < #, and there exists ¢
such that n, > 0,0 < P(A) < 1.

2. Tor all = > 0, since Y =, F.(T) = 1.

3. Forall Ae L and B e L and for all £ = 0, since if A A B is logically
false, n¥F = A 4 nF P (AV B) = P (A) + P.(B).
A
4, Yor all A, since [i11|]1f':{£]| = ﬂ—l, linéPz.[xi'] always exists.
r—] oo

Consider a relation over ., ' defined as follows.

Ap'B if and only if lim F.(B|A)

We will show that ' = iy

If F,{A4) = 0, there is no state which satisfies A and therefore, for any
B e L Apy . In this case, since P.(B/A) =1, AR'B.

Let P{A) be not equivalent to (. There exists a state which satislies 4.
Let mr(A4) be the minimum rank where some state satisfies 4. Then,

7 .F.-1AH
lim F(H]A) = lim F(AANB) _ "T:rn:.dj
r—i a={ PT(A:' T!WEH:A'

If Apoyy B3, then for any s minimal in A, I{s) E AAB. And anv s minimal
in A is at the minimum rank in ranked model. Therefore, 5277 = 57, 4.

and so,
lim I ( H|4) = 1.
m—0 :

Thus, AR'B.

Il A |4, B, then there exists some s minimal in A, lls) b AN B. There-
fore, 'F,I'i’:[i] £ n:r{A], and so,

lim P,(BJA) # 1.

9



Thus, A ¥ B.
Therefore, pvyy is closed in the limit. O

Now, we prove the converse of the above theorem.

Lemma 1 Let F, be a probabuility function with positive parameter r. If
F.(A) #0, then

lim P.(B|A4) = 1 if and only if lim F,(~B]A4) = 0

Proof:
Since if Po(A) #0, P{BiA) = M Then, since
Fﬂ:frl
_ PAA) = PAAB) _ PAN-H)
1= F(BIA) = Fi(A) Y

lim Po(=B]4) = 1~ lim £(B]A) =0 O

Lemma 2 Let P, be a probability function with pesitive parameter x. If
A D B is true and lim PL(ANC|B) = 1, then lim P {A A C|A) — L.

FProof:

PR = 0, then PolA) = 0 since Pp{A) < P(B) from 4 2 B, If
F.(A) =10, then the conclusion is always true. Let neither P.(4) nor P.(B)
he equivalent to 0. Since A 5 IF, PL(A) < [L(H). Thas, since

P,_.(AanC}{Fr{AﬂHnm{
F.(B) = P.(A4) =

1,

if lim P(A A C|B) = L, then lim P,(A A C|4) = 1. O

Lemma 3 Let Py be a probability function with positive parameter x. If

AS B s true and !i_I}}JPx'[Aﬁ C|A) = 0, then liir}]PI(A ACIBY=1.

10



Proof:

I F(B) =0, then P.(A) = 0 since P.({A) < P(B) from A O B. If
F. (A} = 0, then the assumption is always false. Let neither F.{A} nor
F.(B) be equivalent to 0. Since 4 © B, P.(A) < P.(B). Thus, since

< PAArBAC) - PAANBAC)

! F(B) -~ A

if lim P{A A ClA) = 0, then ,iriﬂé PlAnC|IB)=0.0

Lemma 4 Let Fo be a probability function with posifive paramefer z. If
A B s true and ]irr'].j FA|C) =1, then ﬁn}. FPABI(C)=1.
r— ar—s

Proof:

It PiC’) = 0, then the conclusion is always true. Let () be notl
equivalent to 0. Since A O B, P.{AAC) < Po(B A C). Thus, since

PUANC) _ PABAC)

me) = po) =h

| &

if lim P(A|C") = 1, then lim Po(B|C) = 1. O

Lemma & Let P be a probabilily function with poesitive parameter x. If
AD B is truc and 11_1’5'1] PB|C}y=0, then h_rpﬂ P.lAIC) = 0.
Proof:

If P.(C) = 0, then the assumption is always false. Let F.((') be not
equivalent to 0. Since A D B, P.(AAC) < P(B AC). Thus, since

o< PAAC) _ PABAC)
S OR(C) T R0)

if lim P, (B|C) = 0, then lim P.(A|C) = 0. O

Lemma 6 Let P, be a probability funetion with pesitive parameler x. If
Iir%f’,(ﬂlﬂ] =1 and lina P (ClA) = 1, then Iina PABAC|A)=1.

11



Proof:

If P.{A) = 0, then the conclusion is always true. Let F.(A) be not
equivalent to 0. Since |"|[I%1 F(BlA) =1, ]irréf",.{—'mﬂ] =0 from Lemma 1.
Since (=B AC) D =B, lin‘&Fz[—-B M C|A) = 0 from Lemma 5. Since P.(A A
C) = PA{AN-BAC) = PiANBAC),

lim Po(B A C|4)
PlAnBAC)

= 1t =

=— PF('A']
= lim 2(C|4) — lim P.(~B A C|A)
=1=-0=10

Lemma 7 Let P, be a prebability function with pesitive parameter z. [f
li_l.IéPrl[C|A:| = 1 and H_r&ll P(C|H) =1, then |inapz|:ﬂ-'|.n‘1 v B)=1.

Proof:

If FoiA)=0o0r F.(B) =10, then the above statement hecomes a tautal
ogy. Let neither Pr{A) nor P.{ B) be equivalent to 0. Since lin}bP:{lel] =1,

lei_I"J%Pr[-GH} =0 from Lemma 1. Since Po(~C'|A) = P.(A A ~(|A) and
AD(AVH),

ieraP,[Ah—-C|AVH}=D {1)
from Lemma 3.

Since lj_n% P(C|B) =1, Jlri_l?’[lllj.':’,{-riffp‘fi-’] =0 from Lemma 1. Since (=4
=) o =0, 11_1‘%!’:(-44 A =C|B) = 0 from Lemma 5. Since Po{~AAC|B) =
P~ ANBA-C|B)and BD (AV RB),

l_i_l'réP_,:l[—'AhBh-@MVE}:[l (2)
from Lemma 3.

Since Po(AV B) = Po(AAC) = Po=ANBA=C) = P{(AV BYAC),
iﬂ PAC|AV B)

. PliAvEIanC)

= AV B

12



=1- Iin-él’,[Aﬁ -ClA Y B) — IiﬂF,(w‘t nBA-ClAY B)
=1-0-0=1
from (1) and {2). O

Lemma B let P, be a probability function with positive parameter x. If
lin-cll FB|A) =1 and |i-l'l"l:l P.C|A) = 1, then Iin}] PAC|AAB)=1.
r— F— X =

Proof:

it F.(A) = 0 or P.{B) = 0, then the conclusion is always true because
PAAAB) =0 from P.(ANB) < P.(A) and P.(A A B) < PB) L@L
neither Po(A) nor F.(B) be equivalent to 0. Since EF:':. FP.(3{A) =1 and

Eji}éj’r{{'-‘lﬁ} =1, li”E. P.(B A ClA) = 1 from Lemma 6. Since P.(BAC|A) =
PAAANBAC|A) and (AN B) 2 A, 1lﬁil’lal1":',..(;5. ABACIAAB)I =1 from
Lemma 2.

T'herefore,

lin}JP,qGM A B) = E“ﬁ PAANBACIANE)=10

Lemma 9 [et Pr be a convergent probebility function with postiive parame-
terx. If lim PC|A) =1 and}in%P,{-'Blﬂ} # 1. then lim Po(C1A A ) =1.

Proof:

Since lirr% PACIA) =1, Iirré FP.(=C|A) = 0 from Lemma 1. Since (B A
() O =0, )
from Lemma 5.

Since hﬂ;:l}P:{_'Hi.-"fl} # 1, lim FP.(B|A) # 0 from Lemma 1. Therefore,
since Py is convergent, there exists « such that

lina FABlA)=a#0 (4)
Since

E(AnBn-C) P;{Ahﬁﬂ—-ﬂ'}* F.(4)

P(-ClANDE) = PAANB) P.(A) FP.(AN B)

13



lim P,(B A ~(|A)

. _ 2= _0_
alcl—l-% F(~ClANB) = liry%l PB4 o 0

from (3} and (4).
Therefore, lﬂ FAC|AA By =1 from Lemma 1. O

Theorem 2 [f b is closed in the limil then ~ iés rational.

Proof:

If b= is elosed in the limit, then there exists some convergent probability
function with positive parameter r such that

A8 il and only if im P.(BlA)=1

=0
We show that p satisfies seven properties which every rational consequence
relation satisfies.

1. Left Logical Equivalence:
From the definition of probability, it is alwavs valid.

b

Right Weakening:
From Lemma 4, if A D B is true and linE? F:(A|C") =1, then

lin}.Px[BFG}' = 1. Therefore, if A > B is true and C'~A, then OB,

3. Reflexivity:
From the definition of probability, it 15 always valid.

4. And:

From Lemma 6, if li__r% F.(A|B) =1 and li_%P,,[MC} =1, then

!]_IEEI FPAAIBAC) = 1. Therefore, if A~B and ARC, then ARB A (.
3. Or:

From Lemma 7, if lin_}E.rPI({f-'M} = 1 and li_r\‘r'l:I F.(C|B) =1, then

}Til"rrl:f"zliﬂ.fl V B) = 1. Therefore, if ApC and BRC, then AV BC.
fi. Cautious Monotony:

From Lemma 8, if Iin?:I P.(B|A) =1 and lirrEhF,,{Ulf'l] =1, then

lirré P.(C|A A B) = 1. Therefore, if AB and ARC, then A n BRC.

14



7. Rational Monotony:
From Lemma 9, if IEP‘.{C'LA} =1 and lirI%. Po(—BlA) # 1, then

liﬂg|| PAC|A M B) = 1. Therefore, if ApC" and At~ HA. then A A B,
From the definition of rational consequence relation, r~ is rational. O

Note that the [irst six properties do not need convergence of probability
function. So, in the definition of closed relation in the limit, if we drop the
condition of canvergence, we can show that the relation is not always rational
but still preferential.

From Theorem 1 and Theorem 2 we have the following *.
Theorem 3 | is closed in the limit if and only if b~ is rational,

There is another characierization for a closed conscquence relation in the
lirnit as follows.

Definition 12 Let [ be a finite propositional language and v be a conse-
guence relation. b iz said to be z-definable if and only if theve erists a
function A: L* v [0, 1] such that

Jorall A,B € L, A B if and only if AMA, B)=1 and
for all € = 0, there exists a probability function P such that
forall A,B € L, |P(BlA) - A{A, B)| <c.
An s-definable consequence relation fits our intuitive meaning stated above
and as the following Lheorems show, it is actually equivalent to a closed

consequence relation in Lhe limit and therefore, equivalent to a rational con-
sequence relation.

Theorem 4 F is closed in the limit of and only 1f |~ is £-definable.
Proof:

(1) Suppose p is closed in the limil. Then there exists a convergent proba-
bility function P, with positive parameter x such that

Ap-B if and only if llﬂ}_l F.B|A)=1.

" *ludependently, Morris, Pearl and Goldszmidi have obtained a similar result to this
thearem, as have Lehmann and Magidor.

15



Let A L7 [0, 1] be defined as follows.
MA, B) ¥ lim P(B|4)

Then, for all A, e L, AR I if and only if A{A, L} = 1.

Aud for all A, B € L and [or all £ > 0, there exists &g (gjaq) such that for
all 2, if .m0y = & > 0, [Pe{ BJA) — MA, B)| < e

Take any arbitrary £ »> 0. Let &, be the smallest value among the above
&, 1gja)- Let a probability function ¥ for £ be defined as follows:

F= Fgf{BM]I.
Then, for all A, B e L, |P{B|A) = MA, B)| < =
Therefore, b is z-definable.

(2) Suppose p~ iz s-definable. Then, there exists a function A : L? — [0,1]
such that

for all A, B e [, A B if and only if A(A, B} =1 and

for all ¢ = 0, there exists a probability function P such that

forall A,B € L, |P(B|A)— AlA, B)| < ¢.

Take any arbitrary £ = (1. And let /7 be the above probahility function

for £ and define the value at ¢ for a probability function F. with positive
parameter r as {ollows.

P(A) Y P(A).

For all A/B € L and for all ¢ = 0 and for all &=, if = > » = 0, then
|Fr{E|'4}_ J":AtH” < £.

Therefore, since for all A, B € L, liné PAB|A) = A4, B),F. is a convergent
T
function, and ]inEI Po(B|A) =1 if and only if ARB.
Tt

Therefore, -~ is closed in the limit. D

From the equivalence of closed relation in the limit and s-definable rela-
tion, we also have the following theorem.

Theorem 5 | is rational if and only if - s e-definable.

16



Adams [1] and Pearl [13] present a probabihistic treatment of nonmonotonic
reasoning called g-semantics. This treatment is similar to our work in the
sense that i gives an infinitesimal analysis for nonmonotonic reasoning. How
ever, we can show that s-definability implies s-consistency if we regard a
consequence relation as a set of conditional assertion 5 so that AR il and
onlyif A= F € 5, where A = B is a conditional azsertion.

Definition 13 [Adams)/
A sel of conditional assertions S is said to be s-consistent, if and anly if for
all ¢ = 0, there crisls a probability function P such that

if A= el then PIBJA)21-—=¢

If we regard a consequence relation as a set of conditional assertions 5, we
can say that Adams considers a probability function P for a pair of formulas
in p~ so that P(B|A) > 1 — = but does not exclude a probability function F
such that P{H/A) > 1 —z even if Af-H. This means that ¢-consistency does
not characterize a consequence relation exactly. The following result shows
that s-definahility implies £-consistency.

Theorem 6 Suppose u consequence relation b~ 15 regarded as a sef of con-
ditional essertions. If b 13 e-definable, then it is e-consistent.

4 Consequence Relation and Circumscrip-
tion

4.1 Preferential Consequence Relation and Circum-
scription
Here, we refer circumscription to the following definition. This is a shightly

mwodified version of generalized circumscription [8] as we use < instead of <.

Definition 14 Let A be a propositional formula and P be a fuple of propo-
sitions and p be a tuple of propositional variables. Then Circum(A; <F) is
defined as follows:

A(P) A -Ip(A(p) A p <F P).
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where A{p) ws oblained by replacing every propasition of P in A(P) by every
corresponding propositional variable, and p <¥ P is a binary relation over
formulas which satisfies the following two conditions:

I torany P, =P <P P
2 ForanyP, Qand R, f P<CQ and Q <F R, then P <T R

Then, interpretation order in circumseription is defined as fallows, 1, <F [,
if and only if for every proposition P not in P, [,[P] = L[P], and p <F ¢ i
true if we replace I)[P] whose I is in P for p and [,[#] whose P is in P for
q.

Then, we can think of the following preferential model W = (8.1 <)
where a set of interpretations for propositional symbols (in other words, a
set of possible worlds, If) ix S, and [ is an identity function and < is a striet
partial order <¥ uver those interpretations. We say the preferential model is
defined by <F. As Kraus et al. [5] pointed out, if S is finite, the smoothness
condition is always salisfied. lere, we consider a finite set of possible worlds,
so the smoothness condition is always satisfied.

Then we can have the following relationship between circumscription and
preferential consequence relation.

Definition 15 Let <" be a strict partial order over interpretations. The
consequence relation defined by <F is denoted as ~.p and defined as: Ap_p[i
if and only if Cireum(A; <T) |- B.

Proposition 3 Let <% be a stricl partial order over interpretations. The
consequence r~_p defined by <F is a preferential consequence relation.

However, there are some differences between preferential consequence re-
lation and cireumscription. In propositional circumscription, for any satis-
fiable formula 4, Af. pF * (we say p~ is proper), but in preferential conse-
quence relation, this is not always the case.

And since we use an identity function for { in circumscription, there is a
preferential consequence relation in a langnage which can not be represented
by circumseription in the same langnage.

3F is falsity
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For example, Suppose L contains only two propositions £ and ¢}, and &
consists of five states sq...s5 which satisfies the following conditions:

1. (s} | P i@

2 lss) =P QL

3ozl FPAQ.

4. lisq4y = P AQ.

S lss1 E P A -G

fi. 87 < sy and s, < 5, and there is no other pair which satisfies ~.

Note that s; and sy are mapped to the same interpretation. Let us con-
sider a conseyuence relation poy, where W = (5,1, <}. Then, although P v
Qb (P AQIVIPASQ), Pl P A=) and @y ~F A Q. And this relation
can not he expressed in circumseription of L because for any order < over
interpretations if we have PV Q- _ (=P AQ)V (P A=), then we must have
an order between interpretations {P,Q} and {F, =} or between interpre-
tations {=P, @} and {P,Q}, thal is P P A=Q or @, P A Q. Thisis

becanse we have the states mapped to the same interpretation.

We say a formula A is complete if for every formula 5 in L, A E B or
A —B. A complete formula corresponds with an interpretation. Theu,
the following property excludes a preferential consequence relation such that
two or more states are mapped to the same interpretation in a corresponding
preferential model.

If € is complete and AV B~ then Ap~C or BfoC 4,

Theorem T b is a proper preferential consequence relation and salisfies the
above property if and only if there is some <F such that b _p =~

Proof:
We can easily show that every consequence relation defined by a circum-
scription is a proper preferential consequence relation and satisfics the above

property.

#This property corresponds with (R&) in (4]
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We show the converse. Suppose |~ is a proper prelerential consequence re-
lation and satisfies the above property. Let a(P) and F({P) be complete
formulas. We construct f~_ as follows. Define o(P) < 3(P) if and only if
a(P)V #(P)fa(P) and a{P) # 3(P). Then < is a irreflexive and transitive
relation. Suppose we collect all pairs in <: a{P) < 5 (P)..a.(P) < 4.(P).
Then, p <% P is defined as follows: {ay(p) A S1(P)}V (o (p) A B.(P)).

First, we show il A~B then Ak B. Suppose ApH. We colleet all complete
formulas ('}, ..., ', which do not imply H. Then, we can write B as =y A
_"GE AN _’Cﬂ'

If 4 == then A|-{—-£-’..

Otherwise, that is, in the case of C; | A, we can wrile A as {A, V() V
(L v C)) where Ay |~y A ~C; and I is a complete formula which is
nol equivalent to C;. Then, from the above property, (A4, v C)h—(7; or
(D v Cib=C

If (Dy v C,)=Cy, then we stop this process. Otherwise, we continue this
process until we find Dy such that (D, v C;)=C,. This process will stop
because A can be represented as a finite disjunction of complete formulas.

Then we can write 4 as D, v v E V...V E,, where I, VC—C and £
is a complete formula such that E; = A A ~(,. Then. from the construction
of <, Dgv Cipe _~Ci. And since E; & ~(), E;; ~C; Then the fifth property
ol preferential consequence relation, A <0

Therefore, Ak _~Cy A A =C,, thal is, AR B.

Now, we show if At~ B then AR~B. Suppose Af_B. We collect all complete
formulas 'y, ..., C,, which do not imply B. Then, we can write B as () A
Wy A A=,

If A= -C; then Ab—C.

Otherwise, that is, in the case of C; | A, Then there exists a complete
formula [ such that D |= A and (DVCi)  ~C,. Then, from the construction
of <, (DV )=,

Then we can write 4 as DV C; vV Ey v ... v E,, where D v ;)= and
E; is a complete formula such that E, & A A —=Ci. Then the fifth property
of preferential consequence relation, Ap -

Therefore, Ab—Cy A ... A Oy, that is, ARB. O
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4.2 Rational Consequence Relation and Circumscrip-
tion

Unfortunately, although a consequence relation defined by circumseription
is always preferential, it is not always rational. We show it by using the
following lemma.

Lemma 10 Let 5 be a set and = be a strict partial order. The following are
equivalen!.

1. There is a lotally ordered set ) whose total order is denoted as < and
a function v : §+  such that s <t if and only if r(s) < r(t).

2 Forellse S, forallt € S and for allu € 5, if 5 < t then either s < u
oruw =1,

Prool:

Suppose 1.

Then, there is a totally ordered set £ and a function r from 5 to {1 such that
s = tif and only if r{s) < r(t). Suppose s < {. Then, for all u, r(s) < r{u)
or #{u) < r(t) because iz a totally ordered =et. Therefore, s < u or u < 1.

Suppose 2.
We define a binary relation ~ over § as follows:

s~ b= (s <) A(t < s).

Then, we can show ~ is an equivalence relation. reflexivity and symmetry 1s
trivial. We prove transitivity., Suppose s ~ t At ~ u, Then,

(s =)A< sy At < u)A-lu <t).

From 2, if =(s < t) A ~{t < u) then —(s = u) and if =(u < t) A —-(t < 3} then
—{u < s), Therelore, s ~ u.

Suppose 1 is S/~ and a binary relation < over 0 is defined as follows:
r<y if and only if Fs3t(sexnteyns <t).

Then, < is a tolal order.



Let » be a function from 5 to £ be defined as follows.

r(s) =& such that s €z

Then s < tif and only if r(s) < #(f). O

Now, we give a class of circumseription whose consequence relation is not

rational.

Theorem 8

1.

iy

If a tuple of variable propesition, P does not contain all prepositions in
L and for any non-trivial partial erder <¥® (there ure some inferprefa-
tions, I and J such that J <F 1), the consequence relation defined by
<¥ is always non-rational.

If P contains all propositions in L, then a consequence relation defined
by minimizing one or two propositions in parallel is rational.

Even if P contains all propositions in L, a consequence relation defined
by minimizing more than three propositions in parallel is always non
rational.

Proof:

1.

Since <P is non-trivial, there exist some interpretations, I and J such
that J <P I. And there exists some proposition P which is not in
P Let K be a truth assignment which is the same as J cxcept the
assignment of P. Then since J <¥ [, the assignment of P in [ is the
same as in J from the definition of <¥. Then, K is different both
from J and from I in the assignment of P. Therefore, =(J <F K’} and
~(K <P I}. From Lemma 10, the preferential model defined by <F
15 not ranked, Therefore, consequence relation defined by < is not
rational from Proposition 2.

We can casily check that a preferential model defined by minimizing
one or two propositions is ranked.

Let P contain the following minimized propositions be P, () and A.
And let the following three interpretations [, J and K satisfy the fol-
lowing conditions:
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(a) Every assignments are the same except assignments for P, ¢ and
R.
(b) IE~PA-QAR JEFPAQAL-Rand K E-PAQ MR,

Then I <¥ K, but =({ <T J) and =(J <¥ K). From Lemma 10, <F
is not ranked. Therefore, conzequence relation defined by minimizing
more than three propositions is not rational from Praposition 2, O

Although rational monotony corresponds with one of flundamental conditions
for minimal change of belief proposed by Gérdenfors [3], there are several
examples in commonsense reasoning which correspond with the third case of
Theorem . l'or cxample.-, consider the EUI]UW‘[II:I[:!‘ axiom °.

4, Y
({Japancse A —AbLY O = Big)h
({ Hockey _player A = Ab2) o Strong)A
((Professor A <Ab3) o =Strong )
[ Stromg o Hig)a
Jupanese A Hockey_player A Professor.

(If 2 man is a Japanese, he is normally not big, and if a man is a hockey
player, he is normally strong, and if a man is a professor, he is normally not
strong, and if a man is strong, he is big, and the man is a Japanese prolessor
who plays hockey.)

If we minimize Abl, Ab2 and Ab3 in parallel with every proposition al-
lowed to vary and consider the consequence relation ~ defined by this mim-
mization, then we can show the following.

A= Big A —Strong) V ([ig n Strong),

and
A = Big.

However,
Ay A Bigg<(~Big /. =Stromg) v ( Big A Strong).

S0, this case does not satisfy rational monotony.

5This example was suggested by David Poole,

23



Another example is a closed world assumption. Iu thal case, we minimize
all propositions and so. we do not have rational monotony if a number of
propositions 18 more than three.

Note that if we minimize more than three propositions in a prioritized
circumscription, there is a case where rational monotony is obtained. For
example, if we minimize Abl prior 1o A2 and Ab3 in the above Japanesc-
professor-playing-hockey cxample, rational monotony is obtained.

So, one may argue that a rational consequence relation is not practically
rational. However, what we would like to say here is not whether it is rational
or not, but that circumscription in general does not have the probabilistic
semantics which we have defined so far and that if an order defined by cir-
cumscription is ranked, then it has a probabilistic rafionale.

4.3 Probabilistic Interpretation for Lazy Circumscrip-
tion

In this subsection, we consider the following kind of circumscription.

Definition 16 Circumscription <% is lazy if the preferential model defined
by <P is ranked.

We can show that a consequence relation b is proper and rational if and
only il there is some <F of lazy circumscription such that ep = po Ifa
circumseription <% is lazy, the consequence relation b-_p is rational. That
is, for all formulas, A, B and €, if At~ _pC and Al _p —B then AABN~_pC.
This means that in lazy circumseription, belief revision does not occur if the
added information is consistent with the current belief.

Aund, il & circumseription is lazy, we can attach a probability function
used in the proof of Theorem 1 because the preferential model defined by
<P is ranked. In this case, we consider a set of interpretations I as a set of
states.

Example 1.
Let a set of proposition be {P,@}. Then, U consists of four possible worlds:

{{=P.=Q), (P,-Q), (=P, Q), (P,Q}}.
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Suppose we minimize £ and ¢ in parallel, We denote the strict partial
order relation by this minimization as <!"%! Then the consequence relation
defined by <% is as follows:

AP, Q) ivg BIP, Q) if and enly if
AP, Q) n—=3p3glAlp.g) A ((p.q) < (P,Q))) E BF.Q).
where (p.g) < (I, Q) is the following abbreviation:

(Pg) < {P.@QIE (p 2 PIAg QAP I AQ D q)),

The preferential model defined by <!%%)is ranked {Tigure 1). In the figure,
a lower interpretation is more preferable than an upper interpretation. 1In
probabilistic semantics, we regard this order as an order of probability. This
means that a lower interpretation is more probable than an upper interpre-
tation. Moreover, we make the probability function of an interpretation in
(# 4 1)-th rank be r times as much as that of an interpretation in #-th rank
so that we can ignore less probable interpretation as = approaches to 0.

Let ; be a number of interpretations in ¢-th rank and 5 be a number of
luterpretations satisfying A4 in i-th rank. From Figure 1, o = 1, 5y = 2 and
ms = L.

Let probability function F. with a positive parameter r be defined as

follows,
3

A -
2yl

A A A 2
. - + 0y 2+ * T
Hﬁk-'q'] ded _:_31 Fh ]'2 rjﬂ-

- 142z 4
S
=1
Then, this function is convergent and
I it PL(A) =0
. AnB
= .'I'}' T .
JI;'_,n-ll; F:(B|A) v ) otherwise
r]mr[..\l}

where mr(A) is the minimum rank where some interpretation satisfies A.

Intuitively, making x approach to 0 means that we consider only the
most probable interpretations wloch satisly A and the [act that P.(B[A)
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|: —.P.—.Q i

Figure 1: Strict Partial Order by Minimizing P and .

approaches Lo 1 means that in all the most probable interpretations which
satisfy A, B is extremely probable. This is a probabilistic semantics for lazy
circumscription.

et i~ be a consequence relation as follows.
AR B if and only if li"I!I F.AB|A) =1

Let us check if Pv Qp—FP v =)
Since (PA=Q} b= PV Q, mr(PV Q) =2 And since 39 = 2 and
P FYONCFV-Q) _ o

rngvQ].n[-‘Fv-'Q]
lim Po(PV =QIPV Q) = g =1

Therefore, PV Qr—P v =@. This corresponds with the resull of P v

Qbceq- PV =Q.
However, suppose we check if PPV QP A —(Q).
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Since i VEINIART _ G PAme
ﬂ.F‘.n—u.'.;l
lim Fr (P A -QIF V Q) = Zrg # 1
e 2

Therefore, PvQ P A-Q. This corresponds with the result of PUQEIL{ ra A
=(7. Actually, ~ i cquivalent 1o F‘-"<1P_Q! from Theorem 1.

Example 2.

Another example is the “fiying bird and non-fiying penguin® exampie.
Suppose that we consider a set of proposition{ I3, P, I'} where B expresses

“hird”, and 17 expresses “penguin” and F expresses “flving”, and we maxi-

mize F O —F prior to B 2 F. We denote the strict partial order relation

by this maximization as <!&FF) Then the consequence relation defined by

<IBPF) 5 a5 follows:

AlB, P Fb e BUB, POFY i and only if
AB P Py A =363pdf(Albp, f) A (bp, )< (B, F.F)i | B(B, P, F),
where (b,p, [) < (8, P, F) iz the following abbreviation:
(b J) < (B, F) &
((P2=F) 2 (p2=fin
(((P2=Fl=(p2-f)) 2U{B2F) 2 (DA
({(p2 f) D (PD-F))A
((p2f)=(PO-F) DD f) 2 (HDF)))).

Then the conseguence relation defined by <8241 55 rational, because the
preferential model by <858 is ranked (Figure 2),

Let 1y be a number of interpretations in i-th rank and 1'}*'" he a numher of
interpretations satisfving A in i-th rank. From Figure 2, 5y =4, 12 = 2 and
fa = 2.

27



Figure 2: Strict Partial Order for Flying Bird and Non-flying Pengnin.

Let probability function P, with a positive parameter r be defined as
follows.

3
A i-1
E noo*x .
P& A nfeatnda?
: 3 . 4 4+ 2r + 2x?
Z T #* 'T’-I
i=1
Then, this function is convergent and
1 if F(4)=10
. ANR
im P (B|4) = q:, 4 otherwise
qmr[.ﬂi]

Let ~ he a consequence relation as follows.
Ak B il and only if ]in}:. FBlA) =1

Let us check il BA(F 2 B)F.
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Since ({B,=P.Fy | BA(P 2 B), mr(B A (P D B)} = 1. And since

mﬁqujE] - ’.i"F — | and ﬂerPJB]AF — '-’.?f'l‘r =1,
_ o . U%-MF
lim Po(F|B A (P 3 B)) = lim P,(F|B) = i 1.

Therefore, It & (F 2 B)~F. This carresponds with the result of BA (P O
HH""(_I;E‘ el

And, suppose we check if P A (F 3 B)pF.

Since {B,P,~F) &= PA{(P > B), mr(PA(P 2 B)) = 2. And since

A B)a-F -
’T?PMP:}E} _ ﬂfnﬂ =1 and U; (F2B) - n;‘nﬂn F_ L,

FPanBanF

“nl P.=F|PA(PDB) = lirrﬁ P.(=F|PnEB)= ?i‘zﬁpnﬂ_ =1.
£ e 2

Therefore, P A {FP 2 B)f~=F. This corresponds with the result of P A {FP >
BH"",,:I:H.P‘.F]_'F-

5 Conclusion

We propose a probabilistic semantics called closed consequence relation 1n the
limit for lazy nonmonotonic reasoning and show that a consequence relation
is closed in the limit if and only if it i= rational. Then, we apply our result
to giving a probabilistic semantics for a class of circumscription which has
lazy nonmonotonicity.

We think we need to do the following research.

1. Lazy circumscription is defined in terms of order over interpretations.
But we do not have syntactical characterization for lazy circumscrip-
tion. We would like to know which binary relation over formulas char-

acterizes a lazy circumscription.

2. As we pointed out in the proof of Theorem 2, even if we remove con
vergent condition of probability function P; in the definition of closed
consequence relation in the limit, a consequence relation is still prefer-
ential. We would like to know which preferential consequence relation
is characterized by this weaker condition.
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3. We would like to know a probabilistic semantics which characterizes a
consequence relation defined by whole class of circumscription exactly,

4. We can not apply our result to Default Logic[l5] or Autoepistemic
Logic[11] because a consequence relation defined by those logics 12 not
even preferential. We must extend our result to apply those logics.
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