ICOT Technical Report: TR-522

TR-522

Fxtraction of Redundancy-free
Programs from Constructive Natural
Deduction Proofs

by
Y. Takavama

Novemmber, 1989

{11989 1COT
Mita Kokusai Bldg. 21F {03) 456-3101~5
II :D | 4-28 Mita 1-Chome Telex ICOT 32064
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Submitted for publication in J. Symbolic Computation

Extraction of Redundancy-free Programs
from Constructive Natural Deduction Proofs

Yukthide Takavama

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-lku, Tokyvo 108, Japan
takayamaGicot.jp

Abstract

Executable codes can be extracted from constructive proofs by using realizability inter-
pretation. However, realizability also generates redundant codes that have no significant
computational meaning. This redundancy causes heavy runtime overhead, and is one of
the obstacles in applying realizability to practical systems that realize the mathematical
programuming paradigm. This paper presents a method to eliminate redundancy by analyz-
ing proof trees as pre-processing of realizability interpretation; according to the declaration
given to the theorem that is proved, each node of the proof tree is marked automatically
to show which part of the realizer is needed. This procedure does not always work well.
This paper also gives an analysis of it and techuiques to resolve entical cases, The method
is studied i a simple constructive logic with primitive tvpes, mathematical induction and
its g-realizability interpretation, As an exaunple, the extraction of a prime number checker

program is given,

[Levwords: constructive logic. realizability, natural deduection, proof tree analyvsis, proof

compilation

1. Introduction

Writing programs as constructive proofs of theorems is thought to be one good approach
to antomated programming and program verification [Constuble 86 [Takayama 87]. Exe-
cutable codes can be extracted from constructive proofs by using the Curry-Howard 1s0-
morphism of formulas-as-tvpes [Howard S0]. or the notion of realizability [Troelstra 73).
Here, it raises the problem of extracting efficient codes from proofs. or, n other words,
optimization at proof level.

[Bates T9] applied a traditional syntactical optinization technique to the code extracted
froin proofs which is a set of source-to-source transformation rmiles. A technique to optimize
programs at proof level, pruning, is given in [Goad 80]. Generally, a proof coutaius a lot of

information about the program that corresponds to the proof. and the pruniug technique

—_ 1] —

uses the information in optimization that drastically changes the strategies of alporithins.
[Sasaki 86] introduced the techmque called singleton justification to Bates' program extrac-
tion algorithm so that the trivial codes for formulas that have no computational meaning
can be simplified. The basic idea 1s as follows: if 4 and B are atonnc formulas, then
the computational meaning is trivial, so that the code extracted from, for iustance, A A B,
which is called singleion formula, is (trivial, trivial). The modified progran: extractor sim-
plifies the code to trivial. The class of the singleton formulas 1s essentially equal to that of
Harrop formulas [Troelstra 73). The QPC system [Takayama 88 uses a simular technique
to singleton justification, proof normalization method to eliminate J-redex in the extracted
codes, the medified vV code technique to simplify some classes of decision procedures and a
few othier code simplification rules as in Bates’ and Sasaki’s program extractors. However,
the code extracted from constructive proofs still has redundancy, the redundant verification
code, and it canses heavy runtime overhead.

The formalization of the problem in this paper is as follows. If, for example. a constructive

proof of the following formal specification is given:
Yr oy, Jy:oy. Alz,y)

where oy and o, are tvpes, and Az, y) is a formula with free variahles, o and ¥, o function,
£, which satisfies the following condition can be extracted by q realizabilita:

Y s eg.Alx, fla)).
For example, if the proof 1s as follows:

[z :op] [z: o]

Zo 2
e :{h OTERS
Sy @y Ald, [l"ifl-lr}

Yr g Jy oy, Alr,y)
where Tp and Iy denote sequences of subtrees, the evtracted code can be expressed as:

Axr. (2, T
where T is the code extracted from the subtree. (I /40w, 1)) £, denotes a term which
contains a free variable, @, aud (|) is the sequence constructor. In this paper. the executable
code extracted from a constructive proof, which is called realizer code or simply realizer
is in the forin of sequence of terms or a function which eutputs a sequence of terms. The
code coutains verification information which is not necessary in practical computation. In
this casc, the expected code is:

doel

f= Azt
go that T is the redundant code.
The most reasonable way to overcome this problem would be to introdnce suitable notation
to specify which part of the proof is necessamy in terms of computation. The set nota tiom,
{x : A|B}, is introduced in the Nupml system [Constable 86] and ITT implemented by

—

the Gédeborg group [Nordstrom 83] as a weaker notion of Jv @ 4. B. This 15 used Lo
skip the extraction of the justification for B. [Paulin-Mohring 89] modified the Calculus
of Construetions [Coquand 88] by introducing two kinds of constants, Prop and Spec, to
distinguish the formulas, in proofs, whose computational meaning is not necessary. These
works are performed in the type theoretic formulation of constructive logic in the style of
Martin-L5f or higher order A calenlus with dependent types. For the non type theoretic
formulation of constructive logic, ¢ bounded formulas intraduced in PX {Havashi 83| play
a similar role to the set notation from which no realizer code 1s extracted.

This puper presents another method for the program analysis at proof tree level, and
for extraction of a redundancy-free realizer code in a non-type theoretic formalization of
constructive logic. In some cases, the redundancy can be removed casily by applying a
simple operation to the extracted code. For example, if the Oth element of the realizer cole,
(fy,t1. -yt), from a proof of Je - o, A{x) is needed, it is obtained by applying projection
function: proj{0)(ta,f1, -+, tn) = ty. If the theorem is in the form of Yz @ o A(z), the
realizer from its proof is in the formn of Az (fq,---,4,), so the procedure 1s a little more
complicated: Translate the realizer to (Ax.ty, -, Ax .ty) and apply projection function.
However, the situation around the redundancy is more complicated when the program
extraction is performed on proofs in induetion, in other words. when recursive call programs
are extracted. It needs rather sophisticated program analysis. For example, assume that

the following recursive call program 1s extracted from a proof in induction:
plzg, ze). Axoof v =0 then (0,1) else (fop 20 G20.2,)

where g is a fixed point operator and both of the parameters, 2 and z;, of ¢ actually occur
in f. This function caleulates a sequence of terms of length 2, and hoth of the elements of
the sequence caleulated at the recursive call step are necessary to calculate the Oth element
of the sequence. Therefore, it is impossible to extract ouly thie 0th element of the realizer
code. The program analysis of redundancy can be presented quite clearly and naturally if
it is performed at the proof tree level because proofs are the logical description of programs
anc have a lot of 1nfornation shout them,

Section 2 defines a simple constructive logic used in this paper. This i+ basically an in-
tuitionistic first order natural deduction with mathematical induction and a variant of
type-free A-caleulus. The program extraction algorithu, Erf, is defined here. Eaxf per-
forins q-realizability interpretation of proofs. Section 3 introduces the notion of marking
which is a basic tool for the analvsis of proof trees. The marking procedure may Lul 1f the
proof nses mathematical induction. This is explained in Section 4. The modified proof ex-
traction algorithm, N Eat, is defined in Section 3. N Ext generates redundancy-iree codes
from the proof tree analyzed by the marking procedure. Section 0 gives a few properties
and characterization of marking and NExf. A prime number checker program is mves-
tigated as an example in Section 7. Section & gives some discussion and the concluding

remark.

2. Simple Constructive Logic

The constructive Jogic used here is an intuitionistic version of first order natural deduction
with mathematical induction. It has a type-free A-calculus as terms, and equality and
inequality between terms. It is a sugared subset of Sato’s theory. QJ [Sato 83| [Sato 36).

2.1 Expressions and Inference Rules

Only the part of the definitions which is sufficient to enable understanding of the contents

of succeeding sections will be given. See [Takayama 88] for details.
Types are used as domains of quantified variables.

Definition 1: Types
The primitive types are nat, 2, and bool. A type is constructed with primitive types and

tvpe constructors, — (function type constructor) and x [cartesian product constructor).

Definition 2: Substitutions
A substitution is denoted {Xg/To, -+, Xn_1/Tn—1} which means substituting T; for X,
and X, is a vanable or a sequence of variables. If X is a sequence of variables, T; must be

a sequence of terms. Application of a substitution. 8, to o term, T, is denoted T8

Definition 3: Terms [program constructs/
1) Atoms:
¢ Elements of nat: 0,1, 2, -+ o Elements of 2: left and right
¢ Elements of bool: T and F'
2} Variables: x,y, 7, -
31 Sequence:
If ty.- - .t, are terms, then sequence of the terms, (fg. - .1,) is also a term.
A sequence of variables, (2g, -, 2,1), will often be denoted T, Nil sequence 18
denoted). any[n] (n 2 0) denotes a sequence of any atoms, and any[0] = {)
4) Abstraction:
T Af 5e s term. and X is a varable or a sequence of variables, then AN, M is a term;
5) Application:
¥ M and N arc terms, then M(N), or siinply M N, 15 a term;
6] If-then-else:
Tf A is aw equation or inequation of terms and beval is a function which determines
whether 4 is true or not and returns boolean values, and if Sy and 5, are terms,
then if beval(A) then S else 5y is a term. beval{ A) is often abbreviated to A:
7) Fixed point:
If Af is a term which contains the variables, zg,- -, 2, free, then p(zg,- - JEa)l A

15 a termi;

§) Built-in functions:
e suce, pred, +, —, [- e proj{n} --- n-th projection function;
e proj(1) where I is a finite sequence of natural numbers. In the following, M and N
are terms or sequences of terms and X 1s a variable or a sequence of variables.
a) proj({io, - im}) (5) = (proj(ia)(S), -+, proj(im)(S))
where 5 is a sequence of terms of length n (m < n);
def

Ly prog(D(AX. M) = AX. prog(d)(M)
¢) proj{Diany[n]) € anylk] (k = length of I) < n)
d} proj(IWif beval(A) then M else N')
det 1f beval(A) then proj(I)(M) else proj(d)(N)
e} proj(I Af8) = (prog(INM})6 where # is a substitution;
£) proj(IN(M(N)) = (proj(I}{M))(N)
¢ For a sequence of terms, 5, of length n,
tseq(i)(S) = (proi(i)(S), projli + 1)(S),- -+, proj{n — 1)(S))
where 0 <1 < n —1
ttseq(i, ()(S) < (proj(i)(S), proili + 1)(S), . projli + (1 - 1))(S))
where 0 <07 <ln—=1,1<0<n—1
Sequence of terms:
If §3,---,5; are sequences of terms, then their concatenation is denoted (5.---, 52). (5.()}
and ((},5) are equal to 5. Also, the following equivalence relations are given:
o i f bevallA) then (My, -, M,) else (Ny, -, Ny)
= (7] beval{A) then My else Ny, ---.if beval{A) then My else Ny)
o \X. (Mg, - My} = (AX My, - AX M)
o (M, Mo HN) = (My(N), - ML (V)

Fisxed poLnt:

A fixed pomt used here has a sequence of variahles as parameters. A fixed point
i{zay o znm) M
denotes a solution of the following fixed point equation:
{(zg,- - zm—1) =M
If the term A4 is equivalent to a sequence of terms of length »,
M= (Mo, -+, M._1} [4)
the fixed point eguation can be solved, and the solution, (fy, - -. fu—y) is as follows:
fi=pep Mi{zoffo - zicif fierssig fins s 2nmtffaa) (02150 -1)

— 5 —

Therefore, the following equivalence relation 15 intraduced:

;J:I:.':n, f.F:,-,_1:ﬁ. M= {fn,"',fu_j] if [:l} holds

Definition 4: Formule

1) L is an atomic formula;

2) Equation and inequation of terms are atomic formulas;

3) If M is a term and ¢ is a type, then M : ¢ is an atomic formula;

4) If A and B are formnlas, then A A B, AV B and A O B are formulas;

5) If r is a variable, o is a type and A is a formula, then 37 : 0.4 and ¥z : 0.4 are formulas;

Negation of a formula, = A, is defined as =4 “ 45 1. The type declarations of bound

variables are often omitted. Also atomic formmla M : o 15 often denoted simply M.

lnference rules are as follows:
o Introduction and elimination rules on A, V, D3, ¥ and 3
s | elimination rule ¢ Mathematical induction rule

o Tlules on equality and inequality of terms ¢ Term construction rules

* is used as the abbreviation of the names of equality rules, term construction rules, and

AXIOMS.

2.2 Proof Theoretic Terminology and Notation
This section gives hasic proof theoretic terminolagies used in the following description.

¢ [T always stands for proof trees, and ¥ for sequences of proof trees.
» Assumptions discharged in the deduction are enclosed by square brackets: [|. Note that

this is different from Prawitz’s notation, in which both parentheses and square brackets are

used: () and [].

Definition 5: Principal sign & C formula
1) Let F be a formula that is not atomic. Then, F has one of the forms A A B, AV B,

A B v¥r A and 3z.A; the svmhal A, vV, 2. ¥, or 3 is called the principal sign of F.
2) A formula with the principal sign, €, is called the C formula.

Definition 6: Application & node

In a proof tree as follows
T‘n E
= 1]

A4, 4,
_._E]__E__(RJ
11

— Hh —

Ay - -
the formula occurrences, 4g,---,A, and B, are called nodes, and the 2 7 “(R) part

is called application of rule B, or R application.

Definition 7: Subtree
If A is a formula occurrence in a proof tree II, the subtree of I determined by A is the proof

tree obtained from IT by removing all formula occurrences except A and the ones ahove 4.

When a proof tree
2 i Za-
By B, Bu,
c

is given, the subtree determined by B; will often be denoted as (Z:/Bs).

Definition 8: Top- & end-formule
1) A top-formula in a proof tree, I1, is a formula occurrence that does not stand immediately

below anyv formula eceurrence in I1.
2} An end-formule of I is a formula occurrence in Il that does not stand immediately above

any formula occurrence n 1L

Definition 9: Side-connected
Let A be a formula occurrence in I1, let (Tg, I, -+, I,—;/4} be the subtree of I deter-

mrined by 4, and let Ay, 4;,---, Anoy be the end formulas of II;. 10, -, Il,—;. Then, A,
is said to be stde-connected with A; (0 <1,7 <n).

Definition 10: Miner & major premise
Tin the following rules, C's as premises of the rules, Cy, and G, are said to be minor premises.

A premize that is not wminor is called a major PrEMISE,

()]
C2B € p . 4x) C
B € L (3E)
4] 1B
AV E rfl_'u C:_L{V_E] where Cy = €1 =C

€y is called left minar premase, and Cy is called right manoer premase.

2.3 Realizing Variable Sequences and Length of Formulas

The realizing variable sequence {or simply renlizing variables) for a formula, A, which 1s
denoted as Ru(A), is a sequence of variables to which realizer codes of the formula are
assigned. Realizing variables sequences are used as realizer code of assumptions in the

reasoning of natural deduction.

Definition 11: Hu{4)

def

1) Ro(A) ¥ (), if 4 is atomic; 2) Rv(A A BY = (Ru(A), Rv(B));
3} Rv(Av B) < {z,Ruv(A), Rv(B)) where 2 is a new variable;
4) Ro(4 > B) Y Ru(B); 5) Ru(¥z. A(z)) % Ru(A(2));

6) Rv{3z. A(x)) ' (2, Re(A{x))) where = is a new variable,

Example 1: :
RBuv(¥r nat. {x 20D (x =0V Iy : nat. sucely) = x))) = (20, 21)
where 4 denotes the information that shows which subformula of the WV formula holds and

z; denotes the realizing variables of 3y : nat. suce(y) = z. Note that Ruv(suce(y) = z) = ().

Definition 12: Lengih of formulus
{{A), which is called the length of formule A, 15 the length of Ru(A4).

2.4 Proof Compilation (Ext Procedure)

The realizability nsed in this paper is a variant of q-realizahility defined in [Sato 83]. The
chief difference from the standard q-realizability as seen in Chapter VII of [Beeson 53] is
that the realizer code for an atomic formula is defined as nil sequence here while there is no
such restriction in'the standard g-realizability. px-realizability [Hayashi 88| also has the
same restriction. Another difference from the standard form is the definition of realizabilits
of v formulas. The standavd g-realizability defines the realizer code of A v B as ({left.)
or {right, E]I e which e ft and veght ave the Hags to show which formula of the digjunction
actually holds and @ and b are realizer codes of 4 and B. On the other hand, it is defined
as (le ft. @ any[l{ B)]) or (right, any|l{4)].3) in this paper.

The realizability is reformulated here as the Ext procedure [Takayama 88| that takes proof

trees as input and returns functional stvle programs as outpui.

(1} For the realizer code of an assumption, the realizing variable sequence is used:

tlel

Exzt{A) = Rv(A4)

(2) No significant code is extracted from an atomic formula:

o
Eat (i {R'ttr'pj) ‘I_E__I () wlere 4 is an atomic formula.

(3) The realizer codes of A formulas and Vv formulas are denoted as sequences. The con-

stants feff and right are used to denote the information indicating which of the formulas

connected by V actually holds.

4, A, def o >))
| LSl alT Ert Ext
o Bt Ag N Ay (A1) ((Ao) * (Ai
v
o Bt | A0 2 A1 (p-E), =0,1)

3 (0,1(Ag)) fi=0
= qug{p?q:l (E'Et (ﬂuﬂﬁ1)) where (p,gq) {“{AD}:}”AI}} fi=1

< %

. Ert Aﬁﬁw.nu a (1 ft, Ext (A) ,aﬂy[!{B)])
= .

s Euxt B e (righi,mly[ifﬂ}]uﬁ'a:ﬂ (E))

(4) The realizer code extracted from the proof in the (V-E) rule is the if-then-else pro-
gram. If the decision procedure of AV B is simple (directly executable on computers), Fxt
generates the modified V code [Takayama 88).

(4] [B]
Bot | AVE L C (v.E)

1s o= followes:
a) 1} beval(A) then Ext (5,/C) else Ext(T2/C) ‘modified v code]
.- when both 4 and B are equations or inequations of terms
) if left = proj{0)(Ext(TofA Vv B)) then Ext(T,/C)8 else Ext (T,/C)8
++« otherwise

el

where § & { Ruo(A)/tiseq(1A (Ext{E /A v B})) ,}

Ru(B)/tseq(l{A) + 1) (Ext(Zp/4A v B))
(5) A expressions are extracted from the proofs in (O-1) and (¥-1):

[- o]

5
Afa) del B
e Firt oo AS A{w}[h‘-f} = Ar. Ext (A[:r])

(4]
. .
. b . def \) L

Ext a5 HI:'J I} | = ARv(A). Ext (n)

(6) The code that is in the form of a function application is extracted from the proofs in

(D-E) and (V-E):

o L
, ADB A gy | A e 2 ot [21
. Fizt B (2-£) _bxt(ﬁijﬂ) (Ext(ﬂ))
r-u. E|
t:o Yr:o Alz) def Xy
Ext ' -FE = Fot| ———
L A (V-E) : ("':":r:cr. .ql:,-f}l)“}

{T) The codes extracted from proofs in (3-1) and {3-E) are as follows:

o 5

. t:o A[.[j) def . Ry
Ext El.T:a.A[;:'}HI) - (t’f’ﬂ(dif}))

.0, Alx)

E-D E'[
Jr o .4.(.1:] _'C'-' ‘-) def E1
. F =L = LT —_—
at = (3-E) Eat()9

where
2 (Ro{ 4{x))/tseq(1) (Bxt (So/3r : 0. A(x))),2/proj(0}(Ext (So/32 : a. Alx)))}.

(8) Any code is extracted from a proof in the { L-E) rule:
E

o Ert f[L-Ej e anyli().

(9) The code extracted from (= -E) rule is as follows:

w v
rt ad]
- = .r‘-lf'[J 3 ded 31
Ert | =Y AlD) _ pyf e ()
s Exr Aly) {=-F) Eaxt Ar)

— 10—

(10) Multi-valued recursive call functions are extracted from the proofs in mathematical

inducticn.
[z : nat,z > 0, A(pred(a))] \
Eu E]
A0 ! :
o Ext (0) Alz) (natind)

Yzx - nat. A(x)

L 43 Xz if z =0 then Ext(Se/A(0)) else Ext(E,/A(z))o

where T is a sequence of new variables whose length is [(A(pred{z)})), and

o = {Rv(A(pred{z)))/Z(pred{z)}}.

Theorem 1: (Soundness of the Ext procedure)
Let A be a formula. If Il 4 is a proof of A, then = Ext(Tl4) q A where a q A means
that a term, a, realizes the formula A, and FV(4) D FV(Ext{I14))

Proof: By straightforward conversion from the proof of the theorem on the soundness of

realizability interpretation of QJ. See [Sato 85). g

Lemma 1: Let A and II4 be a formula and its proof. Then the code, Ext(Ila). is

equivalent to a sequence of terns of length I{4)

I'roof: Induction on the construction of I14. The crucial point is that if 4 is a ¥V formula,
¥r. B(x), and proved in mathematical induction, aund if Ext(I1) is plzg, -, 2n1). M,
then M is equivalent to a sequence of terms of length n = [{B{pred(x})) = [B{0}) =
[{B(x)). Then, Ext(I1,) is equivalent to a sequence of terms as explained in 2.1, g

The realizer code extracted by Eat is equivalent to a sequence of terms, so that a realizer

will also be called a realizer sequence.

3. Declaration and Marking of Proof Trees

The proof trees are a clear description of the logical meaning of prograins, so that analysis

to detect the redundancy of realizer codes is mnch easier if it is performed at the proof tree

level.

The realizer of a formula, 4, 15 a sequence of terms of length [A) according to lemima 1
in the last section. However, not all the elements of the sequence are always necessary. In
addition, it is generally difficult to determine antomatically which part of the rcalizer code
is really necessary, so end users must specify which elements of the realizer codes of each
node are needed, but at the same time it is preferable to limit the information that end

users must specify. The basic requireinent is that end users should not need to understand

how the proof compiler works in order to specify the redundant purt of the proof in terms
of computation.

On the other hand, the proof compiler performs realizability interpretation. It analyses
a given proof tree from bottom to top, extracting the code step by step for the infercnce
rule of cach application in the proof tree, so that, if the path of the proof tree analysis by
the proof compiler is traced, the information given to the end formula can be propagated
from bottom to top of the proof tree being reformed according to the inference rule of each
apphication. The proof compiler uses the information to refrain from generating unnecessary
code. Consequently, end users need not specify the information about redundancy at all

the nodes in the proof tree; it is enough to specify them only at the conclusion of the proof.

3.1 Declaration to Speciﬁcatimls

Definition 13: Declaration

(1) Declaration, I, of a specification, 4, is a subset of the finite set of natural numbers,
{0,1,---,l{A)—1}. Iis always assumed to be sorted: Assume I = {5,.---,i.}, then i, <1
if p < gq. Therefore, I 1s also regarded ag a sorted sequence of natural maunbers.

A specification, 4, with the declaration, I, is denoted {A}; or simplv Aj.

Elements of the declaration are called marking numbers.

{2) The empty set, ¢, 15 called nil declaration.

(3) The declaration, {0.1,---,{4) — 1}, is called trivial. and denoted TRV,

In the following, a declaration to the conclusion of a proof, II, will often be called a
declaration to a proof, I1, or a declaration given fo II. A declaration is o set of the position
numbers of the realizer sequence that specifies which elements of the realizer sequence are
needed. Tt is the only information that end users of the svstemn need to speeify: the other

part is performed automatically.

Example 2: Let Yoy, Vo, 3. 3y0. -y Alg. @1 U0 Hu—1) be the spec-
ification and assume that the values of yp,- -, ye, 0 < b < n— 1, are needed. It is declared

with the set of the positions: {0,---, &k}

Example 3: 4 Aol v, (z232Wy3z3w. 2 =y+z+w)A {0 < <y)is aspecification
of division of natural numbers more than 3. Hv(4) = (2,2,), where = corresponds to Jz
and z; to Jw. In other words, a realizer of A is the sequence of a value of 2 and a value

of w. If the function that caleulates the remainder of division of + by y is needed, the

declaration of A is {1}.

Example 4: B % Vo {dy.x =2-y)V(dz.x = 2.y+1) is a specification of the program which
checks whether the given natural number, z, is even or odd. The program extracted by Eut

from a proof of B caleulates the triples {left, Vi, any{1]), if @ is even. and (right,any[1], V2).

if = i5 odd, in which ¥, and V. are the values of y and z. The constants, left and right,

indicate whether z is prime or not. Therefore, the declaration should be {0} to generate

redundancy-free program.

3.2 Marking

Definition 14: Marking

(1) Marking, I, of anode A in a proof tree is {0} or ¢ if A isin the formof M : 0. Otherwise,
marking of the node is a subset of the finite set of natural numbers, {0,1,---,{(4) - 1}. As
in the definition of declaration, I is also regarded as a sorted sequence of natural numbers.
A node, 4, with the marking, I, is denoted {A}; or simply Af.

Elements of a marking are called marking nunbers.

(2) The empty set, ¢, is called nal marking.

(3) The marking, {0,1,---,I[4) — 1}, 15 called trivial, and denoted TRV

Note that declaration is a special case of marking; the marking of the end-formula of a
proof tree is called declaration. A warking of the conclusion of a subtree, II, of a trec will

often be called a marking of Il, or a marking given in IL

The marking procedure means to attach to each node of given proof trees the information
that indicates which codes among the realizer sequence of the node are needed. 'Lhe marking
can be detertnined according to the inference rule of cach node and the declaration. Let,
for example, Vr. Sy, 3z, Alr.y.z) be the specification of a program and a function from
x to y and z is the expected code from the proof of this specification. Let the proof be as

follows:

[x]

(+) =
4 Alr, E,f}(a_rj
Jz. A2, s,2)
(3-1})
Jy. 3= Alw,y.2) (¥-1)
W, Jy. 3. Ala,y, =)

;{*}

The code extracted by Lrfis
Ax. (5,1, Ext(S/A(x,5,1)) = (Av.s, Avt. M Eat{T/A(x,5,0))).

However, only the 0tly and lst codes are needed here, so that the declaration s {1}
The marking of 3y.3:. 4(x,y, z), {0,1}. is determined according to the inference rule (V-1)
and the declaration. For the node, J:. A(x,s,z), the Oth code of the vealizer sequence
15 the 1st code of Jy.22.A(2,v, 2), so that the marking is {0}. For A{z,s,t), no realizer

code 35 necessary here so that the marking is ¢. t and s should also be marked by {0},

which indicates that s and ¢ themselves are necessary. Consequently, the following tree is

obtained:

{lx]}e

{*}{n} =) {-'q':'r% th)
. AUZITES,
TP EP TERFIE A }{3-1}

{3y. 3z A(w, v, 2)}
{Vr. 3y. 3z, Alz,0,2}} (o,

(-1

 Definition 15: Marked proaf iree
The marked proof tree is a tree obtained from a proof tree and the declaration by the

11 li{l'ki.‘ g PI’U{;{H,].'L'II'E .

The proof compilation procedure, Exf, should be modified to take marked proof trees as
mputs and extract part of the realizer code according to the marking. It will be defined
later. The formal definition of the marking procedure, called Marl, will also be grven
later, but hefore that, part of the definition will be given rather mformally to make the

idlea clearer.
3.2.1 Marking of the (3-I) rule

By definition, the Oth code of

=0 =l
A
Ext S A(r) (3-1)

is the term which is the value of 2 bound by 3. Let I be the marking of the conclusion, then
¢ shoulel e marked {0} 1f 0 € I. otherwise the marking is ¢. The marking of 4(1) is given
as the marking numbers in I except . However. note that the ith code (0 < ¢) of Je.A(r)
corresponds to the 1 — 1th code of A{t). Consequently, the marking of A(#) 15 (7 — {0}y =1

where, for any finite set, I, of natural numbers, & — 1 e fo — 1o € Koo —120}).

3.22 Marking of the (3-E) Ruls

By the definition of the Ewt procedure, the vealizer code of C concluded by the following
utference is obtained by instantiating the code from the subtree detennined by the minor

premise by the eode from the subiree deternnned by the major premise:

A

oo =
dr. Alx) I r
c (3-E)

Hence both the marking of € as the conclusion of the above tree and the marking of €
as the minor premise are the same. The marking of the subtrec determined by the minor
premise can be performed inductively, and let J and I be the unions of the markings of

all occurrences of the two hypotheses, © and 4{x). Note that J is either {0} or &.

{lz]}s, {{AG)] i

EU) El
Jr. Alz) (€} _
3y (3-E)

The marking of the major premise, Jx.A(r), is as follows:
Case 1: J = {0}
This means that the following reasoning is contained in the subtree determined by the

minor premise in which 2 occurs in &

[2]

F
4
—

2 55 D
s, Pis) sy Yy Ply) o
Sy 7(y) Py F)

and the union of the marking of all the occurrences of x in Ty or £, is {0} so that the
value of x should be extracted from the proof tree determined by the major premise.
Consequently, the Oth element of the sequence of vealizer codes of Ja. A{x), which is the
value of = in A(2), is necossary to instantiate the eode from the subtree determined by the
minor premisc, so that the marking is {0} U (/" 4+ 1) where I 41 & {a+1ac I}
Case 2: J = ¢

This means that the value of is not necessary to instantiate the code from the subtree

determined by the minor premise, so that the marking is v + 1.
3.2.3 Marking of the (2-E) Rule

Let I be the warking of the conclusion, B. of a { D-E) application. The realizer of A 3 B is
a function that takes a realizer of A as input and returns a realizer of B. Then, [specifies
the part of the output of the realizer of A D B that is needed, so that 4 > B should also

be warked by 1.

Sooo B
A {.-l:" B}f
{B}r (=>-F)

The marking of A should be T11". The reason is as follows: The code extracted from
(So/A) is the input of the function extracted from (T, /4 O B). However, the marking, I.
of 4 O B is only to restrict the outpui of the function.

The marking of the subtree determined by A is continued recursively.

— 15 —

3.2.4 Definition of the Mard Procedure

o Notational preliminary
Marlk is defined in the following style:

2 5 () e ()
=L =2 Mark - Mark

Bﬂ Bu dil' “ {E'}}Jﬂ - {Bﬁn_{ﬂufﬂ}
{4}

The following are the finite natural number sct operations used in Mark:

I+Ti%éf{z+n|a'-€f} I—ndg{r—rt:x—ngﬂ,zef}
I[{?t]drﬁi{:t'rffh: <} Ifgn}dzﬂ {xella>n)

o Definition of Mark

Eu. En (E!J) . (En)

S 2n Mark coo Mark

By B | aet "\ [Boke T\ 1Bale
{A}e {4}s

Mark

Assume [# ¢ in the following.

Levr ke o Al) - del I - - -1 .
Mark | A, (3. A(x)), G-

def {qﬁ 0 ¢ I

where U = (0} otherwise,

[+, A(x)]
o R \ (2y) ())
S— T = Mark | =————— Mark | ——
Ju. Alax) i def {3r. A{x)}x {G'};
Moavlk J-E = - 3-E
: ©, P @y (+5)
here I — M+1 L g
WREE A =1 {0y uar +1) L= {0)

and L and M are the unions of the markings of all the ocowrences of & and A(x) as

hypotheses obtained in Mark(Z,/{C}1).

22 7]

I Mark { —=
o | A (o) _
Mark | o= V0| = e a@), 0

...-.16._

- o T
L Mark) Mark (—1——
£ Vi o ({ th) (V. A()];

)("i"-E}
{A(D)}; {4}

ok
o
H
O
——
<
L'lj
R
g

Merk:

Mark

= B
& & Mark (mﬂru——) Mark ({B} L .)
A i) (A-1) def Ii<iA)) I =AY =1{A) (A1)

[AnB)," {4 A B},

def Mark (S/{An Blr)
{4},

(A-El

ag Mark (B/{A nB}H”’”)Eﬁ-E)l

{B};

Mavk

Mark

= Meark (S/{A} - 1y<ian)
4 . L]:ELJ. I J<I(AY) W
—— I}U) {-"'II'I'""IB}I {]u

by
Marl: (-!-‘Ln—Bfﬁ-E]

w
= Mark (S/{B}r-qcar+n)
Jii (- el -1 t Wl
Mari: —{.*1V-B}jl .”]) {4Av B}, (v-I
4] [B]
ar 1v B ¢ C iy
Ml aied {C-']_; (V-E)

def _-‘lfm'.f;{'.‘_.‘w'-[.-i_‘a.f BYr) Merk(Z/{C}D) _:f‘.fm‘ﬂ-"[gg;"{ﬂ'}{}
) {chy

(V-E)

where ¥ = {0} U (Jy + 1)U {Jy + 14+ {4)), and Jy and J; are the unions of the markings
of all the occurrences of 4 and B as hypotheses. Note that for the case of the modified

veeode, bothh Jy and J, are &, so that W= {0} if I # ¢

[4] -

= Ual(
. i] def {E};))
Mark —-_{A:}B};[:}I} = —{._1 S5, {2-I)

%, 5
Mark | A—A2B (- py| df Mark (E¢/{A}rrV) Mﬂ’"HEu’{A?B}f}{:}_E}

{B}, {B};
[A(pred{z)}]
Lo X
A(0) Alz) .
Mark | ———— e (nat-ind
Vo, ALy, e

def Mark(Zo/ {A(0)};) Mark(Z,/{A(z)}1)

(nat-ind)

{va. A(2}},
T b Mark Ty Mark T
Mark w{=-fj def Y L({*";F}J v L({-4fwi};){=_EJ
{4}, (A},
o | st Mark(S/{Llg) |
Mark {fl];“" -E) LB

s Assumption

Mark{({A},) < {4},
s [nference on terms

Mark [—=—(x) def Let the marking of the form s : 7 in & which = oceurs in
: R ry}{n} be {0} and the marking of utlm uodes in T be ¢

Marl is well-defined, i.e., the set, I, attached to a node, 4, bv Aark is a subset of
1001 I04) = 1} or, if 4 is in the form of M = o, {0).

4. Marking Procedure on Induction Proofs

4.1 Marking Condition

The programs extractec from induction proofs are recursive call programs, Asswme that
the declaration, /. is given to an induction proof and that Mark is performed with the

declavation. Let J be the union of the markings of all the occurrences of induction hypoth-

esis.
{[A(pred(z))]},
{-‘Lli_g]}: {.4{_;:]}, |
{vr. A(x)}, (reat-1red)

The recursive call program, f, extracted from the marked proof tree should caleulate part
of the realizer scquence of A(x) (conclusion of the induction step) of the positions specified
by I.if the input 1= not 0. At the recursive call step, 1t should calculate the realizer sequence
of Alpred{a)) {induction hypothesis) of a set of positions which is included in 1. In other
words, J must be a subset of I, J € I. This condition will be called the marking condition.
This ratses a question: does the marking condition always hold? In fact, the answer is not
alwayvs affirmative. The next subsection gives the way Lo overcome the situation in which
marking condition does not hold, and proof theoretic characterization of the critical cases

will also be given after the next subsection.

4.2 Marking with Backtracking

The basic idea to overcome the situation in which the marking condition does not hold is
marking procedure controlled by backtracking: Let a marked indnction proof tree he as in
the previous subsection. If J € I, then enlarge I to JU J and perform A{arlk again. Then,
it may happen that J is enlarged to J' and J' & TUJ. 1n this case, I UJ must be enlarged
again to JUJUJ' (= TU.J"). This procedure will be continued until the marking condition
is satisfied, but the procedure always terminates because the declaration JUJ U J'U - - is
bound by TRV

The situation is a little complex for the nested induction. Assume that an induction
proof Il contains another induction proof IT; in it. Let I be the declaration to IT,, and
perform the marking procedure. Let J, LL, and L be the unions of the markings of all
the oceurrences of the induction the hypotheses of II, and TI,, and the marking of the
conclusion of I1;. The marking conditions for the nested induction are J € I {condition for
g} and LL € L {condition for TI;). I must be made sufficiently large to satisfv both of the
conditions. Genevally spealing, J, L, and LL are enlarged when I is enlarged. Suppose,
for example, that LL € L and J € I. Then, I must be enlarged to satisfy the condition
for II;. However, this procedure inay destroy the condition for Ty: LL' € L' may hold
for the new values, LI and L', of LL and L. Then, I must be enlarged again to satisfy
the condition for I1;, and that may destroy tle condition for Oy, and so on. Therefore,
backtrackmg hecomes rather complicated for the nested induction.

Howewver, if the induction hypothesis of [Ty is not used in I, the backtrack can be made
stimpler by using a sort of projection function:

i) Let the declaration, I, to IIy be sufficiently large to satisfv the marking condition for
ITq, and et L and LD be as above;

2y I LL € L, the marking procedure on Ty is successful. Ocherwise, go to 3);

3) Enlarge L (not I) ta L' to satisfy the marking condition for IT, which is to say Mark{II;)
suceeeds,

The modified proof compilation algonthm will become a little complex if it is to handle the

marked proof tree obtained by the procedure 1) and 3) . The proof compiler will generate

the following program from the marked version of Il:
i 2igy 2z) For

where {1y, ---,ix} = I, and I is the term in which T, the code from the marked version of
I;, occurs, T is obtained as follows: Let 5 be the realizer code extracted from the marked
version of the subproof II;. S is the realizer codes of the conclusion of TI; of the positions
specified by L'(D L). Then, T e proj(L/L')(S5) which works as follows: First, evaluate a
value of S. Let (s, -, ;) be the value, and L' = {z;,--- iz} D {y7,,- -, 51} = L. Then
the value of prog(L/L'){(S) 15 (85, ,85,)

4.3 Proof theoretic characterization of critieal applications

This subsection gives a proof theoretic characterization of the situation in which the mark-
g condition does not hold. The results have no direct relation with the proof compilation
algorithm that generates redundancy-free programs. However, the characterization gives
a proof theoretic explanation of the phenomenon of marking of proaf trees. Also, it could

give a way of program analysis of recursive call programs at proof level.
4.3.1 Critical segments

{1} An example
Let Afx) e Jy. Bz, y) v C{x,y). Suppose that ¥z : nat. A{x) is proved by mathematical

induction, and the induction step proceads as follows:

(3. B(x = 1,4y} v Cle = 1,1)]

m
Alw) (3-E)

where Jy. B{x = 1,4}V C{x = 1,y) is the induction hypothesis, and IT is as follows:

[v] [¢]
[Bir =1y} [Clz=1,y)]

En E]
Bz - 1Ly)VC(x -1 Al) Alr) (V-E)

Alr)

If the declaration of Vo, A(x) is {0}, the marked proof tree 1s as {ollows:

{y. Ble -1, y)vCa-19)]}, T
J-E
{4(2)] (0)

21]

where TI' is as follows:

{l¥]}e {lulle
{[B(z - 1,y)]}s {IC(= - Ly)l}s
Sup Sn
{[B(z—1,y) v Clz -1}, (A=)} {4(z)} oy]
{A{IH {0} (v-E)

where Typ and T, are the marked versions of £y and ©,. By the definition of Mark,
I contains 0, and then, L contains 1. Therefore, the marking condition does not held:
L @ {0}. This indicates that the marking condition does not always hold when (V-E) and

{3-E) are used below the deduction sequence down from the induction hypotheses.

{2} Formal definition of critical segments

The reason for this phenomenon is that the realizer code of A v B consists not only of the
code of A and B but also of the code, le ft or vight. Therefore, the marking of A v B must

contain 0 when the formula is the major premise of a (V-E) application.
The following proof theoretic terminologies are needed to formalize critical segments.

Definition 16: Thread
A thread 15 a consecutive formula ocecurrences in a proof tree from a top-formula to the

end-formula,

Definition 17: Segment

The same formulas oceur as minor premises and conclusions in (V-E) and (3-E) rules.
Therefore, if there are successive applications of these rules in a proof tree, there are
consecutive occurrences of the same formula in a thread. This sequence is called a segment.
Any formula occurrence in a proof tree which is not a minor premise or a conclusion of

these rules is also regarded as forming a friviel segment.

Definition 18: Path
A path is the deduction sequence from o top-formula which is not discharged by (V-E) or
(3-E) applications to the end-formula or to a minor premise of an application of the (2-E)

rule. A path branches at an application of the (V-E) rule or the (3-E7} rule:

[A] [B] J [, Ale)]

g 5 s Tg oy

AvVB Cc C vy = Ai-v}C ¢ 3E
I i

In the (v-E) rule application above, a path from a top-formula in T branches at 4V B.
A brauch passes through an occurrence of 4 or B as the discharged hypotheses, and goes
down to the occurrence of C as the canclusion of the application. It is similar in the (3-E)
rule application: A path from a top-formula in %, branches at 3z, A(x), and a branch goes
to the oecurrence of ' through one of the occurrences of A(x) as the discharged hypotheses.

A path whose last clement is the end-formula of the proof tree is called a2 man path.
See [Prawitz 65] for the formal definitions of thread, segment and path.

Definition 19: Major promase witeched to a formula
The major premise of the application of (v-£) or (3-E) that is side-conmected with a

formula, A, in a segment is called the major premise atlached fo A.

Definition 20: Proper segment
The non-trivial segment in a marked proof tree, I, is called proper if every formula ocenr-

rence in the segment has non-nil mwarking,

Definition 21: Critical segments:
Let 1T be an induction step proof in a proof tree. A proper segment, o, in I is eritical if
there is a formula oceurrence, 4, in ¢ such that the major premise, B, attached to 4 1

a formula occurrence in one of the main paths in IT from an occurrcuce of the induction

hypothesis which also passes tlhorough o.

Definition 22: Indispensable marking numbers:

Assume an induction step procf, II. An indispensable marking number is a marking number
of a node in 1T which is obtamed as follows:

a} The node is along » main path in II from an occurrenee of the induction hypothesis;

b) The marking number is propagated from the marking number. 0. of an occurrence of a

v formula as the major premise of an (V-E) application.

If tlhere is a critical segment in an induction proof. there is a possibility that the marking
condition is not satisfied hecanse of the indispensable marking numbers of occurrences of
the induction hypothesis.

Indispensable marking numbers can be caleulated systematically in a restricted case as in

the following lemma.

Lemuna 2:

Let I be an induction step proof. Let S df {Ay, Aa, - A, be a cdtical segment in 11
and 7 be & main path in I from an occurrence of the induction lypothesis which passes
through § and a major prenise, F, attached to A, (for somen, 1 <n <m)in S, Assume
that ilicre is a subsequence, 7o = {By. Ba,-- -, B}, of @ such that:

a)B, =F

b} B; is a major premise attached to Ayy in S {1 2: 51 k(1) ==n)

¢) B; (i = 2) is discharged by the (3-E) or (V-E) application whose minor premise {or one

of whose minor premises) Is Ag—1)-

Then, the marking of F contains the marking numbers () (1 < j < I} defined as follows:
afi)

o, del .\
Pl E D i)

p=1

0 dp=1

(p) o { CYy+1 B, (=CVD)isamajor premise of (V-E} and By = [
1 otherwise

where I{ and aft) are as follows: Let mp = {Bapy, -+, Bugr)} 15 the subsequence of 7y

such that Bojy (1 <3 < K) is a major premise of an application of the (V-E7] rule.

Proof: Let the oceurrences of A; and A4, be as follows:

(4] (8]
Z 2

AvVE y _:1: 4; (V-E) {where 4, = A; = A;1;)
I,

Assume that 4V [? is an element of #;. As S is a proper segment, the marking of AV B
contains ().

Case 1: Asswme that an element, 4¢ (F 2 ¢ +1), in S is a minor premise of an application
of the (3-E) rule and Fy in 7y 1s a major premise attached to A;. Assume also that Fj is
immediately before AV B in . that is, AV I is discharged by the application of {3-E).

Then, the warking munber, 0, of 4 v & becomes 1 in the marking of Fy:

[4] [B]
1 Sy
{[Av Bl {41 {&h
{dig1}r
{Fo}yum
{Ae}s (3-E)

{Arpi)y

Case 2: Assume that an element, 4, (& = ¢ + 1), in § is a left minor premise of an
(V-E) application and Fy i 7y is & major premise attached to Ag. Assume also that £y s

immediately before 4V B n 7. Then, the marking number, 0, of AV B become 1 in the

marking of F.

1] [B]
{{AV B]} oy, {4 {4k
{diz b
{F}toyon I
{4} (V-E)

Case 3: Assume that an element, 4 (k> 7+ 1), 1n 5 15 a nght minor premise of a (V-£)
application and Fu(= C' Vv D) in 7 is & major premise attached to Az Assume also that
I ois immediately before AV B in #. Then. the marking number, 0, of 4V H becomes
)+ 1 in the marking of Fs.

f4] B
AV B opore (A1 (AL
{A."J.’.: b
182 Huey+1)om,s Ir (4]

(V-E)

{Arer }s
The lemma follows by continuing the discussion in a sinular way. g
Example 5: There are many other cases of indispensable marking numbers. Assume the

following induction step proof where F = Jz. A ({(BvC)v D), [H 1s an ocourrence of the

induction hypothesis and T # ¢.

(8]
S T D]
(rH] {AAUBVCIVDIa oy BV Cle A4k 4] 0 5y
5 BvOWVDl P 07 Y gy
(Fiv S {_{A_}}_;_ — (3E)
A} ‘
II

AsDe N 1éeLund HA)+ 1€ M. Hence, {(A)+2e N, 0,1, I{A)+ 1, and {4} + 2 arve
mdispensable marking munbers of BV C,(Bv CYv D, Aa({Bv) v D}, and F.

4.3.2 Critical (3-F) application

(1) An example
Assuwine that Ve dy.d:. Alx, v, 2) is proved in mathematical induction. and the declaration,
{0} is given to the conclusion. Also assume that the induction step part of the marked
proof tree is as follows:

3y 324z =1y)]}, H

3-E
{Fy. 3= Az, v, 2)} 0} =

where 11 15 as follows:

(o]} oy {[ul}all=the
(e {4 =L))o

Yy 5 i
_{'l"n'.:}ll-'l]' {H:"‘il:w‘sﬁ-“z}}'-" {.:-l'IJ
{(Bz.A(x — 1y, 2)]},e I 3zdlew,2))
A=Al — Ly, 2)l e (3-F)

{Fy.Fz. 47, 1,2) o)

— 04 —

Note that both of the assumptions of the (3 E) rules (eigenvariables), y and z, ave used to
construct s, ., so that 0 € K and {0,1} € L. Therefore, the marking condition does not

hold: L € {0}.
(2) Definition of critical (J-£) applications

Definition 23: Critical (3-F) applcations

If a ¥ formula A = ¥a. B(z) is proved in induction and A contains an 3 formula C'(z).
Assume that there is a main path from an occurrence of the induction hypothesis in which -
C{z — 1) occurs as the major premise of an (3-E) application and that there is au eigen-
variable of the application whose marking is {0). Let k be the position mumber of the
principal sign, 3, of C(x) in A. Then, if k is not contained in the declaration to A, th:

(3-E) application is said to be critical.
Note that, in the cxample (1), one of the (3-E) applications is critical.
4.3.3 Other critical applications

The notion of critical segments and critical (3-F) applications can only capluze the situation
of the marking along a main path from an oceurrence of the induction iy pothesis. However,
there may be a path from an occurrence of the induction hypothesis whicli 1s uot « main

path. For example, assumue a marked induction step proof is as follows:

(G - D} &
{.E]Tm'wh B8l 5p) (T44)
II
{Al2)}s

AN
fa1

The marking of B as a minor premise of the application of (2-E) is always TRV, so that
I is always the same value whenever J is not nil marking, Therefore, I must be made

sufficiently large to satisfy, K C [.

5. Madifed Proof Complation Algontlun

The proof compilation should be modified to handle marked proof trees. The chief modi-
fieation is:

1) If the given formula, A. is marked by {10, - .74}, extract the code for theyth (0 <1< k)
realizing vanable in Re{A4).

2y If the formula. 4; is marked by ¢, no code should he extracted and there is no need to

analyvze the subtree determined by A,
The following is the definition of the modified version of the Ext procedure, N Ext. ||

denotes the number of elements in 1.

(1} Nil marking:

NEut ({AH}J"{B} {Arka, (Rule }) def {1 where I =6

In the following, [is assumed to be non-nil.

(2} Assump tic}ns*

NExt({A}r) E proj(I)(Ru(4))

(3) A and v formulas:
Eﬂ El

b3
bl
o NExt | L2 AS) gy el gy (—‘—-) where i = 0,1,

{Ails {Aan i}y

. NEx iA}] " (ELJE ?'»'Eu({\.‘}) ﬂru[&]) H0el
N Ext [Av J (v Do | = i (WLI!(H})A,:”ym) s

E ral 3

- {A[ﬁ}g} D, et {rrr.rht anyik], N Ext ({B}) ifoerl
i an T 1

(ol NEet (=) ol

where b =| T | =(I4+ |J [Jand!=|T|=].J]

{4) The code from (V-£') rule:

{{4l}s B}

E" i) x
N Ezt i‘qVB}Jn {f’l}f {(:}f {V'.EJ
{Cls
12 a5 follows:
a) 1f beval{ A) then N Ext ({‘:’jl’f) else N Eat ({"f’};) 'modified Vv code]

when both A and B are equations or inequations of terms

Note that, in this case, J, = J3 = @

b) if left = proj(0) (?‘-En ({4‘:3}.!0)) then NErt ({C})Ei' clse N Ext ({EL) 8

— 0§ —

otherwise

here 8 pmj{JtJ{Rv(ﬂﬂfﬁsaqﬂ,IJ1I}(ﬁ"E-ﬂ{En!{AvB}JnII},}
WRELE T = proj(Jo Y Ru(B))/tseq(| ;] + 1) (NExt (So/{4AV B} 1))

(5) The codes from the (2-I) and {¥-I) rules:

;.T. H fJ']
-

i

A {A{2)}; ol e (x)
« NEut oo .f-l_l,'_n:}},wf’l = Az, NExt A

{4t
« NE! %}T}-{j_]} def o Ru{4). NExt ({_E‘E};)

(G} The codes {from the proofs in (O-F) and (V-£}):

Eu T:1

oo | Y TS BIL, | e, () (v (2
o« NVEurt (B, (>-E) | = NExt {AQB}J(\EJ(H}ML_D

nt w
=] s

. é_fh r.l'}m:, {"E‘f.‘t' LT _"a[:i‘:}}; elef v (*) r
o NEri T (V-E) | '= NEut o Al ()

{71 The codes from the (J-f} and (3-£) rles:

=0 Ly i £y T o—
{t:o}s {Alt)}n def (LﬁE”({A{fj};.;)) i = {0}

e NEut (an |4 d
{HE!ZI'_'-". _‘1{.'1'}}}' N (-1) ST =
NErt Aix fJ =0
{lr:olbn {[AM]) 2
I R RN
e REL Y {Cli 2p) |« -"-;"E,H(E_')E
e @, Rl I (&7

el

hese g { proj(LY Re(A(x)))/tseq(1) (N Bxt (So/{3r : 0. A{-ﬂ}.x}}.} foer

rfprof(0){(NExrt (Eo/{3x 1 0. Alz)})

and # = {prr:-j LHRv{ A NN Evt(Ep/{Dr o Alz)})} {0 € J.

(8} The code extracted from a proof in { L-E) rule:

o NVEaxt -(L-E) Ll anglk] where k = |I|

,_{':||—| t1

(#) The code extracted from (= -E) rule:

:’L_:ﬂ- }_ﬁ]

. N fe=wle {4] det o _(_E,)
et AN, B T NE o

(10} The realizer code extracted from the proof by mathematical indnetion:

{lz: nat]} i {[w > U]} {[Alz = 1)]}

: {A(0}}, {A(a }r .
s N Ext - - Ve di2))s —{(nat-ind)

T A if o =0 then NExt [Eo/{A(0)};) else NExt (Z,/{A(x)))e
where .J C I and Z 15 a sequence of fresh variables of length |11 and

o {proj(I(Rue(Alx — 1))/ S pred 2 1)}

6. Some properties of Aork and NV Exf

8.1 Normalizatien of marked proof trees

Let R be one of the logical connectives and quantifiers: 3, A, v, ¥, and 3. An application of

(R-T) succeeded by an application of (R-E} is called an R-cut. Cuts can be eliminaiced by the

R-reduction rules as defined in [Prawitz 63] and the rules are used in proof normalization.

The rules will be denoted redg in the following.

Cuts can also be defined on marked proof trees; a part of a marked proof tree is called an

R-cut if it is an R-cut when all the markings of the noedes are removed. The R-reduction

rules on marked proof trees, which will be referved to as Redy; in the following, are defined

as follows:

- 2B —

Definition 24: R-reduction rules on marked proof trees

s Red-:
{[A]} s
g Sn
%{3_1—] {A—?H_ {[-gl}.r
A D B}y A}rav 0
(51 B = Ty
o e,
R 5
{4l {Bls Ly {Ale {Bh _ 3
ff“lf‘B}Jm E)ﬁ{ﬁ D= {AﬁB}HnAJm_E] W=
{4} {B}r '
» fed,:
o o {[4]} 5 {[Bl}
AR -1yl A) E = Too
: _{-.J E:l 1 2
{4V B}y {Ch_ {Ch .,y . Al
{C}i (V-E) = T
{C}:
Lo {[Al}r, {[Bl}s
{Bli-(iga)=1) bR ir L0y
{AV B}x (}{G}r (€} (V-E) —=» {[J?;]juh
{Ch
o [lecly:
{l=]}n
_ 5
T {A(z)}s Zoo
R L2y gy
{t}oy {¥r.Alx)}y _ {1t} s
A0 VB = 5)
{A(t)}
e [ledy
So P {[m]}!{{[ﬂfﬂ‘}]}L
{1} {-’4“]}&:[;‘_” L, oy Zn
[Alx)} e {Cli = _ {[tn {l4000}e
T, FE = e
[C)r

The meaning of {Z,,/{[4]} 7/Ze/{B};) in the definition of Reds is as follows: Let 4,,---,
A, be the oceurrences of A as hvpothesis in (Zy/{B};) and Jy,---, J be the marking of
themn such that J, U .- .Jg = J. Then, (Zy1/{[4]} 1/ Zo/{B}1) is obtained by replacing

the node 4; in (Zo/{L}r) by Mark(Z,/{A};) (1 €1 < k). The meaning of the tree
obtained by Redy, Redy, and Red3 are defined similarly.

R-reduction of proof trees and the marking procedure commute in the following sense:

Theorem 2: Normalization and Mark

Let TI be a proof and I be a declaration to I, and let Mark{I, 1) be the tree obtained
by the marking procedure applied ou Il with the declaration I. Assume that the last two
applications of rules in 11 form an R-cut, Then, if both Mark(1,11) and Mark(I,redgr(I1))
succeed, Redp(Mavk(I,I1)) = Mark(I, redgr(Il)), where It is 2, A VY, or 3

Proof: Straightforwardy

Note that Mark fails when the proof contains induction proofs and the marking condition
15 not satisfied. Also, cven if the marking of a normalized proof satisfies the marking
conclition, the condition is not always satisfied for the original proof. For example, assume

the following is a marked version of an induction step proof, I, with marking I

{[z]}e
{[v)}0 {E:}}
Y *4{.3 J
(o (et
{A(tyj};
{Fv. Bz, u)}s

{B¥-Bla — 1.y)]}u

(3-E)

where J # ¢ and 0 € I. Then, 0t € K, so that the application of (3-E) is critical and
the marking condition is not satisfied. However, if redy is applied to I1 and the marking

procedure is performed with the marking I, the tree is as follows:

{[u]}e
Talbe
T {2 /t,)
{(3y. Bz = 1,90} s I, _
Gv. Ble,9)ls (FE)

In this case, 0 ¢ £, 50 that the marking condition may be satisfied.

6.2 NEzt procedure and projection

Lemma 3: Let the marked proof trees of (3-I), (V-E), and (3-F) applications and an
induction step proof be asz follows:
1'[.;. HJ

{[4]}s {4}, A[Bl}n

L ED El EE

(BL 5 AVBlx {Ch _ACh (g

{AD B}, {Ch
nz HJ
{Iz]} o {[A(=)]}as [[A(z —)i} s
T bl T o
{3z A(z) i {C}s] {A(0)} s {A(x)};
il (2-E) W A1

where {[A]}s in Ty, for example, means that J is the union of the marking of all the
occurrences of A as the discharged liypothesis. Then,

(1) For Iy, if an element, z, of Rv(A} occurs free i NEzt(S/{B}), then = 15 an element
of proj(J)(Rv(A));

(2} For Iy, if an element, z, of Ru(A) (or Ru(D)) occurs free in NEzt(Z,/{C}1) (or
NEzt(D:/{C};)), then = is an element of proj(Jy)(Rv(A4)) (or proj{J2)(Rv(B)));

(3) For Iy, if an element, z, of Ru(A(x)) oceurs free in NEzt(Z,/{C}1). then = is an
element of proj{ M) Rv(A(x)));

(4) For Iy, if an element, z, of Rv(A(x — 1)) occurs free in NEzt(Z/{A(z)};), then = is
an element of proj{(J){(Ruv(Alx = 1)}).

Sketch of the proof: Tt 15 sufficient to prove the following somewhat stronger statement:

Let a marked proof tree, T1, be as follows, and let A be an arbitrary formula which is used

in 1T as a hypothesis and which is not discharged at any application of the rule in I1.

{A} Jy {A,}J;,-
5, B
{A}e, {4)e,
{Bli (F)

J: is the union of the markings of ali the occurrences of A as a hypothesis in 1. Let
J Jyue- U Then,

a) all the variables in proj(J)(Ru(A)) oceur free in NExt{1l);

b)if z € Ru(A) and z occurs free in N Ext(II}, then : is an element of proj(J)(1tv{A)).

The proof is continued in induction on the construction of M. If Ris (A-T), (A-E). (V-T),
(3-1), (2-£), (¥-1), (¥-E), o (3-I), the proof is straightforward from the definition of
N Ext. Assume thot B is (V-F) and that I is as follows:

{iPits, A[Ql} s
% 2 5
PVl {ch €l .
ich (V-E)

- 31 —

By the induction hypothesis, NExi(Z,/{C}r) (or NExt{E:/{C}1}) contains all the vari-
ables in proj(Jy W Rv(P)) (or proj{Jy) fiv(Q))). Therefore, by the definition of N Ext, the

whole of tseq{1)(NExt(Zo/{P Vv Q}k)) occur in NExt(E,/{C}r)}¥ and

NExrt{Z:/{C})0 in N Ext(T1) where 8 is the substitution. Also, # does not instantiate any
element of Mv{A4). Also, proj(0)(NExt(Za/{P V @})} 15 used in the decision procedure
of NExt{ll}. Then the proof of this case will be finished immediately. Other cases are

simllar, g

The following theorem shows that Mark and NExt can be seen as an extension of the

projection function on the extracted codes.

Theorem 3: NErt procedure and projection

Let 4 be a formula and [T be its proof. Also, let T be a declaration to Il and Mark{I,II) be
as in theorem 2. Then, if Mark{I, I} succeeds, that is, if the marking condition is satisfied

for any induction step proof contained in II,

NExst{Mark(I,11)) = prof(1) Ezt(11}) holds.
Proof: By induction on the construction of the proof tree. Assuine
NExt{Mark(L,I1,)) = proj(L) Ext{I;)) (i=1,- k)

in the following proof tree

7 4 II, - - Hk[R]

where [} is the marking of II;. In the following, the marked version of ¥ is also denoted ¥

for simplieity.

2, A(2)]
P =,
1) Casel= 22zl € (3p

C"
NEzt(Mark{I,I1}}) = NExt

(Mark (Sp/{3r.A(2)}) Mark [ELE{C'};]H_E])
(],

= NExt {(Mark(X,/{C}))6

where

g det | pr o LW Ro(A{z))) ftseq 1N Ext {(Mark (] .3,."{31 Al w1, Gf0e k)
afprof(0V(NExt (Mark(Sy/{3c.Al2)} i)

8 (proj(L) Ru(A(x)N Ext (Mark (S0 /{30 A0} (if 0 I)

where L i1s the union of the markings of all the occmrrence of 4{x) as hypothesis. On the

other hand, by the induction hypothesis,

NEzt(Mark(Zg/{3z. Alx)}) = prop K Ext(Sg/de.Afx))) and W = L+ 1 (if 0 & Iv)

or {0} U {L+1). Therefore,

proj(LY Rv(A(=)))/proj (L) (tseq(1) (Ext (T /32 A(z)))), y)
- { z/prog{0}(E'Lfl':u:,’rar A(z))) } {if D& I}

a2 —

6 = {proj(L)(Ru(A(x)))fproi(L) (tseq(1) (Ext (So/3z.A(z))} (if 0 K)

Then, by lemia 3,

= NEazt(Mark(Z:/{C} 1))} &

where 6; = {Rv(A(z))/tseq(1)(Ext(Lo/3x.A(2))), 2/proj(0) (Ext (To/Fz.Alx)))}
Then, by the induction hypothesis,

= (proj(I){Bxt (,/C))) 8 = proj(I) ((Ext (S,/C))61) = prog(I) Ext{I1)}

EN|

2} Case Il =
case 0 e It

Ry HI:"J-I}Q:

{AV B}

= (left, N Ext (Mark (Ef{f*}u—:n{e[m})} any[k])

where k = |I| = (14 (L = 1}{< I{{A))]).

Then, by the induction hypothesis,

= (left, proj((I = 1)(< l{A))) (Ext(Z/A)) canylk})

= proj({0YU((T = L){< AN+ uT(=1{4)}) Heft, Ext (L/A), any[l{B)])
= proy(I)(Ext{I))

Mark (S/{A}er-
.J"v'Emﬂ{.ﬁd’m-k{I,ll]}:s\'E.rr(ark (B/ {4}y ”“”””]{v-fju>

case 0¢ I

Mark (Z/{Ar=1<tian
'l o rﬂ}fm:-:{) JW_I}“)
= (NExt (Mark (%/{A}i-n<ran)) »anyll])

where | = |I] = (7T = 1)(< I{A}}].

Then, by the induction hypothesis,

— (proj((I - 1)(< 1(4))) (Ext(Z/A)) ,any[1])

— prof(((1 = 1)(< AN+ 1YU I 1(A)) (left, Ext (T/A), anyl{ BY])
= proj(I)(Ext(11))

N Ext(Mark(I,11)) = N Eat (

Al [
Eu S] :-g
3) Case I1 = AV E CC C {(v-E}:
NEzt{Mark(I, 1)}
_ NE (_."l..irnrf.‘{zu.r’l{fi v DY) .-Ua‘;{-iil[}zlf{ﬂ’}ﬂ ﬁfﬂ?'k{ggf{ﬁ'};}{V_Ej)
By

=if left — proj(0) (N Ext (Mark (Zo/{AV Bin)))
thenw NExt (Mark (T /{C}1)) 8 else NExt (Mar (S {C 8

where
def proj((o A))/tseq(L, | T) (N Ext (Mark (Sg/{A Vv B}ih,
proj(Jo J(Ru(B))/tseql|Jy| + 1) (N Ext (Mark (Cp/{AV Bl
where J, and Jo are the unions of the markings of all the oceurrences of A and B as hy-

potheses. On the other hand, by the induction hypothesis, N Eat{ Mark{Zy/{AV EB}i)) =

- 33 -

proj (W) Ext(So/A v B)), and K = {0} U{J1 + 1)U {Jz + 1+ [[A4)}). Therefore,
{ proj(Ji)(Re(A))/proj(Ji)(ttseq(1,{(A)) (Ext (Lo /A V B))), }
prej(J2)(Ru(B))/proj{Jz){tseq(i(A) + 1) (Ext(Lo/A V B}))
Then, by lemma 3,
=1f left = proj(0) (NEzt (Mark (Xo/{AV B} g)))
then NExt(Mark (Z,/{C}1)) 6 else NExt (Mark(Z:/{C}1)) &
where
g. fef { Ru(A)/ttseq(1,{A)) (Ext(Zo/4 v B)), }
! Ru(B)/tseq(i{A) + 1) (Ext (Eq/AV B))
Then, by the induction hypothesis,
=if left = proj(0){proj(K} {Ext(Z¢/A v B)))
then (proj(I)(Ext(5,/C))) 6 else (proj(I){Ezt(Z:/C))) 6
AsD & K,
=1f left = proj(0) (Ext (Zy/A v B))
then proj(I)(Ext(Z,/C) 6, Yelse proj(I)(Ext (T,/C)6)
= proj(I)(Ext(II))

In the case of modified Vv code, left = proj(0)--- part of the ¢ f-then-else construct is

changed to 4, and the prool is similar.

[x >0, A(x — 1)]

Zy)]
A Al
4) Case IT = (0) v ﬁjEﬂ (nat-ind):

{Am}};) Mark ({A{f}}._r_)
{vr.A(2))7

L)
= pZ.hraf v =0 then NExt (J‘lffﬂr.ﬁ' (=")) else N Ext (U’Hl ()) A
{4(0)] B

where § %' {proj{)(Re{Alx = 1))1/Z(x — 1)} and T is a sequence of new variables of length
7], By lemma 3, (NExt(Mark((Z,/{A(2)})08 = (NExt(Mark{(Z;/{A(x]}1))))8

where §; {Rv(A(x - 1}];’?‘{:;* - 1)} and = is a sequence of new variables of length

Mark (
NEct{Mark(I,T1}) = N Ext (nat-ind)

I{ A(z)) such that proj(I)(z) = % Then, by the induction hypothesis,

= pZAvaf v =0 then proj(I) (Ext (Zo/4(0))) else prof() i Eat (I /A{+])) 6

= pI o prog(I) (Ao, o f « =0 then Ext(Zg/A(0)) else Ext (Z,/4(x)) 6,)

= uz. ;','irvj[f}{Pl

where P = Az, if v =0 then Ext(TpfA(0)) else Ext(Z)/A(x))#. Assume that P is
expanded to (My,---, Mu-1) (n = [-i{ﬂ:l:l = [A xz))). Then,

ui P = { fo, - fa=t)

where f; = pz;.N;, T = (2., 2p-1) and N; is obtained from M; by substituting other

fis to free occurrences of 235 (7 # 1) as explained in 21, Let f = {4;.---,in}, then

-4

uz. prof(IP) = pz{ M-, M,).

Note that by lemma 3, any variable, z, such that = € = and @ ¢ 7 does not occur in
M; (1 £p < m). Therefore, fi (k € I) does not occur in f;, {1 < p < m). Henee,
WEAM;,, - M) = (s oo fin) = proj(I)(pE'. Py = proj(I){Ext(11))

7) Other cascs are similar or easy. §

7. Example

Here, the example of a prime number checker program is investigated.

7.1 Extraction of a Prime Number Checker Program by Ewt

The specification of the program which takes any natural number as input and returns the
boolean value, T, when the given number is prime, otherwise returns F is as follows:

Specification

Ypinat. (p>2D2 3b:lbool. ((Vd:nat. (1<d<pD-(d|p)hnrb=T)
Vv(3d:nat. (1< d<pn(d|p))Ab=F}))

where (2 |) A

This specification can be proved by using the following lermma:
Lemma: ¥p: nat. ¥z :nat. (2 222 A(p,)}
where

Alp, z) 4 35+ bool. (Py(p,z. 00V Pi(p, 2, b))

Fyl(p, 2, b) Yod . nat. (Led<:Dd|p)Ab=T

Pip,zb) S 3d nat. 1 <d<zn(dlp))hb=F

Proof of specification

[p: nai]
Z - (Lemma)
[in_u : uut] 1'i‘rjl cnat, ¥z o ﬂﬁf. (z = 29 ."HP, :}} -—-{'ﬁ' EJ
. Yz :nat (z > 25 A(p.z)) -
[p : nat] nat. (z =23 A(p. <)) (V-E)

p=20 Alpp)
Yp:natip > 2D Alp.pl)

(v-7)

The proof of the lemma, which will be denoted Ilj., in the following, is given in the

Appendix, and the program extracted by Exf is as follows:

;‘Jr.";l’.l’rr.‘! d:[}np. Eif(nr,ﬁn)“}]“}}

ERI!':HLL'H:I

Jauf
= Ap. pul(zg,21,22,23)-

Az.if z=10
then any(4]
glag if z =1
then anyl4]
else if 1 =2
then (T,left, any[2])
else if proj(0)((z), 20,2232 — 1)) = lef?
then if proj(0) Exi(prop)(p)(z — 1)) = l=ft
then (T, left, any(2])
else (Fyright,z — 1, tseq(1} Ext(proplip)(z — 1))
else (Firight,z2(z — 1), z3(z — 1))

Ext{prop) 15 a function which takes natural numbers, m and n, as input and returns
(right,d) if m can be divided by n (m = d-n) and (left, any[l]) otherwise.

Ext(lpen) 15 & multi-valued recursive call funetion which calculates a sequence of terms of
length four. The boolean value which denotes whether the given number is prime is the

Ml element of the sequence.

7.2 Program Extraction by Declaration, Marking and N Ext

{1} Declaration

The realizing variables of the specfication are sequence of variables of length four:

(W, wy, s, wa). wy,w, wyand wy are the variable for 3 svinbol on b - bool, the variable for
V symbol which connects Fy and Py, the variable for 3 symbo!l on o : nat. and the variable
for 3 symbol in (d | p) respectively.

As the only information needed here is the value of b, wy should be specified, that is, the

declaration is {0}.

{2) Marking and Backtracking

It turns out that the marked proof tree, which is obtained with the declaration {0} and
Mark, does not satisfv the marking condition. The main part of the proof of the lemma
1s performed in mathematical induction. The marking of the conclusion of the induction
proof is {0}, and the marking of an occurrence of the induction hypothesis (actually the
induction hypothesis ocours only once in the proof) s {1H& {0}). Therefore, Mark fails,
Then, the declaration 15 enlarged to {0,1} and the marking procedure is performed agam.
The marking of the oceurrence of the induction hypothesisis {1} Uus tine, and the marking

condition is satisfied. Then, N Ext is veady to extract the program.

(3} Program Extraction by NEat
The NExt procedure extracts the following program from the marked proof tree obtained

in (2).

priﬂrnsr = Ap. NEct{Mark{O ..))(p)p)

NExt(Mark(p.n))
= Ap. plza, 21).
pES if z=10

then any(2]
else 1f 2 =1
then any(2]
else if 2 =12
then (T,left)
elae if s1{z — 1y =left e ()
then i1 proj(0)(Ext(prop)(p)(z — 1)) = left
then (T,left)
else (F,right)
else (Foright)

Comparing the above code with Ex#{Il..), the reason why the declaration should be {0,1}
(not {0}) is as follows: To calculate the boolean value which indicates whether the mnput
natural number is prime, information as to whether the input can be divided by a natural
numher less than the input is necessary, That information is given as the 1st code, left or
right, of the termi sequence caleulated by the main loop of the multi-valued recursive call
funetion,

Note that only the lst element of the sequence is calculsted at the recursive call step (see

{+) part). This is what the marking of the induction hypotliesis, {1}. means.

(4) Alternative Extraction

The extracted program will be more efficient if the whole proof is normalized. In fact, redy
can be applied to the proof of the specification. If the declaration 1s {1}, a program which
veturns the constants. lefi and right, instead of boolean values is cxtracted. The same
program can also be extracted by changing the specification to the following and give the

declaration, {0}.

Wp:not, (p> 22 ((Wd:nal (1< d<pD-{d]|ph))V(3d:naf {1< d<pnald|p)hh)

7.3 Proof Tree Analysis

By using the proof theoretic characterization of eritical applications explained in 4.3, the
reason why the declaration should he enlarged to {0,1} in the previous subsection can he

explained in terms of the structure of the marked proof tree.

—_3

7.3.1 Mam Paths from Induction Hvpothesis

The main part of the proof of the lemma is performed in mathematical induction, and
Figure 1 is the skeleton of the proof tree of the induction step. This is a part of the
proof tree which is a collection of the formula occurrences along the main paths from an
occurrence of the induction hypothesis which actually oceurs only once ‘n the proof. The
formula occurrences i Figure 1 with the index number, (1), (2), - - -, can be found in the
proof tree n Appendix with the same index numbers. The discharged hypotheses of some
of (2-T) and (V-E) applications are not shown in the figure because they are not along the
main paths.

Formulas A to F are in the following form:

A(z)=2z222 A(p,z) == 2 B(z)

B(z) = 3b.Py(p, 2,5}V Py(p.=,b) = 3b.C(=, b)

Cl(z,B) = Polp,z, B}V Py(p,z, B) = Dy(z, B) v Dy{z, B)

Dolz,B) = (Vd{1 <d <z D ~(d]p)) A B=T) = Eg(z) A=
Diz,B)=(Gd(l1<d<z:A{dpAB=F)=E/{z)A%

Eo(z) =vd(1 < d <z D ={dp)) = Vd.Fy(z)

Ei(z) = 3d(1 < d <z A(dp)) = 3d Fy()

Foz)=l<d<z(dpl=*2 G,

Fi(s)=1<d <z A(dp) = Gi(z) A G,

Go=~{dlp) Gi{z)=1<d<z Gy={(dp)

where + is the abbreviation of some particular formula. C(z,b), Dy(z,b), and D, (z,b) are
abbreviated to C(z), Dp(z), and D {z).

There are three main paths from the occurrence of the induction hypothesis, 4(x - 1):

So (1), (2).(3),(4),(5), (6),(7), (8),(9), (10). (11), (12), (13}, (14), (15), (16), (17),
(18),(19)

$1 1 (1),(2),(3), (20}, (21). (22). (23). (24), (25), (26), (27), (28}, (29), (30}, (15), (16), (17),
(18),(19)

and S3 %' (1),(2),(3), (20).(21),(31), (32), (25). (26), (27), (28), (29), (30), (15), {16),
(17),{18},{19}.

There are five non-trivial segments along Sy, 5; and Ss:

(8) (7),(8) (b) (13).(14),(15),(16),(17) (c) (30), (15),(16), (17) (d) (18), (19) (e) (26), (27).
Segments (b} and (¢} will be critical after the marking.

7.3.2 Imtial Marking

The marked proof tree initiated by the declaration, {0}, is given in Figure 2.

After the marking, the non-trivial segments. (h) and (¢), become proper segments. Also,
because the major premises of the (3-E) and (v-E) applications, (2) and (3), are along the
main paths, 51, 5§, and S3, (b) and (c) are aritical segments. The indispensable marking

number of the oceurrence of B(x — 1) is 1, so that the marking of the induction hypothesis

comtains 1 which is not contained in the declaration, {0}.

7.3.3 Re-marking

The werking of the induction hypothesis is {1} (€ {0}), so that the declaration is enlarged
to {0.1}. Perform the marking again to obtain the marked proof tree is given in Figure 3.
In the marked proof tree of Figure 3, the marking number, 1 .of the formula occurrence

indexed hy (3) is the indispensable marking number, but it is contained in the declaration.

8. Couclusion

A method to extract redundancy-free realizer codes from constructive proofs was presented
in this paper. The method allows fine grained specification of redundancy, and most of
the analvsis of redundaney is performed automatically. The set notation in the Nuprl and
ITT by Gideborg group and ¢-bounded formulas in PX are also the notations to specity
the redimdancy. For example, by transforming a specification, Va.Jy 3z. 3w A(z, y, 2, w),
to W3y 3203w Al x, v, 2,1), a function that ealeulates the values of y and = can be ex-
racted iu PX. However, a new proof must be given when the specification is changed.
Also, il function that calenlates only the values of y and w are needed, {-notation cannot
Landle it. The set notation is similar in this respect. On the other hand. one should just
declare {0, 2} to the specification in the method presented in the paper.

Panlin-Mohring's version of the Caleulus of Constructions alse allows fine grained specifi-
ration of redundancy. Her idea is to make a copy of the caleulus willl the constant Prop
replaced Iy a new constant Spee, and the theorems and proofs mre described in a mixture
of the vriginal caleulus and the eopy of it. The program extraction is performed only on the
copy of the caleulus, Our method uses a systein of notations called declaration and mwarking
instead of o copy of the original formal systewn. The basic idea is to perform the program
analvsis of redundancy at proof level, aud the metalogical system of notations is sufficient
for the analysis. The aualysis of redundancy is performed by the marking procedure which
inay fail if the marking condition is not satisfied. However, the marking condition can be
satisfied by implementing the backtracking mechanism given in Section 4.

The proof theoretic characterization of the marking condition given in Section 4 is not sal-
isfuctory. To give an equivalent condition to the marking condition in the proof theoretic

notions would be an interesting research theme iu the future,

REFERENCES

[Bates T9] Bates, J.1., “4 logic for correct program development”, Ph.D. Thesis, Cornell
University, 1979
[Beeson 85] Beeson, M., “Foundation of Constructive Mathematics” | Springer, 1085

[Constable 86] Constable, R.L., “Implementing Mathematics with the Nuprl Proof Devel-
opment System” | Prentice-Hall, 1986

[Coquand 88] Coquand, T. and Huet, G., “The Caleulus of Constructions”, Information
and Computation 76, 1988

[Goad 80] Goad, C.A., “Computational Uses of the Mantpulation of Formal Proofs”, Ph.D.
Thesis, Stanford University, 1980

[Hayashi 88] Hayashi, 5. and Nakano, H., "PX - A programming logic”, The MIT Press,
1988

{Howard 80] Howard, W. A., “The Formulae-as-types Notion of Construction”, in ‘Essays
on Combinatory Logic, Lambda Caleulus and Formalism', Eds J. P. Seldin and J. R.

Hindley, Academic Press, 1980

[Nordstrom 83] Nordstrom, B, and Petersson, I, “Types and specifications”, Information
Pracessing 85, North-Holland, 1983

[Paulin-Mohring £9] Paulin-Mohring, C., “Extracting F*'s Programs from Proofs in the
Calculus of Constructions”, Conference Record of the 16th Annual ACM Symposium
on Prineiples of Programming Languages, 1989

[Prawitz 63| Prawitz, D., “Natural Deduction”, Almqvist & Wiksell, 1965

[Sasala 80] Sasaki, J., “ Extracting Efficient Code From Constructive Proofs”, PL.D. Thesis,
Cornell University, 1936

[Sato B3| Sato, M., “Typed Logical Caleulus”, Technical Report 85-13. Departiment of In-
formation Science, Faculty of Seience, University of Tokvo, 1985

[Sato 86] Sato, M., “QJ: A Constructive Logical System with Types”, France-Japan Arti-
ficial Intelligence and Computer Science Symposium 86, Tolkyo, 1986

[Takayaa 87] Takayama, Y., “Writing Programs as (QJ-Proofs and Compiling into PRO-
LOG Programs”, Proceedings of {th Symposium on Logic Programming, 1987

[Takayama §8] Takayama, Y., “QPC: (}J-Based Proof Compiler - Simple Examples and
Analysis =", Proceedings of #nd European Symposium on Programming, LNCS 300,
1958

[Troelstra 73] Troelstra, A. 5., "M athematical investigations of infuitionistic arithmelic and

anelysis”, Springer Lecture Notes in Mathematics, Vol. 344, 1973

[Do(z — 1))

{A-E)
Eq(= = 1)
(V-E)
Fy(z - 1) (Fy(z = 1]
——(2-E) —NE)
G Gyz — 1) [Fy(z—1))BD
(V-£) (*) (A)
Gy Gi(z)® G&Y
(2>-1) (AT}
Fy(2)1 [Dy(z - 2)]F0 Fy ()3
(-1 (A-E) (3-1)
Eq(2)09 Ey(z - 1) Ey(=))
{A-T) ~(3-E)
U..;,(z,T}“” E:(E’];E?]
(v-T)o — (A1)
T : bool C{z, TH12 Dy(z, F)28)
(3-1) —_—{v-I)
H[z}“'t] F o hool C(z, F}[Eu}
(V-E) (3-1)
[4(z — 1)) [C(=z—1)]® B(z)t¥ B(z){20
(>-E) (v-E)
Bz — 1) B(=)1®
(3-E)
B(z)18)
(V-E)
B(z)(1
(>-1N
.ﬂi(z][“"‘
(v-E)
Al z)19)
Figure 1

[Dolz = 1)]s

——(\E)
Enlz—1)s
—A(¥-E)
Folz = 1)4 [Fi(z=1)g
——reee{ D-E') (AL
G Gilz=1)s [Fi(z — 1))
(V-E) {*) (n-E)
Goga Gh(z)e Gag
———(2-I) (A-T)
Fo(z)g [Di(z = 1)} Fi{z)e
(-1} (A-E) ———(3)
Eqy(z)e Eiffz =1}y Ei{z)e
{n-T1) (3-E)
Do(z,T)s Ei(z)g
——(v-D)o —
T '!"'?G-"{n} S{Z‘T}d’ hiz, F),
(3-1] (V-1
B(z}0y F' i bool gy Clz, F),
{(Wv-E} {34-I'}
[Alz = D]y [Clz = Loy Bl(2)q0) B(z){o)
(>-E) (V-E)
Blz—1)1 B{z)y0)
(3-5)
B{z)q0)
(V-E)
Biz)qe)
(D-1)
Az)0y
—{(V-E)
Alz)0y
Figure 2

[Do(z = 1}]g

{(A-E)
Eolz— 1)y
——(V-E)
Fo(z—1)g [Fi(z —1)]s
—(2-E) (A-E)
Gog Gilz—1)s [Fi{z — Dlg
(V-E) #) —NE)
Gog Gi(z)s G2y
(D-I) (A-T)
Fo(z)a (Diz=1)]s F(z)s
{(v-TI) {(n-E) {3-1)
En(z)s Ev(z=1)p Ei(z)e
(n-1) (3-I)
Do(2, T} Ey(z)p
(V-I)y —_—A-T)
1 boolyyy L'(:,’I'}{QJ Di(z, F),
(3-1) (V-0);
B(z)n,) ' boolyyy G{s,f"}{ﬂ}
(v-E) (3-I)
[4(z - 13']{!} [C(z - U]{ﬂ} B{z}ln,u E'fz}{u,l}
(>-F) (v-E)
B(z — 1)1 B(z)oa)
{3-E)
Biz) oy
{v-E)
H{-f_]{n,]}
(2-)
Alz o1y
(V-E)
-'”Ehu_]}
Figure 3

Appendix: Proof of Lemma (Ipeq)

Main Proof
: - 1222 Alp,z—1)

[P] [P: z—1 z
Lo El
0222 A(p,0) z222 Alp, 2) (nat-ind)

Yz (2222 Alp,z))
Wp. Wz (2220 A(p,:}}w'”

Extracted Code by Ext:

Ap. plzn, 21, 22, 23). Az
if z=0then Ext{Zy/0 > 22 A(p,0)) else Ext{Z,/2 222 Alp, z))oy

where 7 % {Ru{z -1222 Alp,z - 1)}/{z0, 21,22, 23 }{z — 1)}

o Proof of p0 222 A(p,0) (o)

0>2
mmCH
A@ﬁji_ (=)
022> 4(p0) '~

Extracted Code by Ext: any|4]

[z > 2] [3:1]{1:"- [z22p,z—1]
. L (1-E) ! =122 4(p -1}
[z = 1: nat] () A(p, 2) (5-1) 1
r=1Ve =2 222 Alp, 2) = 20 Alp. 2)08 (V-E)
z 220 Alp, =)

Extracted Code by Ext (modified vV-code):
if = =1 then any[4] else Ext(Zy/2 222 A(p, =)

_l}l—-.:;.‘?—) 4-':;*'\‘-} {---'11'.:I

e Proofofpz=1,222, :=1>22 A(p,
[z =3, :-1]
[z = 2] =122 Ap. 2]
[z .:3__2] —(+ Zitn EER
z=2Vz23 Alp, z) Al p.)6 (V-E)
A(p, z)1") (1)
:> 23 A(p,)08

Extracted Code by Ert (modified v code):
if z =2 then Ext(Ey10/4(p, 2)) else Ext{Zy/Alp. =)

44.

e Proof of Ti0

[d:nat] [1<d<?2] .
| ()

——(L1-E)
~(d | p) (o)
1<d<22-(d|p) T
Wd. (l<d<22-(d|p)) T=T
(A1)
PU{Prerj
") Po(p:2.T) V Pu(p 2,T)
2 =2] A(p2) -
Alp, 2)
Extracted Code by Ezt: (T,left, any(2])
s Proof of 4,
23] [=-122)
z—1 Eﬁt = Alp,z — 1) (>-E)
Ib. Polp,z — 1,b)V Pi(p, 2 — 1) I, (3E)
Alp, z)06
where I is as follows:
[b,z 23,2 -1] [by= — 1]
(Po(p,z = 1,8)] [Pilp,z — 1, b))
Polpz=1,8) | Sio i
Vh(pz-L0)| Alp2)Y AR g
A(p, 2]

Extracted Code by Ext:

i f proj(0)(wy,wy,ws) = left then Ert(Sye/Alp. o))
else E:I.‘f.I:E]_“ 1 Jl'(_!llul',l :}] Ty

clef
where (wg, wy, 0, g C Reiz—1222 Ap,z—1)) and oy = {Ifwg, Be(Py(p,z—1,0)V
P1 fp1: - l: E]}:IJI;("I] 3 w?}“‘ﬂlﬂ'

e Proof of Sy10: b, 223, 21, Pao(p,z =10 F Alp,3)
[= 1]

[PU{P1 = 1'-;]1}1 [: = ‘3]
Fle=1lel (= -1]p)]

Y1100 101
11, A(p, =) Alp, =) —(V-E)

Ap,)00

45 —

where 11y is as follows:

(o] Vm. ¥n, =(n|m)v(n |m:lfprop_}

[z — 1: nat] _ Y. =(n|p)vin|p)
=(z - 1|pIviz=1!p)

Extracted Code by Ext:

if proj(0)(Ext(Prop.)(p)(z — 1)) = left then Ext(Sy00 /AP, 2))
else Ext{E11101/A(p,)72

where oy = {Ru((z — 1 | p))/tseq(1){ Ext{Prop)(p)(z — 1))}
The proof of Prop is skipped.

o Proof of Yiy100 0 ~(z =~ 1| p). Polp.z = 1) F Alp,z)

?[*:'
1, Tr=T
= A-d
- Reonr Y

Polp,z, TiN Pi(p, =, T}
3h. Ijﬂ{p\ £y hl] W P_]{p_l x. b]“:ﬂl

where I, 1z as follows:

[Pa(p, = — 1, B)"™] .
T A-E
[d] ";"d.lt::r.ft::—l:?—v[d|p}“j'{) [d = = — 1]

1<d<z [1{5

lodaz 1 L8270 l<d<z—12-d[p)" [~z =112)
vd =z -1 . Sld |)t =(d | p)
~(d | p)i&)
(d1p) (5]

1< dazD=(d]p)el

v-T
Vi l<deza~dpoo

Extracted Code by Ext: (T, left. anyl2])
e Proof of Bqpqpp: 2-=1, 223, (z - 1| p), F Alp,2)

[z = 1][z = 3]
lez=1<z |{z-1]p]
[z=1l:nat] l<z—1<zA(z-1]|p] :E"*]
A 1<d<zn(d]pl F=F
(*) Py(p,z, F)

F Po(p,2, FYV Py (p, =, F)
b FPulp.z, by v Py(p. 2, b)

Extracted Code by Ext: (Fioright.z — L, Re({{z — 1| p))

e Proofof b, = =1, Pi(p,z—1,0)F Alpyzy (Z0m)

[Py(p,z -~ 1, 5)t20]

A-E

Hd.lesde:z—lﬁ.[dlp}{m{)
Jd. 1<d<zn(dl p)ze

I . F
H3E) g

Pll:Pr:1F}{EE]
Fo(p,z, F)V Ai(p, z, F)(29)

}:(*}

3b. Polp, =, 0) V Pi(p, 2, b)Y

where TI3 is as follows:

{22)
[f’l {—dl 1<d 1%
Ad | p)]:—.‘—lrrmﬂl liz—l]
l<d<z— 1i’f3}(ﬁ‘E} z=1<z - +) LAMdlp)
1< d< g2 (*) (d | p)32)
[d: nat] LedezA(d]p)

Ad. 1 <d <z n(d]| pH

Extracted Code by Ext: {F,right,(d, Rv({d | p))ioa) where a3

e 4T —

W dfwae, Ro((d | p))/ws)

