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ABSTRACT

There have been many proposals for extensions of relational
databases. [t can be considered that two major streams
of them are DDBs and OODHs. Research on fusion or in
tegration of their advantages has been being done ab the
forefront of research on database and logic programming.
For the target, the first international conference on dedue-
tive and objecl-onented databases (DOODRY) was held in
Kyula.

In this paper, we propose a framework for the cxtensions
along these lines. amd introduce some research results such
as y-term, O logic, F-logic, DOT and hierarchical deductive
databases, in the framework, and discuss Tuture directions.

1 Introduction

As extensions of relational dalabases or new databases
{data midels), there have been many proposals such as
deductive databases (DDBs). nested relations, complex ab.
jects, semantic data models, and object-oriented databases
(OODBs). As their background. there are various reasons
such as maturity of relational database technologies, en-
|-a.|.'g{‘|::|rt':|1t of applicalion domains, development of hardware
technologies, influence of programining paradigms, develop-
menl of knowledge information processing techuologies, and
problems of impedance mismatch, By combining these, the
requirements of new databases have been increased.

It can be considered that two major sireams of active re-
scarch on dalabases are DDBs and OODHBs, The advantages
of I}Hs are high inference capability and well formal fonun-
dations: the disadvantage is that the modeling capability is
poor and there are few applications, With OODRY, ay the
advantages are rich modeling capability and high extopsi-
bility. so they are expected to be adaptable for many ap-
plications. As for their disadvantages, the remarkahle point
is that there is nol necessarily a consensus on the concept
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of the data model. although the conventional roncept itself
has been changed. Also the inference capability is poor and
formal foundations are not well, compared with DDBs.

In wview of these mixed results, the nexl generation of
intelligent databases must adopt the advanlages of both
streams, on well formal foundations. We call them deductive
and ebjeci-oriented databases [DOODs),

We describe the research framework of DOODs as exten-
sions of DDDs in Section 2.

There are Lwo aspects of an object-orientation paradigm:
passive and aclive aspects. We give some examples to ex-
plain the embedding characteristics of passive objects into
DDDs in Section 3, and about suine characteristics of DDBs
as active objects in Section 4. Then we overview perspec-
tives on future research directions on DOODs in Section
5.

2 Framework of Deductive and Object-Oriented Da-

tabases

In order to mitigate various disadvantages of DDBs, as
described in the previous section, there have heen many
proposals for their extensions. We can classify ithem as
follows:

{1} Logical Extensions
Introduction of more logical factors such as negation.
disjunction, explicit or implicit existential guantifiers,
and certainty factors.

12} Encapsulary Extensions

a. Structural Extensions
Introduction of structured data such as nestesd re-
lations and (:umpltx ul:lj:l:is., that is. extensions
of term representation to be appropriate for the
above structured data.

b. Procedural Extensions

Encapsulation of data and procedures, that s,
behaviors of the data are descrilis in an ohject.



¢ Introduction of Object ldentity
Direct representation of objects by object identi-
fiers. thal is, an object identifier itsell is captured
as ipvariant through state changes.

(4) Paradigmatic Extensions

a. Constraint Logic Programming Paradigm
Query processing by resolution and constraint sol-
vers of a constraint lagic programming language
based on objects.

b. Object-Orientation Paradigm
Query Processing by message passing between ob-
jects and internal processing in objects,

As for (1), there have been many works such as stratified
databases. disjunctive databases, and gquantitative DDBs
Also as for (2), there have been many results as explained
in Section 3. However, as for (1} there have been only few
waorks, As each of (10, (?) and {3) is an independent exten-
sion from others, they can he combinel al various levels.
For integration of deductive databases and object-oriented
databases, we can focus mainly on the object-oriented er-
fensions, that is, (2) and (3} In this paper, we consider
deductive apd object-oriented databases (DOOD:) in such a
formal framework as extensions of DDBs.

Before explaining them. we consider some charactens-
tics of object-oriented databases (OODBs) as one of the
components of DOOD= With the background mentioned
in the previpus seclivn, OODRs have been affected by
object-oriented programming languages such as Smalitalk-
80. However, there is not necessarily o consensus on each
feature. although there have been some efforts 31 1o reach
the common agreement. ln this paper, we consider the
term ‘object-oriented” or ‘sbject-crientation’, as being how
Lo reflect the chject-orientation paradigm, rather than how
many conditions listed as ‘necessary conditions’ are to be
satisfied. In our wviewpomts, we classify the concept of
object-orientation inlo two aspects: passioe obferls for natu-
ral modeling of entities and aclive oljects for natural mod-
e“ng of cun:puhtiuual process,

How entities in the real world could be represented in
the symbolic world has been considered as one of main pur-
poses in a database arca. so most OODB researchers have
tended Lo focus on the passive aspect of objects. The char-
acteristics of the passive aspect are as follows (although
some of them are related o the active aspects): object
identity, complex objects. methods and information hid-
ing. types and classes, and hierarchical structures. However,
even in each characteristic there are many disagrecments,
as many of them depend also on application domains. On
the other hand. one of the most important characteristics

of the active aspeets is autonomy of each object for query
processing and database management with the following
properties: message passing, cooperative problem solving,
heterogeneity of each object, and concurrency, recovery and
persistence control by each ohject, which alse correspond
to the concept of autonomy discussed in the context of dis-
tributed or parallel database management systems. [t is a
wajor problem how to combine these two aspects in the
formal framework of TDBs.

Like some OODEs in the commercial market, we can
consider a database management system which manages
onlv passive objects, However, under the term ‘ohject-
orientetion’. we should consider both aspects of objects.
ln thiz zense, DODBEs could be discriminated from ‘object
bases” and ‘abstract data type hases". These aspects are not
independent but mutually related in many features such
as a type hierarchy, methods and message passing, inter.
pretation of procedures, and management facilities. They
correspond Lo encapsulary extensions and & of paradigmatic
extensions in the above oliject-oriented extensions, and can
be combined at various levels, Although many works have
been done on each feature, it is very important Lo consider
them uniformly as research on DOODs in such a framework
as the above.

3 Embedding Object-Orientation Concepts into De-
ductive Databases

A basic unit of representation in deduetive databases (DD-
Bs) is & first order term {or an atomic predicate). In order
to introduce various features of passive abjects into DDBs,
how to extend term representation is important. In this
section, we describe the main problems to be considered
in Lerm repre&entaliun.. and introduce some research results
from viewpoint of how they could be embedded.

3.1 Problems to be Considered

What we should consider here is not the capability of term
representation but the efficiency. In this sense, many re-
searchers have pointed out inefficiency of a first order term,
such as fixed positions and arity of arguments. In order to
improve it by introduction of an object-orientation concept,
we can list the {eliowing problems in term representation:

» Tuple Representation
To deduce restnictions of positions and arity of argu-
ments by tuple representation in attribute-value pair
notation, and make it possible to represent also infinite
data structure.

* Type Hierarchy
To introduce types {or classes) and the hierarchies in
order to reduce redundancy between expressions, There



is not necessarily a consensus on a concept of types {or
classes) and the kinds of hierarchies,

& Set Representation
To make 1t possible to represent complex objects by
intreducing set constructors as well as tuple construc-
tors. Whether sets are ohiects or not, especially whe-
ther the semantics is higher order or not, has been

discussed.

s Object Identity
To specify an object by an object identity, make the
sharing possible, and make dependency relationships
hetween objects clear. It is also extensions of identifiers
in Luple representation. There are many variants in

treating identifiers.

» Method
To define methods to ap object and the corresponding
procedures, What Lind of languages should be used to
represent the procodures has been discussed.

¢ (ther Extensions
There are many other problems such as differences be-
tween Eypes and ohjects. discrimination between in-
dividual and sel values, semantics of inheritance and
kinds of constructars,

3.2 ¢-Termn — Tuple Representation with Type Hi-
erarchy 4

Data representation in tuple representation has been done
as research not only in the database area, but also in
knowledge representation language and feature structures in
natural language processing. Ait-Kaci ™ proposed y-terms,
which 15 considered as precise formalism and is summarized
as follows:

ily Types are represented as tuples called v-terms. The
construction is aimed at overcoming the weak points
of first order terms. already mentioned. Consider the
following example {a v-term for person information):

X pcr!r'qf =~ narm:lfﬂ.-zi = ¥ : uir,
first = strL
addr == T.
father = pr:r[:'rf == r:mrtw[.fn.ﬂ.' == '}"]],.
spouse = porlspouse = X

" and ‘)" are tuple constructors. In " and ‘]', the right
hand side of = is an attribute pame and the left hand
side s a type. For example, ‘per’ (person), ‘name’,
‘sir’ (string} and ‘T are tvpes, and “id', ‘ast", *first",
‘adde’ (address), °father’ and ‘spouse’ are attribute

names. X and ‘Y at the left hand side of *° are

called fags, and represent equality constraints of types.
Far example, in the above example, a per's las! name
should be same as hecfhis father’s, and s/he should be
a spousc of her/his spouse,

Formally, y-term s defined as a triple (A, ¢, 7). where
A is a tree domain constructed by a set of attribute
names including an emply attribuie ¢, ¢ is a function
from A to a set of types, and r is a function from A
to & set of tags. The above example can be pictured
in Figure 1. where tags Z; are omitted in the above
eXpression,

el X, per)
idi £y, name)eddr(Zy, T} father{Z;, per ppouse| Ty, per)
bast(Y, str) firat(Zyy, str)id] 23y, nome ppouse( X, per)

lasi(Y . str}

Figure 1. Structure of t~term

{2) The original intention of ¥-terms is to formulate in
heritance. For the purpose, subsumption [partial order}
relationship is extended to the relationship between -
terms, and results in a lattice. For example, partizal or-
der relationship between types such as student = per,
employee = per, and gradstudent < student, is used
to inherit attributes of upper types. T in the example
of (1) shows top of this lattice. The juin operation in
the lattice, corresponding to unification in first order
terms, results in inheritance of attributes,

Furthermore, [3] continues the formulation as follows:

{3) Algorithm of join eperation unification between ¢
terms is provided.

{4) v-terms are extended by intreducing set notation
called e-terms. which is used only as abbreviation of
a set of v-terms.

(3} A new programming language called KBL is defined as
a term rewrniting system of y-terms based on (2). (3)
and (4}

Although e-terms coutribule lo solve only a few prob-
lems in Section 3.1 from an objpect-oriented database {00
DB) point of view. and are pol treated from a database
point of view. the work contributes to works on ohject
oriented extensions of DDBs such as embedding o-terms
into definite clauses 4 81, application to complex objects
Iﬁf. and some extended term representation described in
succeeding subsections.



3.3 O-Logic I

Maier '8 made clearer the concept. of object identity which
had not been discussed consciously in P-tering, proposed O-
Ferms. similar with ©-terms, in which tules can be written.
and eomstructed (logis under the term vepresentation. In
the heginning of the paper, he declared that the chjectives
of O-logic are to provide formal foundations for fusion of
a logic for data-intensive applications and object-oriented
programuting. However, the paper is confined within a pro-
potal of O-logic and suggestion of pmblems such as the
semantics and the treatment of quantifiers, sels and incon-
sistency. Apd Oelogic itsell is first mmﬂt'frd theoretically
by the reconstruction by Kifer and Lu '8l The proposal
ol O-iugllc bLias sewach influence on the succeeding research on
DOODs, and it can be said that the idea is a landmark,
The following topics are based on the revisions by Kifer and
L. which can be brefly summarnized as follows:

(1) Treatment of a sel of objects as an attribute value.
The semantics is devised to be first-order 101,

(2) Introduction of a lattice structure on a sel of objects
and inheritance of attributes from the upper types
when the corresponding attrilistes are not specified,

(3] Substitution of “inconsistency value”™ of the lattice for
logical mconsistency of atiribute values, which results
in local incensistency and ne influesce on infeence
based on other normal values.

{1) Sound and complete prool procedure based on resalu-

tioa.

O-terms are recuraively defined by a set of objects with-
out internal struciures, Lhal s atomic objects, The lerms
ate based not only on atomic objects. bul abs on objpe
variables, by which equality constraints as n v-terms can
be represented. In O-terms, besides a sel ol Lypes, a sel
of labels (attribute names) is introduced and each label is
interpreted as a function from a set of ohjects Lo a sel of
attribute values ar the powsr set. Tn O-logic, more complex
representation can he construcied by combinalion of single
or multiple O-terms with logical connectors sueh as v, AL
4 and --, and quantifiers such as ¥ and 3.

First. as an O-term withon! objert vanables, consider
the following cxample of an (hterm representing an ubject
‘mary’ which belongs to a type employes’:

employee:mary[name—ste*Mary ",
ape—int:0L
hobbw —+{game:chess. pame:tennis}.
efioe— F.'lrnlt.y;{".‘?ﬂfalmme—*
str;“comsei.” ||

where the left hand side of " is a tvpe, and the right hand
side is an object; and the left hand side of "= 1= a label
corresponding to an attribute name, and the right hand
side is an attribute value. The representation allows a set
value such as a value corresponding to ‘hobby®, and it is
easy to represent complex objects in O-logic.

In O-terms, ohject identifiers can be constructed by com-
bination of atomnic objecis and object varables by object
constructors (if necessary, by applying different Tunction
svmbols repeatedly). Especially, such object identifiers are
called dd-ferms. In order to understand how id-terms work.
consider the following O-term:

arc: Elstart—node. X, end—node:}]

which represents a relation of directed ares between nodes,
that is. a directed graph. In the graph, s set of paths
between nodes s recursively defined by the following rules
with id-terms:

pathcadd| £ nil}jstart— X, end-— }] &=
arc:Elstart —node:X, cnd —node:}]
pathzadd| E F){start— X, end— V| =
arc: Elstart —node: X, end —node: 2],
p.a.t.lL:P[sl.a.rt—ﬂmdﬁz. md—-«nﬂdﬂ:l"]

where f <= g means mplication as “if ¢ then [ In the
example, add( £, nil) and add{ £, P} are id-terms. 1he first
rule means a set of paths constructed by only one arc, and
the second wwans a set of paths constructed by an arc and
the adjacent existing path. Therefore the two rules define a
set of all paths. For a query that asks a sel of all paths,

path: Flstart—node: X, end —node:¥|?
a set of answers is returped in the fallowing form:
pathiadd, [start—nodes;, emd—nodech]

where add, , means add{e;, add{ez, -+ - add{eg, nal), -}, 5
is an object identifier of an arc, and a; and by are identifiers
of nodes.

I this way, id-terms play an effective role to enhance
representative capability of (-terms.

3.4 F-Logic '

Kifer and Lausen 1" proposed Frame-logic (shortly F-
lagic), which is hased on a concept of frames, used as one of
knowledge representation languages in artificial intelligence,
and is an extension to O-logic: all expressions in O-logic
can be written in F-logie. Like frame-based representation,
there are no differences between Lypes and entities {ohjects)
in F-terms, which are basic components of F-logic. Fur-
thermore, as id-terms with object variables can be used



as labels {that is. labels also can be treated as objects).
methods can be defined declaratively.

Consider the following example of method description in
F-logic:

X[ehi(¥] = {Z}] «
per:Y [chiohj — ¢hi(} )[member — {pen: Z}]],
per:X [chiob) — cli{ X)[member — {per:Z}]]

This tule defines a method ‘chi’ (ehild) as follows: for each
‘per’ (person) X and a substitution of a person for an
ohiect variable ¥, the rule returns a set of all children comr
mon Lo persons X and V. It is remarkable that a term
chif}) appears not only as method description in the loca-
tion of an attribute label in the head of the rule, but also
as an id-term in the location of an attribuie value of a label
‘chi’ of V' in the body of the rule. Therefore, for example,
the instantiated id-term ‘chi{mary)” has two meanings: an
oliject representing all children of mary; a function from a
given person 1o a set of all children common to mary and
the person. In this way, by changing the meaning according
1o the location, labels also can be trealsd as olbjects.

While the syntax of F-terms is high-order as in the above
cxample, the semantics is kept to be first-order, just like as
O-terms 1101,

3.5 DOT — Extended Terms Hased on Dot Nota-
tion [

There are various ways to specify altributes of an type,
and, as the rezult, there could be various patterns of inher
tance between Lypes.

For example, assuine an 15-A relationship
‘student 15-4 person’,
and an attribute about afliliation of a person such as
a person 15 affiliated with an organization”.
Anal then, of
“a sbudent s affiliated with a university”

is written explicitly as an attribute “affiliation” of the stu-
dent, a relationship

umiversity 15-A organization’

can be considered to be derived by inheritance {although.
strictly speaking, there might be some problems). However,
il an atiribute ‘affiliation’ of the student is not wrilten
explicitly. only a relationship such as

“a studdent i affiliated with an organization’

15 obtained.

Therefore, in DOT rﬂ], even if an attribute ‘affiliation’ of
& student is pot written explicitly, it is possible to introduce
a virtual object {actually, a type or an entity] about the at-
tribute, and derive a new I5-A relationship between objects
by using the virtual one as a medium of IS-A relationships.
A dot-based representation DOT was proposed 122:"- In i,
there are no differences between types and entities, and it
is easy to write inheritance and 15 A relationships between
objects by introducing new object representation including
virtual ones,

In DOT, an attribute value of an attribute p of an object

a 15 represented abstractively as a.p, whether it is explic-
itly written or mot. Suck represemtation is called a DOT
formula. A dot notation has been used Lo represent an at-
tribute value in fields such as a relational database, while in
DOT, a DOT formla itself is treated as an object. In the
above example. it is possible 1o write a virtual object such
as “student.affiliation’, by which it s possible Lo represent a
new relationship such as

“student affiliation 15-A person.affiliation’,

even if Lhe attribute ‘affiliation’ of the student is not de-
scribed explicitly. And, if

‘& student is affiliated with a wniversity'

would be described explicitly, the altnibute value could be
wrilten by the 15-A relationship as follows:

university I5-A student affiliation

And the value “university’ is inherited one aller another
by the following 15-A relationships. However, such an 15-A
relationship can be written in the following one sentence:

if o I5-A b then a.p 15-A bp

In conventional languages, it is impossible to represent indi-
pectly an oliject such as ‘student.affiliation’, and it is not so
casy Lo represent such an inheritance.

As there are no differences between entities and types in
DOT representation, the 15-A relationship includes nol only
nsnal 15-A relationship but also a relationship between a set
and the element as the extension.

Then, consider an cxample of ierm representation. For
example, "per’ [person) is described in DOT as follows:

per({par—{per},
name— {str],
age—{int},
sex={make, female}}



The direction of an arrow correspands to the direction of
an 15-A relationship {for example, per.par I5-A per, that
is. a person’s parent 1S-A & person), amd ‘=" means a bi-
direetional 15-A relationship. In the above example, the fact
that there are only ‘male’ and ‘female’ as a kind of ‘per’s
‘sex’ corresponds to a hi-directional 15 A relationship. A
peerson Mr-A' is represented as foliows:

Mr-A:{per ) {name={paul},
age={24},
sex={male},
par—{john},
par—{mary})

A part of the 15 A relationships 13 shown in Figure 2.

‘: [IIHi"‘ .r"[ll-ﬂl"'} {ma'i'e]
I{hiadimctinnal 15- A relationship} I
{per.ﬁ?x} —-eees R TR {L{r-ﬁ.sex]
¢ {int} {24} ¢

SEN l T i :5““‘
| iper.ng_;e} - {Mrd.agejﬁ |
{PL-:' 'f S 1154 relationship) o H{;l-"_”
| H“E‘Tt u,a..m_g,.-"" |
: {pername}s - -- -{Mr A.name} I
parl l |PM
} {str} {paul} }
Perparkin { iasionsiy by inkeritancel g *)

{lohin} {mary}
Figure 2. Example of Terms

An arc written as a straight line which means an 15-A rela-
tionship is called an 154 link. An arc written as a dotted
line which corresponds to an attribute is called an link,
The atteibute value corresponding to an attribute ! of an
object a is represented in a DOT formula a.dl. and the at
tribmte value is exactly represented by an 15-A relationship
from the abstractively represented object. For example. let
the attribute value of an attribute ‘par’ of ‘Mr-A" be ab-
stractively “Mr-A.par’, and draw an 15-A link such as ‘john
15-A4 MeA.par’. Dotted arce in the fignre show such derived
I5-A relationships.

As IS-A relationships are an order relationship, mew IS
A relationships are derived by tracing 15-A relationships
transitively. In Figure 2, for example, an I5-A relationship
‘john 15-A per” is derived by tracing IS-A relationships:
from ‘john' to ‘Mr-A.par’. from “Mr-A par’ to ‘per.par’, and
from ‘per.par’ to ‘per’.

And, as a query in the term representalion, a ‘par’ of
‘Mr-A" is oblained as a ‘per’ of ‘Mr- A’ by tracing 15-A links
from *Mr-A.par’, and a ‘par’ of ‘Mr-A" is obtained as ‘john’
and ‘mary’ by tracing backwards 15-A links into ‘Mr-A.par’.

Although not explainad in the above examples, il is pos-
sible to express DOT terms with object variables, and also
to describe rules as in Section 4.2.

4 Deductive Databases as Active Objects

Even if deductive databases {DDBs) are written in any logic
programming language. they can be considered lo corre-
aponil to objects which represent (abstract) entifics con-
sisting of facts and rules. Such objects can be considered
also as modules of knowledge. In this section, we consider
a DDD as such an object, and guery processing to a set
of the objects. It is natural to introduce inheritance and
overriding mechanism between such objecls, considered in
the context of an object-orientation paradigm. Furthermore,
as each DDB has the ability to process queries, the query
processing to a sct of objects can be treated as coopera-
tive problem solving between objevts. In this section. first
we embed a set of DDBs into a hicrarchy, amd secondly
consider query processing mechanism by active objects. As
its applications, there might be knowledge bases with mod-
ules of knowledge, CAL system with development processes
of students, and hypothetical reasoning system in expert

syetems.

4,1 Problems to be Considered

Az a DB is not defined as an object as il is, and not given
any relationship to other objects, its representation should

be extended:

# Ohject Identity
To introduce object identity inte sbjects. A DDH itself
or a definition of a predicate ean be considered as a

unit of an object,

+ Methods
Predicates defined in an object can be considered as

methods of the object. There are some discussions such
as npame spaces of predicates, and muliiple definitions
of a predicate.

#» Hierarchical Relationship
Ta represent relationships between objects and inherit
properties dynamically in order to reduce redundancy
of kuowledge between objects,

s Cooperative Problemn Solving
Ta execute query processing to an objecl cooperatively
by message passing between objects.



o Others
Thete conld be many other extensions such as local

[.;naw]e-dgc and coevistence of muli iplr |etnguageai.

We assume that each DDD has a capability of concur-
rency, recovery and persistence controls, and we do not
describe here the synchronous mechanism, although 3t is
wvery important.

4.2 Deductive Databases Embedding into a Hierar-
chy

In erder to emhed a set of DDA (or definitions of a pr-ed-
icate] into o hierarchy. assmme a sel T of object identifiers
and a et K of facts and rules. A Mmection g from [ to
M defines a set of DDBs with ohject identifiers. And. by
introducing a partial order relationship = inte 4, (1, =, p)
defines a set of DDBs embedded into & “hierarchy’. For ex-
ample, Figure 3 shows such a set, where A1 S 12 7) is
an object identifier and cach link is a partial order relation-
ship between DTYH=.

Figure 3. Irierarrlz;.' of Deductive Databases

I 5 = {/,IK, < K ) 2 DDB pf A}) corresponding to £
can be considered to mean Uk e, i K} from a simple in
heritapce point of view, although there i3 a problem about
how to guarantee some restrictions of each DDB, such as
self-containedness of the subgoals and stratification in case
of a DOB with negation. Dynamic verification mechanism
for such restrictions mighi be needed. Furthermore, if a
predicate is not defined over multiple shjects, an overriding
mechanism can be mtroduced naturally as well as inheri-
Lance.

[t 12 easy to understand that the formalism can be ap-
plied to DDB: consisting of extended terms in Section 3
with ohject identifiers. For example, consider an example in

F-logic

perfsg( V) = { X}

per[sg{ X ) — {¥'}]e=per. X[par — (Z}],
per:Zjsgl Z) — (W},
per:W[chi— [¥'}]

or an example in DOT

Nisg— N,
sg— X.per.sg.chi) «= X : per

which defines a “per’ [person) object with a method ‘sg’,
and inheritance relationship between objects {types) by the
partial order relationship. There are two possibilites for
introduction of the above funciion p: an u-:igina.l ohjecl
identifier corresponds to a new object: a new object iden-
tifier defines a new object consisting of mulliple original
objects, whers there is a problem between an original and
a pew order relationships. In both cases, a DDD is divided
into a set of DDBs. and embedded into a hierarchy.

4.3 Query Processing Based on Message Passing

In the example of Figure 3, assume thal each object can
perform gquery processing of a DDB, which inherits dy-
namically rules from the upper objects according to the
pecessity. Extensional databases (EDBs) might be divided
horizemtally, In the case, agzume thal the gquery processing
tu an ohject is controlled at the FDB level by the object
according to the peressity.

Consider a query processing to an object Ry As K
inherits rules of Ky, Ky, and Ky, necessary rules for the
processing should be gathered dynamically into the lowest
objeet which defines the corresponding predicate,

Consider bottom-up evaluation such as HCT/R (19 as
a strategy of recursive query processing. By propagating
binding information in the goal, recursive rules are trans-
formed to restriet a search space, and the transformed rules
except initial clauses (secds) generate new objects earre
sponding to components, each of which is closed within
recursive relationship. Such new objects are generated with
a specification relationship to the lowest object which de-
fines the prodicate, and migiﬂt bves peensed for another uieTy
processing with the same binding pattern. These objects
play & role of coordinator ohjeets for the related objects
(=" in Figure 4).

Bottom-up evaluation is triggered by giving a (sub)goal
and initial clauses to coordinator objects, and query pro-
cessing of EDBs is divided into local processing in each
ohject and voordinator processing. The final answer results
in the lowest object {€7) in this case).

While such query processing is executed by message pass-
ing between objects, other processing such as concurrency
control and memory management in traditional database
management systems could be alse done antonomously by
each obiject.

Besides such bottom-up evaluation, [12] propoesed an al-



Figure 4. Coordinatee Ohject for Query Processing
{— is a specification relation|

gorithm in top-down manner by generating dynamically
processes corresponding to definitions of predicates in &
parallel processing environment.

3 Perspectives

Besides deductive and object-oriented databases {DO0ODs),
there are many approaches for extensions of deductive
databases (DDBs), already mentioned i Section 2. Tn this
section, we introduce such approaches and discuss research
perspectives on new datalases,

51 Other Extensions

Research on extensions of DDDs has been spreading from
various points of view, We describe some approaches.

s Other Logic Programming Languages Based on Ex-
tended Llerms
As other extensions of DDBs, there are LDL 2% which
introduces set grouping inte logic programming, COL
[”, which manipulates complex objects, and CRL ﬂﬂ]"
which works on nested relations. Furthermore, along
with O-logic and F-logic, Hilog o s proposed, The
syntax of the language 15 higher-order, while the se-
mantics i8 first-order. Afthough the language is based
on predicate notation, it offers more efficient represen-
tation than LDL, C0OL and F-logic from ancther point
of views, and transformation from LDL, COL, and F-
logic 1o Hilog is shown in [10].

- nﬂ.'al}ﬂ.‘iﬁ ]:'III"LIET-H.IIIIHli]‘l:l!l."'| Lﬂ.[lguﬂge‘s
For the purpose to integrate database languages and
programming languages. there are many works on da-
tabase programimng languages (DBPLs) 3 This ap-
proach includes not only logic programming approaches
but alse [unctional and object-oriented programming
anes. The purpose of DBPLs is deduction of impedance
mismatch, which is also one of the purposes of object-
oriented databases {QO0DBs). Therefore the languages

mentioned above are also considered as kinds of DB-
PLs.

s Constraint Logic Frogramming Paradigm

As an extension of logic programming languages, there
are constraint logic programming languages '), which
interd to represent complex probleins as constraints
and solve themn by intrinsic constraint solvers. Under
the paradigm, there are some works: catching g-term
as one of constraints ! and approaches for application
to database area 11 241,

Although we focus on object-oriented extensions of DDEs
from a DOOT point of view in this paper, we should discuss
next gencration databases from a wider point of view, such
as the above approaches and the framework wmentioned in
Section 2.

5.2 HResearch Directions

It ean be said that rescarch on DUMs started at The n-
ternational Workshop on Logic and Dafabases in Toulouse,
France, 1977, and reached & big turning point at Werkshop
on Foundations of Deduetive Databaser and Logic Frogram-
ming in Washington DO, 1986.

In the same year, the first meetings were held for new
database management systems: for OODBs, The Inferne-
tional Workshop on Object-Oriented Database Systems and
The Symposium on Object-Chriented Programming Systems,
Langueges and Applications (QOPSLA), and for integration
with expert systems, The First International Conference on
Ezpert Daiabase Systems. The next year, the first Work-
shop on Database Programming Langueges was held. We
could say that these streams show Lhe opening of multiple
paradigms for new database management systems at the
end of 19807,

With such a background, the First fnlernationel Confer
ence on Deductive and OQbject-Onented Databases {DOOD-
#0) 7] was held in December, 1983 in Kyoto, focusing on
integration of DDBs and OODBs, that is. DOODs, as one
of the powerful candidates of new generation databases and
moving towarnds construction of the framework of next gen-
eration databases by active discussion with both researchers
on DDBs and 00DBs 1% 9. 7. 261

We confinmn that the framework of DOODs will play an
more important role in research and development in the
database area.

6 Concluding Remarks

Research on deductive and object-oriented databases (DO-
ODs) has been very active in extensions of deductive data-
bases, although it is only very recently that it has becn



focused on as one of the new generation databases. As
DOODs can be considered as a research framework for a
new generation databasge system, as mentioned in Section
2, and do nol canstrain Lhe concepl uniquely, various kinds
of DOODs depending on problem and application demains

could coexist.
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