ICOT Technical Report: TR-515

TR-515

Higher Order Programming in
QPC A Casc Study of Map-Function

by
Y. Takavama

November, 1989

(€ 1989, 1COT

Mita Kokusai Bldg. 21F (03) 456-3181~5

" :D | 4-2% Mita 1-Chome Telex ICOT 32964

Mhimato-ku Tokvo 108 Japan

Institute for New Generation Com;;ﬂier Technology

Submitted for publication in TCS

HIGHER ORDER PROGRAMMING IN QPC*
— A CASLE STUDY OF MAP-FUNCTION

VIKIHIDE TAKAYAMA

Institute for New Generation Computer Technology
4-28, Mita 1-chowe. Minato-ku, Tokyo 108, Japan
takayama@icot jp

ABSTRACT

This paper deseribes the technigque of defining programs in second order in-
tuitionistic logic and generating efficient prograns. QPC?. a second ovder
constructive logie, s presented and a variant of realizabality, proof nornuliza-
tion, extended projection method. and varions ather technigues are used to
generate progroms row Lhe definitions. The examples of map, ap{map, suee),
mdd apl rnep, cven_odd), where even_odd returns boolean values according to
mput nataral numbers, are investizgated, and quite natural and cfficient pro-
grauns are extracted,

keywords: Constructive Logie; Program Extraction; Extended Projection;

Realizability.

1. Introduoction

There are two main approaches to constructive logic: one 1s type theoretic formulation of
construetive logic in which types and propositions are paitly or totally identified following
the principle of Curryv-Howard isomorphism (1), the other follows the traditional formula-
tion of intuitionistic logic [2, 3, 4] in which types and propositions are strictly separaied and
realizability interpretation of logical constants [5. 6] 15 the comparative notion to Curry-
Howard isomorphism.

From the viewpoint of programming, programming methodology in constructive logic is
an interesting research theme: how specifications are written and how to generate efficient
programs fromm the theorems and proofs in various formulations of constructive logic. N,
(s, de Bruijn claimed that identification of propositions and types is a rather natural style
of reasoning in mathematics and it ean also be used in reasoning about programs [7,8] J.
Smith, B. Nordstrdm, K. Peterson and P. Chisholim developed programming techniques
in Martin-Lof’s theory of types [9] such as sorting, Ackerman function and simple parser
algorithm [10, 11, 12]. C. Mohring showed how to develop programs in the caleulus of
constructions [13. 14]. J. Bates and R. Constable also gave a lot of examples in construe-
tive type theory and program extractor system which generates efficient programs (15, 16,

171 €. Mohring also defined the calculus of constructions with a new constant, Spec, and
showed a technique to generate redundancy-free second order lamhda terms from construe-
tive proofs [18]. A similar technique was also introduced by B, Nordstrom and I, Peterson
[11]. For the traditional formulation of intuitionistic logic. C. Goad defined a formulation
of intuitionistic logic end a lambda calculus. He save a technique called pruning to detect
sudl eliminate redundant case branches and shows an example of an officient bin packing
algorithm [19]. S. Hayashi introduced a powerful schema of induective definition called C'IG,
in PX [4], & Felermau-style theory of functions and classes, and showed vanous techniques
to define and generate efficient programs nsing C7G. The author defined a [fonuualation
of constructive logic, QPC, and a type-free A-calenlus and a few simple exainples were
presented with several techniques to extract eficient prograins [20]. The problem of redun-
daney in the extracted code was also specified in the formulation of QPC. The author also
developed o teehnigne to analyze and remove the rechindaney called extended projection
[21].

‘This paper works on the technique of higher order programming in QPC?, a second order
version of QPC, with extended projection. Goad's system is a st order theory, and PX
does not nse second order universal quantilieation although that can be simulated by class
vartables. Intruducing predicate vanabdes and vniversal -_'1:1F|l't“iﬁr'ﬁti:'.|]1 over them I;\'F'E:I al-
lows a kind of parametric programming and improves the expressive power of the formel
svstem. Second order theory is quite commmon in type theory and typed lambda ealenlus.
The chiet difference from the type theoretic approach s that the second order feature itself
does not induce polvmorphism because proposttions are not identilicd witls types, However,
polvmorphism can be introduced by malking tho type theory in QPC" second order.

One of e critical Issues in second order constructive logic 15 how to define realizahility of
T PALPY One approach 1s Kreisel-Troelstra’s realizability [22]. which does not give any
comstrnetive interpretation to second order universal quantification. Similar realizability
vas introduced by J. Krivine [23]. Second order typed lambda calenlns [24] can be seen as
siving a formulation of realizability in whichi a second vrder lambda term s given as real-
izer of a second order universal quantification. QPC? tales a slightly different approach.
Realizubility is defined only on first order formulas, and a program schema which resembles
second order lambda term is extracted from a proof of v° £ A F) type formula. The schema
i« mstantiated to a variant of type-free lambda term by proof normalization when ¥ is
climinated in the proof by the elimination rule of second order universal quantifiers,
Chapter 2 outlines QPC, extended projection method and a few extended features. Chap
ter 3 introduces QPC?. Chapter 4 gives the geueral strategy to define and extract map
funetion and list processing functions made of map. The program extraction algorithm for
second order proofs is given. Also, ML-polymorphisin s introduced to obtain an extended
system, QPCE. Chapter 5 investigates the example of map : (nal — o) — L{nat) — Lig),
where # = nat or bool, and ep{map, f) where f : nat — ¢ to show Low the native ex-
Lraction based on realizability, proof normalization, and extended projection method are
applied. Chapter § points out inefficiency of the program obtained in chapter 5, and shows
a new technique to improve it. Chapter 7 gives the conclusion.

2. Qutline of QPC

QPC is o first order intuitionistic Gentzen style of natural deduction with a variant of
lambda calculus as its terms, A sorl of g-realizability [6, 25] 1s defined, and it 15 used for

the natve version of program extractor from QPC proofs. Three notions, modified V-code.
lomical terms and let-construct are also lutroduced Lo inprove the program extracior. Also,
cxtended projection method is used to detect and eliminate redundaney m the program
extracted by the nave version of extractor. Most part of the contenls in this chapter are
presented in 120, 21]. bint the notion of logical terms, let-construct and structural induction

on lists are newly introduced.

2.1 Core part of QPC

The cove part of QPC 12 a modified subset of Q0 13] and Quty [26]. The point of the
medification is that Quey, which is the target lauguage of the propramming logic QJ, is
restricted to o set which s related to program cxiraction, awd, wlile Quty is a strongly

tvped language. our lanpuage is a varlant of type-free lanbda caleulus.
211 Terms and Formulas
The terms of QPC are a vanant of type-free dexpressions,

Diehumition 1 Torms

i Indsvidual variables, r, g, - -, are torms;

2y Matural numhbers, 0,7, -, and booleans, § anel §, are terms:

31 Special constants e f4, reghd and naf are terins;

VI dy - dpo (n 2 1) are tenns, then the sequence of ters, (fy. . f,—1 1, 15 also a
ternt, | denotes the nil sequence;

S1amy[nt, which denotes a sequence of any n terus, is o term:

) IF 7 iz a sequence of individual variables and ¢ is o term, then A3.1 18 a term (A-term);
i) I s amd 7 oare terms, then apl <. £) 15 & term (application)

8) 1T is o sequence of variables and £ s o tern, then g2 i a tenn (p-term);

OV L is an equation or imequation of terms and s and § are terms, then

o beral(L) fhen s else T35 0 torng

L) Prundtive functions, fid (cur), # (edr), o (eons), pref, proj_h, projt, tseq and ttseq
Are LOrms.

feval 15 a funenion which returns 1 3f a given formulda is true, and returns f otherwise.
hevall A} s abbreviated 4 i the following deseription. A p-term means a multi-vaiued
recursive call fimetion which is a code extracted from o proof in induction. nel and ;- are

list constructors,
The followring s eqnivalence of terms:
zl".:f.l:_i'j R T ﬂ)ﬂf.f]. e JI.I“]

ap{iog, o ap), by = {aplay b, o apiag. b))

rf A then (by.oo- be) else (o oo ep) = (if Athen by else m,
"1
vf Adhen by else o)

The type structure of QPC is rather simple. Some of the terms such as p-term cannot he
typed, but the termination property of typing holds, i.e., if t : o for some type 7, then the
computation of ¢ tenninates.

Definition 2: Types:

1% nat and bool are prinitive types;

) If @ and 7 are types, then o > 7 is a type:

3) If o and © are tvpes, then ¢ — 7 15 a type;

4) If o is a type, then L{e) 1s also a type (7-list type).

The typing rules are as follows:

no:nat (n=0,1.---} ¢ bool f 1+ bool
Troa LT Tio y:T
ATt g — 7 {Try}Zd}{T
. . b L
nil + Lio) (g is any type) %Ir:$}

Definition 3: Atomic formuala:

1} L is atomic;

2} Fur a terny, £, and a tvpe, o, 1 7 18 atomie;

3) For termes s and £, 5 =1, 5 <t and & < ¢ are atomic.

L means abort, t © o vields type checking, equalities are solved if both terms have the save
normal forms. and inequalities are solved if both terms are reduced to natural mumbers,

Definition 4: Formula:

1} An atomic formula is a formula;

2) If A and B are formulas, then A A B, AV IF and A O B are formulas;

33 K A is a formmule and o is a type, then ¥z € 0.4 and 3z € 0.4 are formulas.

Ala/r. byl denotes simultaneous substitution of @ and b into any free occurrences of = and
/ Iy]
y in the expression, A. Also, 4{x) denotes a formula A which contains z free. A(z]la/x] is

denoted A{a).
A Harvop formula is a formula which has no constructive information.

Definition 5: Harrop formula:

11 If A is atomie, then 4 is Harrop;

2 If 4 and B are Harrop, then 4 A B is Harrop;

3} If A 1s Harrop, then Yo € 0.4 1s Harrop;

4) If A is a formula, and B is Harrop, then 4 O B is Harrop.

2.1.2 Rules of inference

The rules of inference are I-rules and E-rules on Vv, A, 2, 3, and V of natural deduction,
equality rules including reduction rules of A-term, ¢ f-then-else, and p-terms, and duction

- 4 —

cules on natural mumbers and lists:

[= 1:nat, Alr — 1} (hd(z) o, tl{z) Lle), A(tlx)]
.-‘l.{_[]*,! Afz) Afl) Alz)
Y £ nat. A{z) Wr e Lia) Alx)

2.1.3 Realizability

Realizability s defined in QPC F, o miner extension of QPC, and is a base for the natve

version of program extractor called Forf.

Definition 6: QPCH
QPCT s obtained from QPC by adding the following clause io definition 4
A7 1f ¢ i= o term and A is a formula. then ¢ gpe A s & formula.

Definition T: gpe-realizability
13 If A is Harrop, then [} gpe 2 el 4
Maqpe A B v alAnbqpe A Daple b gpe B

where o 15 such that o 0o = 7 for sowe 7
) \ dlel P poo . P
3 {a. by gpe Jr € m A= o A Ale/r] A b gpe Ala/x]

1) a gqpe Vo £ a4 ol vy calupla,rpgpe 4)

Sy la,be) gpe Av D 4 {a —left oAb gpe) ala = right 5 B Ae qpe B)

G) (o b gqpe AN T = gpc A bqpe B

The chief differences frous Lhe standard q realizability are scen in 1) and 3). For 1}, the
venlizer of atomic formula is any term in the staudard g-realizahility, but gpe-realizability
gives { | to reduce the redundaney the extracted code, gqpe-realizability 15 similar Lo px-
realizability [4] in this respect. For 3), the reshizer of AV B type formula 1s the concatenation
of three kinds of terms: le f1 or right showing which formula really holds in the disjunction
of 4 and B, the realizer of A and realizer of B. Therefore, for example, if 4 holds,
the realizer of 4% B is (left,1,%) where 7 is the realizer of 4 and ¥ is a dummy code.
On the other hand. the standard g-realizability gives the concatenation of two kinds of
information: lefi or right and the realizer of A or B. This idea leacls to the notlon
of reslizing variable sequences and lengths of formulas which are the base of extended

projection method explained m 2.1.5.

Theorem 1: Soundness of gpe realizability
If A is provable in QPC. then there cxists a term called realizer. ¢, stch that € qpe A 1s
provable in QPCT. Also, FV{(e) C F1[4).

Fri is the procedure which extracts the realizer of the theorem from its proof, and the

forin of the realizer is given in the proof of the theorem.
Definition 8 Realzing variables: RulA)

1) Re(4) % () -~ if 4 s Harrop

2) Ro(A n B) "2 (Iiv(A), Re(B))

3) Ro(Av B)= (=, Ru(A), Ru(i}))

rllf

1) Re(A o B}y Re(B)
5) Ro(ve € 0. 4) 2 Ru(A)
d._:

G} Rol(dr £ 7. 4) = (=, Re(A})

- is a fresh variable, and {z, Ro(A). Ro(B)), for exmnple, weans the concatenation of a
variable, », Ro(A and Re(B). Therefore, Ru(A) is o sequence of fresh varables introduced
i 37 wnd G).

Rewlizing veriables are used in Fat as the code extracied from discharged formulas. For
example, Ext for { 5-1) application is defined as follows:

L

i
]

Fixt

i ..ti] R .:~

iy E
= ARu(Ad) Eal (-)

A-B 2]

Definition 9: Length of & formala
The longih of a formmla 4, [(A), is the length of Fe{Ad) as o sequenee of variables.

214 pr-neri

p-tern is the realization of induction proofs: p (zg.-- z029) Flzg. - 200) (m 2 1)
whicl 1= also enlled m-dimensional malti-valued recursive eall funetions. The intentional
mcaning of j-term is the minimum solution of the following fixed point equation in some
snttable clomad,

(zp, v, 2a1) = Fizg,- - za-1)
If Fizu, -, 2n—1) 15 expanded into sequences of terms, (Fy(Z), -+, F, _1(Z)). the equation

can he sobved: ':.jf‘- ?rn— ! FI{ f..l-u"':fn—ll 1.e.,

.'”'::U\"':‘:ﬂ—l:l'F{'J:l'.h"'ﬂ'!r—lll'—-\ - fu--].l
where
fi=pey Fi(foo fi vz fip o faa) D<i=<nu-—-1)

The program extraction procedure for structural induction on lists is as follows:

Ddlix) o tlx) s Lie), Alil{z))]

:_-‘lb E]

-1.{'.-:.:1'.?': Alx) :
Eat ' (Lo bind)
Vo € Lio). A(x) '

o
= pz A if z =l then Eﬂ(,’g EJ)

¥
else Ext (AF) [ap(Z, tl(x))}/ Re(A(t{2)))]

—_—f =

wliere T is o new sequence of variables of length I{A(t1(2)))(= H{A(nil)) = [A{x}))
Ext for mathematical induction is defined similarly.
2.1.5 Extended projection

(1} Ordinary projection
proj(i) is the function which takes rth projection of the given sequence of terms. TFeor a

finite set, [et {1, i} € {01, ,n — 1}, of natural numbers, proj(l) is the function
which takes o subsequence, {5, -, ty,), of a given sequence of terms, {fo, -+, ta—1). Also,
proj _h(i) (or proj-1(1)) takes first {or last) 1 elements of the given scquence of terms. tseg(i)
takes sth to the last elements of the given sequence, and #tseq(i, 7} takes ith to 2 + 7 — 1th
elements of the given sequence.

Theorem 2:
The term extracted by Fat procedure from a QPC proof can be expanded to a sequence

of terms.

Note that in the definition of Ext for (L(a)-ind) in 2.1.4, Ext(Zy/A(0)) and Ext(X, [Alx})
are expanded into sequences of terms of length [{4(0))(= [{A(z))). Therefore, the p-term
in the defiition of Ext can be expanded into a sequence of terms of the same length as
explained m 2.1.4.

As van be seen from the definition of gpe-realizability, each element of the sequence cor-
respouds to an 3 or V occurrence in the theorem. Also, the 3 and V occwrences in the
theorem which correspond to part of the realizer can be pointed with the positions of
variables in the realizing variables of the theorem.

Therefore. projection functions can be applied to the extracted code to obtain the part of
the realizer which is really needed as the program. However, it does not always work well
for mduction proofs. Assume the following p-term:

T wlzg, zy) Axaf =0 then (0,0) else (ap{zy, 7 — 1) + 1,ap(ze. 7 - 1)+ 2)

It can be expanded to pza. Az.if © = 0 then 0 else ap(z1,x — 1) + 1 and pzy deaf o =
(} then 0 else ap{zg, £ — 1)+ 2. Then, the code, proj(0)(T) alone is not a reasonable program
hecanse it calls prof(1)(T) from inside.

{2) Extended projection

Extended projection is the projection applied on proofs instead of extracted codes. As
explained above, any part of the extracted code can be specified with a set of positions in
the realizing variables. Let I be the set of positions in Ru(4), and let II be a proof of 4.
Then, the procedure Mark attaches the finite set on each occurrences of formulas in IL.
For example, let A (PAQ)VR, {P)=2,(Q) =1,1(R) =3 and I = {0,2,5}. 0 points
the V occurrence in A, and 2 and 5 point 3 or V occurrences in P and R.

e

l"‘il

-
'-' =1
F:U '{:1 H Q
— KU 1
T, W Fre
. L Pag Y
Mearlk ant { - —
f ek ‘Irn _J‘Jl (P A li-l_r]_' v J' {I:'_F.-""' Eg] "'-'.R}’{nl"-llf,]

' -
Mark [{: _'F“) Merk (

. {P."‘-ﬁ)rpl
1P.l"x|:-}_l|"'.'rf|='[|;d'

10,2,5} and {1} attached to the nodes show which parts of the code extracted from the

subtrees are needed to extract the code specifind by I. [1s called the decluration to 4.

The program extractor is modified to handle the tree, Mark(I,TT). and it is called N Exi

ljl'firff{':.'ll'l.'l .

The advantage of extended projection is that Mark procedure ran detect the situation
explained in the example in (1)L 7 is extracted from a proof in induction of a formuls
"C-‘.l'._'—l{:ﬂ:l of].L"ll].lﬂll 2. I one tnies to take the Oth projection, take -f{}]- as the declaration.
Then, Merl attaches {1} to the ocewrences of mduetion hypothesis. A(> — 1), which
weans the Oth element of T recursively calls the 1th element. Therefore, it turns out thai
hoth Oth and 1st elements must be cxtracted to generate reasonable pr ogram. The number
11 1] 1 12 called o érﬂnﬂrﬂf :r:r:'rn.f“.'.lrlr rewmnber, and this can he elininated |:|1., F]]L"J_-.]HL. th

declaration. If the declaration is enlarged to {01}, Mark attaches {1} to the lllf_lll{'tlﬂﬂ
liypothesis. However. 1 1s not au overflowed marking number hecause it is contained in the

new declaration.
2.1.6 Other notions and terminologies

A proof tree is often denoted as (/B instead of

ﬁ[l’:‘nic]

The proof theoretic terminologies nsed in this paper follow Prawitz [27].

MNormalization]':!'f_:-f_“i-_"!.luI'r-.‘ 15 the get of [‘U]_]_i’_)“‘i]]_H reduction rules of pT'Uﬂf trees:

[;i" . lf.-']
<1
o Pl g ool
tee YWre a. P(z) T Yereduction [t € o
P(t) o = Faltfal
Pit)

b Za
Yo B (5 A
A AD B (5 -E) D-reduction 5;
B - == B
T (4] [B] -
A p DL D 2
A H{U_I} C (-_(:_F] V-reductiony [A]
C - = 3
EI
Zo (4] [
i ol }—:1 E? E
Av B{-) e (3.E v-reductiony 5]
-) E= By
O
Eﬂ E]
A B A-reductiony g
A R
Lp L
A B f-reductions Iy
iAnB (A1) — I
M-
= (A E)
o By [x:o] 4]
o A[f ‘E] EE En E-|
Jreeo. A C) Jreductron {t:o] Alt/r]
c 8 T Saft/z]

.

As is well known, normalization procedure corresponds to partial evaluation of extracted
codes. Y-reduction and D-reduction correspond to §-reduction of extracted codes.
v-reduction simplifies 1 f-then-else sentences. A-reduction and I-reduction is umplicitly
embedded in Ext as will be explamed in 2.2.2,

2.2 Some modified features
2.2.1 Modified v-code and logical terms

The definition of Ext for (v-E) application is as follows:

(4] [B]
S By o
Ext | 4¥8 L € (v.E)

i beval{proj (0 Ext(Se/4 v BY) = left)
A
then Ext (?‘) [ttseqi 1 I{ AV Ext(So/A V B)}/ Re(A)]

=,
else Frt f“?‘) {feeqll{ A} 4+ 1 Ext{Zy /A V B))]

The decision procedure extracted by Bzt from (V- E) application cau be simplitied if Av 8
iself 1= computable. Logical term is a class of formulas which are computable.

Definition 10: Losical terms
Moy cop-- oy oy mud by sy, - - by o (0 2 1) amnd assune Lhat R, which iy =, <,
=, < or 2,08 well-defined on e, (1 <8 < n) thenay B A Aw, R, s alogical term.

Note that logies] terms are Huorrop formulas. Then, the wodificd Exf procedure 15 as

fh“[MWL

4])
5 L o
2o L

Eat | LB E_ CIVN

= i herall 4)

Y
then Eaxt (ﬁ_)

i

w7

e

elee Ert (?) eeg(1) Lrt(Yo /A v 1N Re(BY

if A is s logical ter
vl L bevali 13)

i
—1

then Exd (T) tseqi 1} Ext{Se/AV B))/Ro(4)]

Tj)
|r.-|" F..‘:f —
: (L_,

A0 D is oa losieal tenuw

o if beral{prop () Exd(Zy/av) — le fi)

v

then Eat ('EI) Frecg(LI AWV Ert{Zy/AV Bl)/Re(4)]

£

eler Fat (

IL‘j

2

] el) + 1) Frt(To/A V B)) Ru(B)]

A

~,

cecotlierwise
237 Jef-constraet
(1) Substitution in Ead procedure

In the program extraction from (V-F) application, the code extracied from Lhe proof of
A L7 iz substituted to Rel 4) and Av{ B) in the code extracted from the proofs of 7 from

A and ¢ from B. This sort of substitution is also performed in the handling of proofs in
(== E} rule:

22 o]
ED E]
dr e m A I N0
= (35)
Let (#5.61,---.tx) be the code extracted from (Tp/32 € ¢.4), and let T be the code

extracted from {2, /C). The code extracted from the whole proof is

Tlta /=, (t1,- -t)/ Re{ A)]. The substitution in the handling of (3-F) application jmplicitly
performs 3-reduction if 3r € 0. A is proved by (3-T}.

These substitution procedure in Ext ave slightly different from the other extractors such
as PX (Ref. 4} in which programs with lcl-construct or similar program constructs are
penerated instead of performing substitntion in the program extraction. The substitution
makes the extracted program a more efficient.

{2} Limitation of the substitulion in Lt

If the major premises or formula occurrenices above the major premises of (V-E) applica-
tions or (3-E) applications are proved in induction. the substitution of Ext is a little bit
complicated., Assume, for example, a (3-E) application is as fullowes:

T ¥ . .
L i X T
o -1 (ind) [o] [,ﬁl [t/z]]
t:og VexecodyecrAd - 3
(V-E) ———
Jy € o Alt/x] C R
GI '.:I-ﬁ’:l

Tlie ende extracted from the proof of the major premise is

aplp{za, -2 201)-Fizy, - 1201),1). This code must be expanded into a sequence of
terms to perform the substitution. As cxplained after theorem 2, there is a sequence of
single-valued recursive call functions, fo,---, fa—1, such that

.“"[zﬂs' o -.zu—lJ-FrLzﬂs T rzn—lj = [fﬂ! o !-.f"—]]
Therefors,
ap{plzo, - 2n=1)-F (20, 21)y 1) = (ap{fo. t), -~ - apl faz1, 1))

However, this complicates handling of multi-valued recursive call functions, in particular
implementation of the interpreter, and makes the extracted programs difficult to under-
stand. Also, from the viewpoint of extraction of efficient programs, it is preferable to handle
p-terms without expanding them into sequences. This is explained in chapter 6.

(3} Introduction of let-construct

let-construct is introduced to handle p-terms without expansion. For example, the code
extracted from the last example of (3-E) application is

let {y, Ru(Alt/z])) = ap(p(zo, - 2n—1) F(70, -+, 2n1). 1) e Bxt(5,/C)
mstead of

Ext(S2/C)ap(fo, 1)}y, (ap(f1. 1), -+, ap(far, 1))/ Ro(Alt/=])]

— 11—

3. QPC?

QPPCE 35 a predicative extension of QPC which s obtained by introducing o new type
coustoul, prop, predicate variables and introduction and ehmination rules of second order

universal quantifier,

5.1 Laneunge of QPC?

The langusge of QPO is obtrined as follows:

3.1.1 Twpes

New constants, type;. typey and prop, are introduced.

Definition 11: Types in QPC?
11 If 7 15 a type defined 1n definition 2, then o @ fype;;

MM ey cdypey. e ay ctypey (0 2 0) then gy < oox gy, = prop : fypes;

The types i QPCY are those of type fypey or types.
3.1.2 Formulas

Definition 12: Class 1 formulas:
1] The formulas constructed by the clauze 1) and 2) in definition 4 ave
class 1 formulas;
DI e type; and A isoaoelass 1 formmla, then Ve € .4 and 3r € 0.4 are
class 1 forumlas,
3 Plag. L, with a predicate variable P of type oy % - 2 gy s prop (@ fypes)

and o; co (0= < n) s a class 1 formula;

Definition 13: Class 2 formulas:
1) Class 1 formulas are elass 2 formulas;

201 4 s a class 2 formula and oy % - x o, — proap o types and P s a predicate variable,
then VP &€ gy x -+ x g, — prop.A is a class 2 forumla,

The fornmulas of QPC? are class 2 fornmlas.
313 Tenns
The terms of QPC? are those of QPC and the non-computable terms defined below:

Definition 14: Non-computables terms:
a) Predicate variables, P, (), -
b} Abstracts AMieq. -, 7,).p where p is u class 1 formula and {2, -, 2.} C FV(p);
o) If P is a predicate variable and a; {1 <3¢ < n) is & term,
then RV{P{ay, -, 04}) is a term { Rv-schema);
e} If P is a predicate variable and T is a term, AP. T 1s a term.

{program schema)

3.2 Rules on Formmlas and Abstracts

Aids o closs 1 formulu

Aprop
The rules of inferences in QPO are, for exmuple. witten as follows:

Aiprop Bopop 4 0

1A (A-D)

However, A : prop and I prop s vsnally dropped,

mictypey (0=i=n) Proy =m0, — prop (ty, - tp) o] X oo X Oy

Ploy o, o prop

Goprop {myo 2.} CFVIGY wcap o ttupey (<05 n)

Alay, - -..r-,,:l.éj Doy o M@, — prop

g, typey (07 <n) ATg:oy = w0, S prop @:op X - Xdg

gla/=] : prop

3.5 Seeond Ooder ules of Inference

[Pray % xa, = prop

Al DP) W7
e _ — T
PPy % xa, — prop AL
NEf oy weway, = prop VP Eapwe o, = prop ALT)
AL .f Proj i : proy LIVE-ED
A(NT.) o
AlAT.G) is obtained by translatimg all the ocowrences of I? s [ullows:
_ o o dered -
Play, o) = aplMay -2 g (ey, o)) - Glanfas, oo anf]

3.4 Wormalization rule

P oy % xay, — prop)
F(P)
.JLL.T],.-- L)G T Moo wm, = rop VP € oy %--wa, — prop. F{P)

Fl,rzl"n[it'h“'.rn}-*}}

o
i
W? reduction PAler, b g o ® o ay — prop)
= E][,‘H{Jf;,'_:'.,ﬂ'nj-"i’j
F(":‘-["rle T ':rf‘r‘:laljl

This rule is used in the program extraction from QPC? proofs which will be shown with
an example in the next chapter.

13 —

4. General Scheme of Specifications and Program Extraction

Iin this section, o method of higher order programming in QPC and QPC? is presented
through the example of map-function, and the naive version of program extractor, Exf, is

extended to QPC?

4.1 Specification

QPC? does not handli polvmorphic prograimning because, although it allows secoud order
wversal quantification on predicate vaviables, types and formulas are strictly separated
and the tvpe svstem in QPCY is not polyierplic. However, it can handle a sort of
pavamervic prosiguming. Assume a recursive call function which takes an element. x. of
Lig) and apply a given funetion, f, of type ¢ — 7 recursively on each element of . This
tunction, rap. can e expressed as follows:

Az draf o — o then nil else apl fohd(x)} o ap{ =, H{x))

map-function can be extracted from QPO proots by parameterizing f i the proofs.
[first wlea of PATAMETCTIFING ;f 15t L!n&m‘if}' it:

Yiea v Speelf)
wlrero
Sprel F1 = T e Ll{aYdy € L{+).
femgthla) = length{y)
A e et 1 <7 <length{z) O flelem{z.1)) = elem{y.1})

o L . .
length = pedeaf o= nid then 0 elee aplz.tl{2)} + 1
def S .) .
elem = pzAx hidf o =1 then hd(2) else aplap{z.tl{z)), 1 = 1)
This specifieation and the proof of it can be deseribed in QPC, and the map function is
extracted from the prool. The application of the map function to some particular function,

g of trpe ¢ — 7. s performed by (v E) rule and ¥-recduction rule:

[f:o0— 7]

by Yo
E(; Sll'"'f'cl:_fj [".Fr-_!]I !Q‘ L0 — TI
[io7 iEn—rspe) Yred _Salold]
SII'.]'E'I"I:-E;I'} = SPE c[H}

However, if the funetion, g, is given as a specification ¥p € 0.3¢ € r.¢(p. ¢) and its proof,
the function application cannot be described in QPC.

The second idea of parametenzing f is to universally quantify the mput-output relation of
the function in QPC?:

WP EaxT = prop¥p e adger. P(p,¢) D A(P)

.14

where A(P) 1s the relation of the list processing function in terms of P,

iled

AP} = Yo eL{s).3y € L(7).

lewgthic) = length(y)
ALY € nat (Ll <1 < length(x) D Plelom(rf), elemiy, 1))})

The specification is proved by | VT rule.

4.2 Extraction of program schemata

The extraction rule for (V-1 is as follows:

P omy e gy — prop)
T
Py 5 Ao s
Eat L el = AP Eazt
¢ WIP Sy %o x g = IO F:P}{) (F{P})

The definition of R is sliphtly changed: Add the following clause to definition 3

T Ru(Pleay, - a,) 4=t gy Pley. - u,) where 7 is a predicate variable and n > ()
) £ wi, . ; . I =

The extracted ende from an application of (¥2-1) rule has similarity to second order Lyped
lumbda term (A-caleulus [24]), but it cannot be Landled by F-conversion rale only. The

code 15 not regarded as a program, but a M-abstracted program schema.

The program schems extracted from the proof of the second specification in 4.1 15 1
the form of AP. 7. T ey conisin P oin the Rv-schema, RV{Pla. b)), and [Pla, b))
as in o any[l{Pla. b)), proj B{l{Pla.b)),T) and projt{{{P{e,b}}.T)} because Exf try to
deternune the realizing variables if occurrences of assumptions are discharged by the (O
I, (W-E) and (3-F) applieations, and the length of formulas must be determined in the

following procedure:

Ll
i

Ert ﬁmn Wleft, Ext(T/A), any[H{ B)])

Eet | —B—vn) | & (right, any[i(A)], Ext(%/B))

Eot | A28 gy | % proj h(I(A), Ex#{S/A A B))

15

5

—

Fvi A—BQ{;N-EJ w proj t{I(B), Ext(S/4 A B))

When this schema is applied to an abstract of type o x 7 = prop, it 15 converted to a
program. This s performed as follows,

A Tunction of type o — 7 is expressed as the fornmla, ¥p € o.3¢ € 7.4(p, ¢) and proof of it
where Ap, ¢).q is some particular abstract of type, @ = r — prop. The program schema is

applied to the abstract and the following reduction i1s performed:

apl AP, T M, g).4)

! a-rednetion

T[Ap,g).q/)

J L i'i'llI II'I'_IIJI‘TII'I‘

T [Mp, 4).q/P)

i
Ten=viedustoon

Es

T Alpogrgl P

rv-recduction translates the occurrences of RV(F | Alp,)@/ P]), where F is a formula con-
taining & predicate variable P free, into the value of Bol F[Mp, ¢).§/ P}, Also, len-rednction
translates the accurrences of [{ FMp, ¢).q¢/ Pj} Into the value of it. T“[}.{p,_q_}.@;fﬁj is the
obtained program.

Similar problew vecurs for the induction proofs. As defined in 2.1.4, the paramecter of
the p-term extracted from a proof of Ve A{r) in induction is a sequence of new variahies
of length (Ve Al »)). However. if A(z) contains predicate variables, the length cannot be
deteriined, Tn this case, Re(Alz — 1)) or Ru(A(tl{x))) is used for the parancter, and the
parameter may contain Re-schemata.

The =ame extraction can be performed at proof level. ;aif}l{_p__ ql.q) 15 proved as follows:

[7p-3¢. P(p.q)]

ACP) (5-1)
5y wp.3q. Plp, q) > A{P} V1)
b Mp.ghd VEP(VpIdePlp,¢) D AiP)) (V2 E)
v Jda-glp,g) vp-3g-gip.u) O AL g).0)

e (D-E)

A(A(p, 4)-9)
After performing v -reduction, the proof is as follows:

p.Fg-q(p. q)]
Zy[Mp, q).3/)
Sy Al g)a) e -1)
A(Ap,g)-q]

Then perforun the extraction procedure, Eat, to obtain the code:
[[plf.«"'.F.TF_._?}
where T is the code extracted from

[vp.3q.q(p. ¢l

Ta[Alp.0).3/P]

A{Mp, q)-¢)
and i= in the form

pz e foa o= nil then nil else r;pfprqj(l]]l(?},h{f{.r}:} caplz,tiix))

it A(A(p,q).q) is proved in induction ou lists. F def Rul(¥p.3q.qip,q)) and prof(0)(F) is a
variable for the value of ¢ bound by 3. Also, f is the code extracted from (T /¥p.3¢.4(p, ¢)).
If =i-recduetion is performed on the last proof, the proof 1= as follows and the extracted code
15 TJ,_.[T;'?].
Lo
[V 3q-Glp, ¢}
2 [Mp.g) g/ 7]
A(Mp, g).q)

453 Redundancy in the Extracted Code

For some particular relation §, Re{A{Mp,¢).4)) = (=, Ru(glelem{x, 1), elem(y, 1))} where
- is the realizing variable for the value of 3y € L(7) in A(A(p,g).g} and the value of z is
the only eode which needs to be extracied. Therefore, if the length of the relation, g, is
move than 1, the code extracted from the proof of A(A(p, ¢).7) has redundancy. Extended
projection should be userd in this case to eliminate the redundant part of the code.

4.4 Polyiorphism

ML-polymorphism (28, 29, 30] can be introduced in the base type theory to obtam an
extended system called QPCE. First add the following clause to the definition 11:

3) Tvpe variables, o, 3.+ are types of type;;

Class 2 formulas defined in definition 12 are trivially extended to those containing type
vanables. The formulas of QPC} are class 3 formulas defined below:

Definition 15: Class 3 forinulas:

1) Class 2 formulas are class 3 formulas;
2) If 4 is a class 3 formula, then Ve € type;. A is a class 3 formula.

Also, the following rules are added;

[ox = typer]
A o type; Va € type;.A
Ta & fype,. A Alo /o]

The program extraction procedure passes through type abstraction aud wstantiation be-
canse Furt generates Ly pe-free programs or prograin schiemata, so that no-type information
is needed,

lox : typey]
.

o

: A el
N Va e typey. A ! (:)

N !

Zo T
Fet | & fg.rp; "':"f?: E typey. A def p o _ i _)
Aler fo] Too & dypey.A

In terms of realizability, this extraction is defined as follows if A is & class 1 fornmla without
predicate variables:

a qpe Yo € type;. A = Vo € typer. (e gpe 4)
Tlhis definition is similar to Kretsel-Troclstra realizability [22].
The specification given in 4.1 can be written in QPC} as follows:

ve € type, W8 € type VWP ea x § — prop¥p € adg € 8. Plp.q) O AP

4

APy v eL{a).3y € L(B).
fenngth{z) = length{y)
AV € nat (1 <1 < length{x) D Plelemiz, 1), elem(y,1))))

QPC2 will not be nsed in the following. However, the description n QPC? can be trivially
translated to that in QPC3.

5. Extraction of map function

Tnu this section, the general schema is applied in two cases: ¢ = 7 = nat and the function

applied on each element of a o-list is suce = Az.x + 1, and o = nat, 7 = bool, and the
function which returns # : hool if the input natural number is even and [: bool otherwise.

5.1 Specification and Proofs

The specification of map is, agam. as follows:
Map: ¥2P € nat x v — prop.(¥p € nat.dg € a Pip.q) D ALFP))

where

AP e Lingt).dy ¢ Lia)

length{z) = len gthiy)
AW e nat. 1 < 1< lengih(e) D Plelem{x, 1), elem{y,t}})

and @ = nat or bool. 1t is proved by (v9-I) lullewed by (2-7) and induclion on Linat).

The specifications of successor function and the Tunction which retuins a booleau value
according to whether the input natural number is even or not are as {eillomws:

Suce: Wp € net.dg C netg —p+ 1
This is proved by (V-I) and {(1-1}.

Even.QOdd - ¥p €nat.3q : bool.
((Frenatp=2 chg=)Vv(yenatp=2-y+1Aq= ial

This is proved by induction on pr: nat.

Note that (g = p+1) = 0and {{3r € nat.p=2-2Aqg =1}V (Ay ¢ nat.p = 2 y+1Ag=
1) = 3, therefore, according to 4.3, the extracted code Liave redundancy in the case of

Moap applied to Even.(dd,

5.2 FExtracted Codes from the proofs of Map, Svce, and Even Odd

The codes extracted from the proof of the specifications m the previous section are ns

follomars:

Muap-terin
= AP Ay RV(P{p gl
{20, RV (Plelem(tl{a), i), clem{y,1})}).
Araf = ml
then {nil, M.any[l{ Plelern(nal, 7}, elem(nil, 1}})])
elae (aply, hd(x)) = aplzq, tl{z)),
Mifi=]
then ap(RV(Fla, i), hd(2])
else aplapl RV Plelem(tl{z).1), elem(y, 1))}, t{z])],
)

Suceterm = Ap.p+ 1

Even Odd-term

= F"'i:"l: L1 S, :-1]
Apaf p— 0 then (8, 1ef1.0, any[l])
else of aplzp.p= 1) = lefi then {fyright, w1 oplz2,p 1))

else (t,left, ap(z4.p — 1) — 1, any(1])
The following fuuctions can also be extracted by using the extended projection method on
Euven Qdd:
i) Declaration = {1}
jzyApaf p=10then left else if aplz.p— 1) = leff then right else left
1) Declaration = {0,1}
plzn, 2y) Ap. if p =0 then (t,left)
else 1 faplzy,p— 1) =left then {forght) else (£ It
iti) Declaration = {1,2,3)
gz zroza) Apo i f po= 0 then (e fi 0, wy[1])
clse if aplzy.p— 1) =1lefi then (vight any|ll ap(ze, p — 1))
else (left,ap(zy,p— 11— Loany1]}
Other declarations canse overflow of marking numbers. The first program is the most

cfficient. but it retnrns the constants, le f1 and reght, instead of boolean values, The third
program returns the triple of boolean values, the constants le ¢ or right and anyll].

5.3 Codes from Map applicd to Suce

.
Tu this case. a fully efficient program can be generated by the naive extractor with ¥°-

rehiction and proof normalization.

5.3.1 Naive Extractor with v*-reduction

ap{ My pza. A i f o= nal then nal aply, hd{x)) o ap{ =g, tH{2)), Ap.p + 1}

519 Extractor with Normalizer

pzAxaf @ = ned then nil else (hd{z) + 1) o ap{=z, ti{x))

Yooreduetion, D-reduction, and Y-reduction are performed.

54 Codes from Map applied to Fren_Odd}

— 30 —

541 Naive Dxtractor with ¥e-reduction

ap{ Mz, 21,02, 03)- plzg. 51,22, 23)
Araf o=l
{med, M any[3])
(aplra. helle)) o apl(2o, t{2)],
Mol i=1then ap{iz;, ve, 25), hd{x)}
else aplap({zy. 22,230, 1200 — 1)
Bty 0y 1 1).
Apifp=10
then ($left.0, any[1])
elae 1 f aplw,, p— 1) =left
then ([, right_any|l]. aplwa, p — 1})
else (8 1eftaplwy.p— 11 = Loany[1})

*aive extractor with nonnalizatbon

]
e
T2

pl 2y, 2o s o) A f o=l
(nil, M.any[3]}
let {yo. 1. V2. U3l
- “F':I“.rr‘-’u11[-‘1¢'{f-'£s'[1"£}
Apafp=10
then (8, left. 0, any{l])
else of aplw, p—1)1=left
then (foright, any[1]. aplwe,p — 11}
else (L le ft aplug, p— 1) = Loany[1]),

Tz)}
i {yg o aplzp, ti{a)),
(1'L'|'-- El_fl 'i' =].

then (v, we, us)
elac aplapl(zy. 20, 2a L Hlx))7 — 1))

This program still has vedundaney, i.e., only the Oth term is necded. Thervefore. extended

projection should be used.

5.4.3 Exrended projection method with normalization

Apply the extendesd projection ethod to the normalized proof of

Map applied to Bven_Odd with the declaration {0} because Oth code whicl is the value
of 4y € L{hool} in the specification is needed. However, overflowed marking nwnbers are
found, go that the declaration must be enlarged. The following are the ouly cases n whirh

no overHowed marking number oceurs.

21

ip I ={01]

PSSR :'

Ariaf x = nil
then (nil, Mooy t])
glse let (g,)

= i pel ity

Apaf p— G then (£ left)
clsc o f aplwyop =1 =Teft then (t vight} else (f e ft). hd{z))
art g epl 2L (b
Mafid=1then 1 rlar rrj}lf{.tf){.‘h.ffi;i!"]jl. F— l;l

) I—{1.2.3}

TN

Arvaf o=l

then Miany([3]

elae led I:_:_J‘“ RSN

= ap ey rey L ity L
At fop= A then (e f1.0 any 1))
else d f apluoog.p— 1V = e ft then (right, any[1;, aplug. p - Li}
else (e ffoaptwyg p- 1) = 1 any[l]), hd[z))
i Arat =1 thenly i ug) olae aplapl(.20, 22) e bhe — 1)

G. Esxrended Peojection with Ovdinary Projection

The best: program extracted extracted from Map applied to Even Odd is that piven m i)
in 543, However, 1t 1 2-dinnenstonal immiti-valued recursive call function, and it turns oul
that thw caleulation of the second elewent of the sequence of terms except in the inner
multi-valued recureve call funciton jefaeg, wy). - - - in let seatence s redundant. This can be

made clearer if it 13 explained at proof tree lovel.
The structure of the normalized prool of Afap applied to Eren.Odd is as follows:

"
—u

Jy.Finil.y} INDUCTION STEP

-7
Yo Sy Flay) (Liz)-ind)

INDUCTION S5TEP 1s as follows:

@hei(a),)
[} RUCIRE
f L 21
hdiz):nat Yp3Sg.qip.g) g y: Linat) Fla,g:oy)
[E]yF{ Hiw), .Tf}] BH'F{w’ U‘J (H_E}l

dy. Flz.y)

let sentence is generated m the extraction at { 1-27)% appheation: the code extracted from
the ree, (Sa/¥p.Ja.qlp, a}/Fe.qlhd{], ql), is to be substituted iu ¢ and Ho(glhd(z), o))
Sy F(tl{z).y) is the induction hypothesis. If the declaration, {0}, is given to Yo Jy. F(x, v).
the marking of the induction hypothesis is also {0}, in other words, there are no overflowod
warking numbers in the outer induction. However. the marking of ¥p.3q.4(p, q) alzo {0},
and 5 is another induction proof. The marking procedure on B, finds an overflowed mark
ing munber, 1, at the indnction hypothesis, Jg.g(p-1,¢), then the murking of ¥p 3¢.qlp. ¢)
rust be enlarged to {0,1}. This leads the enlargement of the declaration to Y Jy. Fir.y)
into {0,1). This is the reason why the code in 5.4.3 i} is 2-dimensional multi-valued recur-
sive call function,

The extracted code can be improved by using the cxtended projection locally: inuer induc-
tion proofs are linked with ordinary projection constructor. Then, the final program is as
trllowes:

jizp.
Araf o =ml
then nil
else let (v, 1y)
= g el g, uty L
Mpd f p= 0 then {t left)
el<cif aplw,,p—=1) =left then (¢, right)
elsc [t left), hd{a))

i iy o oapl za,)

The E].illﬁ-‘l‘}’ p["t}jf‘(‘.tilﬁﬂ.‘ I:II:JI.:._. 1 } = i, 15 1_'1r-}l“ﬂ:r1'1'l'll’-':ﬂ iﬂ‘ll:lititl}-’ in let-sontence,

7. Conclusion

Techuigues and examples of higher vrder programming in a second order wfuitionistic
logic, QPC?, were presented in this paper. The second order feature itself does not induce
polyinorphiem as in the type theorctic formulation of constructive logic. However, it allows
a sort of paraineiric programming, and by making the base type theory second order, it cun
be enhanced to a programming systenn with ML-polymorphism. Program extraction can
be performed by nsing a variant of q-realizability for the first order part and second order
pormalization melhod which is comparable to F-reduction of Reynolds-style second order
typed lambda calenlus. Also, to generate a redundaney-free prograw, various techniques
such as Harrop formula and modified V-code are used. In particular, rood use of extended
projection combined with ordinary projection is effective for the nested induction proofs. It
turncd out through the experimental study that extended projection should be used locally
i1 the ease of nested induction or in the situation where more than one induction subproof
oceurs in a whole proof, and the extracted codes from induction subproofs should be linked
with let-construct.

References

(1] W. A, Howard, “The Formulas-as-types Notion of Construction”, in Essays on Com-
binatory Logic, Lembde Caleulus and Formelism, eds. J. P. Seldin and J. R. Hindley,

Avademic Press, 1980

[2] S. Feferman, “Constructive theory of functions and classes”, In Logic Colloquium 78,
North-Holland, Amsterdam, pp. 159-224, 1978

[3] M. Sate, “Typed Leqical Caleulus”, Technical Report 85-13, Department of Information
Science, Faculty of Science, University of Tokyo, 1985

[4] S. Hayashi and H. Nakano, “PX - 4 Computational Logic”, The MIT Press, 1988

5] 5. C. Kleene, “On the interpretation of intuitionistic number theory™, Journal of Sym-
holic Logie Vol. 10, pp.109-124, 1045

[6] A. 8. Troelstra, “Mathematical investigation of intuitionistic arithmetic aud analysis”,
Lecture Notes in Mathematics Vol, 344, Springer, 1973

(7] N. G. de Bruijn, "AUTOMATH - A Language for Mathematics”, Les Presses de
L universite de Montréal, 1973

(8] N. G, de Brijn, “A Survey of the Project AUTOMATH”, in Essays on Combinatory
Logic, Lombde Caleulus and Formalism, Academic Press, pp.579-606, 1980

(9] P. Martin-Lof, “Infuitionistic Type Theory”, Bibliopolis, Napoli, 1984

[10] 1. Swuith. “The identification of propositions and types in Martin-Lof's type theorv: a
programming example”. LNCS Vol. 155, 1932

[11] B. Nordstrom and Iv, Petersson, “Programuning in constructive set theory: some exam-
ples”. Proceedings of 1931 Conference on Punctional Programming Language and Compuler
Architecture, ACM, pp.141-153, 1981

(12} . Chisholi, “Derivation of Parsing Algorithm in Martin-Lf's Theory of Types”, Sei-
euce of Computer Programming, Vol 8, North-Holland, 1087

[13] C. Mohring, “Algorithm Development in the Calculus of Constructions”™, Proceedings
of 2nd Annual Sympostum on Logic in Computer Science, 1086

[14] T. Caquand and G. Huet, “The Caleulus of Coustructions”, Information and Compu-
fadeese, 70, pp.95-120, 1988

(15} 1. L. Bates, “A logic for correct program development”, PL.D. Thesis, Cornell Univer
sity, 1979

(16} J. L. Bates and R. Constable, “Proofs as Programs”, AMC Transaction on Program-
ming Languages and Systems, Vol. 7, No. 1, 1985

[17] It. L. Constable, “Implementing Muthemutics with the Nuprl Proof Development Sys-
tem”, Prentice-Hall, 1988

(18] €. Paulin-Moluing, “Extracting F_'s Programs from Proofs in the Caleulus of Con-
structions”, 10th Anneel ACM Sympoesium on Principles of Programming Languages, 1989
[19] €A Goad, “Computational Uses of the Manipulation of Formal Proofs”, Ph.D. The-
si4, Stanford University, 1980

[20] Y. Takayama, “QPC: QJ-Based Proof Compiler - Simple Examples and Analysis-",
Proceedings of End European Symposium on Programming, LNCS Vaol. 300, 19588

21)Y . Takayama, “Extended Projection - a new technique to extract efficient programs
from constructive proofs”, Proceedings of 1989 Conference on Functional Programming
Languages and Computer Architecture, ACM, 1989

[22] G. Kreisel and A. 8. Troelstra, “Formal systems for some branches of intuitionistic
analysis”, Annals of Math. Logic 1, pp229-387, 1979

23] 1. P. Krivine and M. Pangot, “Programming with proofs”, Preprint, presented at Gth
Symposiui on Computation Theory, Wendish-Rietz, Germany, 1987

[24] J. C. Reynolds, “Three approaches to type structure”, LNCS Vol. 185, Springer- Verlag,
Py 97-138, 1985

(23] M. J. Beeson, “Foundotion of constructive mathematics”, Springer-Verlag, 1983

261 M. Sate, “Quty: A Concurrent Language Based on Logic and Function”, Proceedings
of the Fourth International Conference on Logie Programming, The MIT Press, 1987

(271 D. Prawitz, “Natural Deduction”, Almguist and Wiksell, Stockholm, 1965

1281 M. 1. Gordon, R. Milner and C. P. Wadsworth, “BEdimburgh LCF", LNCS Vol. 75,
IR

|20} L. Dames and R. Milner, “Principal type-schemas for functional programining” . Lidin
ureh University, 10582

30] G. Huet, “A Unaform Approach to Type Theory, preprint. 1983

25 —

Appendix The complete proof of the specificaton.

The proof 1= written in the following backward reasoning style:
< Staternend >
since by < Hule =
= Proof =
end.since;

5 Function definitions

functicn
len{¥:L{nat)) = if X = nil then 0 else len(+1{(x)) + 1

end function;

iunction
elem{x:L{nat), i:mat)
c= 3 1 = 1 then hd{x) else =lem(tl(X), i-1)

end function;

e ap function
theorem /Map/
all Fonat # nat =-=-> prop.
(all p:nat. some g:nat. Plp,q)
-
all x:Linat). some y:Linat).
(len(x) = len{y)
k¥ all i:nat.
(1=<i & i=<len(x)
-> Plelem(x,i), elem{y,i))}))
since by second.alll ¥ (¥-T)
let FPinat # nat --> prop be arbitrary;
all p:nat. some q:nat. P(p,q)
->
all x:L{nal). some y:L({nat}.
(lenix)=lenly)
& a2ll i1:nat.
{1=<1 & i=<len(x)
-» Plelem(x,i), elem(y,i)}))
since by impl ¥ (D2-T)
assume all p:nat. some q:mat. P{p,q);
211 x:L(nat}. some y:L(nat).
{len{x) = len(y)
£ all i:nat.
(1=<i & i=<len(x)
-> P(elem(x,i), elem(y,1i))))

since induction on x:L{nat)
base Y hase case of induction
some y:L{nat}).
{len(nil) = len(y)
£ =2ll i:nat.
{1=<i & i=<len(nil)
-» Plelem(nil,i),elem(y, 1))}
since by exil
nil:Linat) by axiom;
len{nil) = len(nil)
k£ all i:mat.
(1=<i & i=<len(nil)
-» Plelem{nil,i),elem(nil i)}
since by andl
ien(nil)=len{nil) by axiom;
all i:nat.
(1=<i & i=<leninil)
-> P(elem(nil,i),elem{nil, i})))
since by alll % (¥-T)
let i:nat be arbitrary:
1=¢i g i=¢len(nil) -> Plelem(nil,i),elem(nil,i))}
gince by impl
assume 1=<i & i=<len{nil);
P(elem{nil,i) ,elem(nil,i))
since by botE
contradiction
gsince by axiom
t=¢ i & i=<0 by aszsumption;
end.since;
and_zince;
end_since;
end_since;
end.since,

end_since;
step ¥ inducton step
indhyp.is % induction hypothesis

some v:L{nat).
(len{tl{x})=len(y)
i all i:mat.
(1=<i & i=<len{tl(x))
-> Plelem(t1{x),1), elem(y,1})))
some y:L(nat).
(len(x)=len(y)
& all i:nat.
(1=<i & i=<len(x)
-> Plelem{x,i), elem(y,i})))
since by exik % (3-E)

—_ 7 —

some y:L{nat).
(len{ul(x))=len(y)
& all i:nat.
(1=<i &k i=<leni(tl{x))
-» Plelem(tl(x),1), elem(y,i))))
by assumption;
let yy:L{nat} be such that
len(tl{x))=len(yy)
& all i:nan.
{1=<i & i=<len(tl(x})
=> Plelem(t1l(x),i), elem(yy,i)));
some y:L(nat). (len(x)=len{y)
& all i:mat.
(1=<i & i=<len(x)
-> P(elem(x,1i), elem(y,i))))
gince by exiE
some q:nat. P(hd(x),q)
since by allE % (V-E)
hd(x) @ mnat by axiom;
all p:nat. scme gq:nat. P{p,q) by assumption;
end_since;
let gq:nat be sueh that P(hd(x),qq);
some y:L{mat). (len(xz)=len{y)
£ all i:nat.
{1=<i & i=<len(x)
=>» Plelem(x,i}, elem(y,i)}))
since by exil Y (=-T)
qq::yy:Linat) by axiom;
len(x)=len(qqg::yy)
& all i:nat.
{1=<i & i=<len(x)
-> Plelem(x,i), elem{gq::yy,i}))
since by andl h (n=I)
len(x)=len(gq::yy)
since by axiom
len(t1{x))=len(yy)
since by andE ¥ (A-E)
len(tl{x))=lenlyy)
£ all i:nat.
{(1=<i & i=<len(tl(x))
-» Plelem(tl(x),i},elem(yy,1)))
by assumption;
end.since;
end_ aince;
all i:nat.
(1=<1 & i=<len(x)
-> Plelem(x,i), elem(gq::yy,i)J)
since by alll

let i:nat be arbitrary;
1=<i & i=<len(x) -» P{elem(x,i), elem(gg::yy.i))
since by impl
assume 1=<i & i=<len(x);
Plelem(x,i}, elem{aq::yy,i))
since divide and comquer % (V-FE)
i=1 | (2 =< 1 & i=<len(x))
since by axiom
1=<i & i=<len{x) by assumption;

end. since;

case i=1;
plelem(x,i),elem(gq::yy,1})
since by eq-E % (=-E) s=1tnAls)F AlY)

i=1 by assumption,
Plelem(x,1),elem(qgq: yy.1))
since by eq.E
elem(x,1)=hd{x) by axiom;
Plhd{x), elem(ga::yy,L1}}
since by eq.E
elem(gq::yy,li=qq by axiom;
F{hd(x},qq)} by assumption;
end-_since;
end.since;
end_since;
case 7 =¢ i & 1=<lenfx);
Plelem(x,i), elem(qg::yy,1})
since by eq.E
elem{x,i) = elem(tl(x), i-1) by axiom;
Plelem{t1(x),i-1),elem(qq: yy,i)}
gince by egq.E
elem(gg: :yy,i) = elem(yy,i-1) by axiom;
Plelem(tl(x)},i-1) ,elem{yy,i-1))
since by impE ¥ (D-E)
1=<i-1 & i-1=<len(tl(x}}
since by axionm
9m¢i & i=<len(x) by assumption;
end_since;
1=<i-1 & i-1=<len(tl(x))
-» Plelem(t1(x),i-1),elem(yy,i-1))
since by allE
i-1:nat by assumption;
all i:nat.
(1=<i & i=<len{tl(x))
-> Plelem(£1(x),i),elem(yy,i}))
since by andE
len(tl{x))=leni(yy) &
all i:mat.

(i=<i & i=<len{tl(x))
-> Plelem(tl(x),i),elem(yy,1)))
by assumption;
end_since;
end_since;
end_since;
and.zince,;
end_since;
end_since;
end_since;
end_since;
end_since;
end_since,
end_since;
end_since;
end_since;
end_since;
end_since;

end _theorem; ;

theorem /Succ/
all p:nat. some q:nmat., g =p + 1
since alll
let pinat be arbitrary;
some q:nat., g =p + 1
since by exil
p+l:nat since by axiom
p:nat by assumption;
end_since;
p*l = p+l by axiom;
end_since;
end.since;

end_theorem;;

theorem fEven_0dd/
all p:nat. some g:bool.
({some x:mat. p = 2¥x &8 gq=1)
|(some y:nat. p = 2%y +1 & g = £f))
since induction on p:nat
base
some gq:bool.
{(some x:mat. 0O = 2Z#x E gq=t)
|(some y:nat. 0 = 24y + 1 & q = £f))
since by exil
t:bool by axiom;
{some x:nat. O=2#%x & t=t)

| (zome y:nat. O=2#y+l & t=f3
since by orIl UL (v-I) Al AV E
some x:nat. 0=2*x & t=t
since by andl
some x:nat., 0=2#x
since by exil
O:nat by axiom;
0 = 2=0 by axiom;
end.since,;
t=t by axiom;
end._since;
and_since;
end_since;
step
ind.hyp-is
some q:bool,
((some x:mat. p-1 = 2*#x & g=t)
| {some y:nat. p-1 = 2%y+1 & q=£))
soma g:bool.
(({some x:nat. p=2%x & q=tJ
| {some y:pat. p=2sy+l & g=f))
gince by exiE
some ¢ boal,
({seme x:nat. p-1 = 2%x & g=t)
| (some y:nat. p-1 = 2%y+1 & g=L)})
by assumption;
let gg:bool be such that
(some x:nat. p-i=2%*x & qg=i)
| (some y:nat. p-1=2#y+l1 & gq=f};
some o bool.
((some x:nat. p=2%¢x & g=t)
| (some y:nat. p=2%y+1 & q=f))
since divide and congquer
{(some x:nat. p-1=2+x & qq=t)
| (some y:nat. p-i=2+y+l & gq=f) by assumption;
case some ¥:nat. p-l=d*x & gg=t;
some g:bool.
((some x:nat. p=2%x & g=t)
| (some y:nat. p=2%y+l & q=1})
since by exil
f:boel by axiem;
(eome x:mat. p=2+#x & f=t)
| (some y:nat. p=2ey+l & £=£)
since by orI2 % (Vv-J) BFRAVD
some y:nat. p=2*y+1 & f=f
since by exikE
geme x:nat. p-1 = Z*x

since by andE
some x:nat. p-1=2=x & gqq=t by assumptiecn;
end_since;
let xx:nat be such that p-1 = 2 % xx;
some y:nat. ps2=xy+l & f=f
sintce by andl
some y:mat., p = 2%y + 1
since by exil
xx:nat by assumption;
p=2 * xx + 1 by assumption;
end_since;
f=f by axiom;
end_since;
end_since;
end since;
end..since;
caso some y:inal. p-lsZ#y+l & gg=f;
some ¢:boal,
{(({some x:nat. p=2%x & q=t)
| (some y:nat. p=2%y+l & gq=f})
since by exil
t:bocl by axiom;
(some x:nat. p=2*x & t=t)
! (some y:nat. p=I*y+l & t=f)
since by oxiE
some yinat. p-1 = J¥y + 1
since by andE
some yinmat. p-1 = 2%y + 1
& gg=f by assumption;
end_since;
let yy:nat be such that p-1=2%yy + 1;
(some x:nat. p=2*x & t=t)
| (some y:nat. p=2*y+l & t=£)
since by orll
some x:nat. p=2=x k t=t
since by andl
some x:nat. psl=x
since by exil
yy=1:nat by assumptionm;
p=2+#(yy-1) by assumption;
end_sinco;
t=t by axiam;
end_since;
end.since;
end_since;
end_since;
end since;

end._since,
and _since;

end_thearem; ;

theorem /Ap(Map, Succ)/
all ¥:L{nat). some y:L(nai).
{Len{x)=len{y)
& all i:nat.
{1=<1 & i=<lenix)
-» elem(y,i) = elem{x,i) + 1))
since by iﬁpF
all p:nat. some g:nat. g=p+l by /Succ/;
all p:nat. some ginat. g=ptl
-» all x:L.(nat).some y:L{nat).
(len(x)=len(y)
& all i:nat. (l=<i & i=< lenix)

-> elem(y,i) = elem(x,i) + 1))

since by second allE % (Vi-E)

[p:nat,q:nat]l{g=p+1)} : nat # pat =-> prop by axiom;

all P:nat # nat --> prop.
{all p:nat. some g:nat. I'(p,q)
-5
all x:Li{nat). some y:L{nat}.
{leni(x) = len(y}
& all i:mat.
(1=<i & i=clenlx)

-> Plelem(x,i}, elem{y,i)}}))

by /Map/;
end.since;
end_since;

end_theorem,; ;

theorem fAp{Map, Evan 0dd)/
all x:L{nat). some y:L{(bool).
{len(x)=leniy)
& all i:mat.
{1=<1i & i=<len{x)

-» {{some a'nat. elemixz,i)=Zva & elemiy,i)}=t)
| {(scme b:nat. elem{x,i)=2*b+1 & elem(y,1)=£f))

Iy
¥ impE

sihce b

all p:nat. =ome g:bool.
i,
Y

{some a:nat. p = 2=a B q =t}
| (some binat. p = 2%b + 1 & g = f)}
all p:nat. sceme qibool.
{{some a:nat. p = 2%a 8 g =t

by /Even Ddd/;

| {some binat. p = 2%b + 1 & q = £f))
-» all x:L{nat).zome y:L(bool)
{len{x)=len(y)
& all i:nat.
(1=<i & i=< len{x)
-
((some a:nat. elem(x,i)=2+a & elem(y,i}=t)
| (some b:inat, elem{x,i)=2+b+1 & elem{y,i)=f))
))
since by second.allE
[pinat,q:bool] ((some a:nat. p=2%a & g=t)
| (some b:nat. p=2+b+1 & gq=£f))
nat # bool --» prop by axiom;
all P:nat # nat --> prop.
{all p:nat. some g:nat. P(p,g)
-
all x:L{nat). seme y:L{bool).
(len(x) = len(y)
& all i:nat.
{1=<i & i=<len(x)
-> Plelem(x,1), elem{y,1)))))
by /Map-1/;
% Obtained by making the type of F nal x bool — prop
end_since;
end.since;
and _theoram; ;

— 34 -

