ICOT Technical Report: TR-514

TR-514
PIM/ p:A Hierarchical Parallel
Inference Machine

by
A. Hattori, T. Shinogi, K. Kumon (Fujitsu)
& A Goto

November, 1989

@ 1989, 1COT
Mita Kokusai Bldg. 21F (03] 456-3191—~5
" :D | 4-28 Mita 1-Chome Telex ICOT 32064
Minato-ku Takyo 108 Japan

Institute for New Generation Computer Technology

PIM/p: A HIERARCHICAL PARATITEL INFERENCE MACHINE

Aldra Hattori*, Tsuyoshi Shinogi*, Kouichi Kumon* and Awmhiro Goto*

FFUTITSU LIMITED
1015 Kamikodanaka, Nakahara-ku, Kawasakd 211, JAPAN

*Institute for New Generadon Computer Technology
4-28, Mima-1, Minato-ku, Tokyo 108, JAPAN

This paper presents and evaluates the main architectural features of a parallel inference
machine, PIM/p, which is now being developed for the high-speed execution of Al
programs written in the concurrent logic programming language KL1. Because of the
frequent interprocess communication required by KL1, PIM/p has a hierarchical
structure where eight processing elements are combined with shared memory to form a
cluster, and more than sixteen clusters are connected by a hypercube network. To
decrease the number of code ferches on the common bus of a cluster, we have
developed a macro instructon call mechanism that allows high-level inswuctions to be
executed in the otherwise RISC-like insouction smeam. Some software controlled
cache memory assist insructions have also been inroduced to delete unneeded operand
dara transfers on the common bus. Simulation has shown their effecdveness. We
also evaluated the applicadon of the two main deadlock-free routing methods to the
intercluster network, and selected the E-cube method because of its relatively good
performance and simple hardware.

I. INTRODUCTION

The parallel inference machine PIM/p [1] is now being developed as part of the Japan Fifth
Generaton Computer Project. This machine is used for the high-speed execution of large scale
artificial intelligence software written in the concurrent logic programming language KL1 [1][2].

PIM consists of several hundred processing elements (PEs). OQur performance goal is 10 to
20 MLIPS per 100 PEs. Because KL1 programs are composed of many processes which
frequently communicate with each other using AND-stream parallelism, decreasing the cost of
interprocessor communications is extremely important in achieving high-speed execurion.

We have introduced a hierarchical structure where both low cost local interprocess

communication and flexible global communication can easily be taken advantage of by software.
Several PEs are combined with shared memory to form a cluster and multiple clusters are

connected by a hypercube nerwork.
This paper presents and evaluates the architecrural features designed to decrease the cluster

bus affic and to enable efficient dat wansfer using the intercluster network.

2. TWO LEVEL HIERARCHICAL SYSTEM STRUCTURE
The language KL1 requires frequent and high speed interprocess communication using AND-

stream parallelism. Because quick and exclusive access to shared data such as variables as well as
to processes is a key issue in KL1 parallel execution, eight processing elements are combined with
shared memory to form a cluster as shown in Figure 1. Each PE has a coherent cache for high-
speed memory access and reduced common bus traffic.

Because cluster bus throughpur limitations only allow about eight tightly coupled PEs to share
a single memory space, we used a hierarchy of shared memory clusters in a hypercube network.
Every four PEs are connected 1o a router node of the hypercube in order to decrease the dimension
and diameter of the cube as shown in Figure 1. The intercluster network is used to transfer
message packets among clusters both for distributed unificaton and for process migration.

| Hypercube interciuster network |

b
. L . R

NW router NW router
/N /N
PED PE3 PE4 | pE7

Y L L L L L T T

i

I

I

k

i

'

]

L]

' o ‘
I Cache| |T.'-u-'nt| |th.hl:{]:'_‘.mhul
¥

'

0

1

1

"

1

[Shared memory l

Cluster0 Clusterls
FIGURE 1 System Configuration

3. HIGH SPEED CLUSTER ARCHITECTURE

3.1. PE Archir=core

The PEs ares designed for efficient KL1 executdon. They use a tag architecrure because KL
does extensive runtime data type checking. The PEs are also designed with a RISC-like
instruction set [3] in order to realize a short pipeline clock cycle and to facilitate good code
optimization by a compiler. The resulting four stage pipeline has a 50 nS clock cycle and can be
built on an 80K gate CMOS LSL The pipeline strucrure is shown in Table 1. Code compiled for
such an instruction set can become very large however, resulting in excessive intracluster common
bus traffic. Yet, decreasing common bus traffic is absolutely necessary in order to mainain
cluster performance that is highly proportional to the number of PEs. This means that the
architecture must be set up to help decrease this maffic.

3.2. Macro Instruction Call Mechanism

To decrease the amount of program code on the common bus, we have developed a macro
instruction call mechanism that allows high level instructions to be executed in the RISC-like
instruction stream. PEs have two types of instructions, intemal and external. Both can be used
10 execute most operations. External instructions represent compiled KL1 program code. They
are ferched from the cache or main memory through an instruction buffer and executed each cycle

by a four stage pipeline, as shown in Figure 2.

Internal instructions make up the subroutines of complex KIL1 operadons and are stored in the
internal instruction memory of each PE. These instructons are invoked by external macro call
instructions and executed by the same pipeline as external instructions.

3.3. Cache Assist Insguctions

The other big contributor to bus traffic is operand data, so we added cache assist instructions
to help delete unneeded operand data ransfers.

KL1 programs allocate new memory area and write data more frequenty than other
languages. An ordinary write-back cache usually fetches-on-write if a cache muss occurs. When
new darta is created in a new memory area, a block ferch from shared memory is net needed, so a
direct write instruction is introduced that allocates a new area to write to in a cache memory and
avoid unneeded block fewches.

TABLE 1 Pipeline Structure

Stage | ALU Instruction Memorv Access Instructon
D Decode Decode & reg. read
A - Address calcuration
T Regisier Read Cache access(Tag)
B AL & rep. write Cache access(Data) & reg.write
Cache [Main memory
External instruction | 11 register
buffer | 1
| r
.
l mpc
D ; I
I
A
T
B

RISC-like instruction
pipeline

FIGURE 2 Macro Instruction Call

3.4. Simuladng Cluster Performance

To evaluate the macro instruction call mechanism and cache assist instructions, we measured
cluster bus traffic using a software simulator. The measurements were made for 8 PEs, each with
64K bytes of cache memory, and using four variations of each test program.

The simulator first executed KL1-b code [5] with direct write and macro call instructions.
K11-b is a WAM-like [6] abstract instruction set. The size of the KL1-b code was then doubled
and quadrupled in order to simulate the absence of the macro call instruction. Tests with small

— 3

hand compiled KI.1 programs showed that the absence of the macro calil instruction increases the
code by about 3.5 times. The KL1-b code was then executed without direct write instructions.
Table 2 shows the simulation results measured in cluster bus cycles, using two benchmark
programs. One is a bottom-up parser (BUP), and the other is the 8 Queens problem.

As the size of the code doubles, the number of bus cycles increases an average of 14%. As
the code quadruples, the number increases 72%. The absence of the direct write instruction
increases the number of bus cycles by 32%.

3.5. Cluster Performance

The cluster performance is calculated based on the preceding simulation, as shown in Table 3.
Cluster performance decreases by 5% when the code size is doubled, and about 30% when it is
quadrupled. The absence of the direct write instruction decreases cluster pexformance by 6%.

TABLE 2 Common Bus Cycles

unit: 1000 cycles

Doubled Quﬂdrupl:ds No direct
l Standard code size | code size write

BUP | 512 643 1217 I 654 |
Ratio 1o

standard 1 1.26 2.38 I 1.28 '
8 Queens | 337 244 156 | 461 F
Rato i

standard 1 1.02 106 | 137 |
Average l 1 1.14 1.72 1 i

TABLE 3 Cluster Performance (BUP)

Teh and Tw units: 1000 cycles

Doubled |Quadrupied| No direct
Standard code size | code siee write
Com. bus cvcle
pcr FE {TCB} 6 Eﬂ' 152 82
ﬁﬂ time 55 102 57.8 10.5
Il?‘aili'gunnmme. 1 0.95 0.67 0.94

4. INTERCLUSTER NETWORK

4.1. Design Issues

We connected multiple PEs directly to each router node on the hypercube network both in
order to prevent increased cluster bus mraffic due o intercluster communications, and to decrease
the size of the network.

Deadlock-fres routing of message packets is important because KL 1 programs need dynamic
and flexible interprocess communicarions. Store-and-forward deadlock [7] is an especially
significant issue in a packet switching networlk.

4.2, Deadlock Free Routing Methods

We studied two main deadlock-free routng methods, one using a souctured buffer pool
algorithm [B] and the other using the E-cube algorithm. The structured buffer pool (SBP) method
does not depend on the routing path, but reswicts the assignment of node buffers to message
packets. This method can avoid crowded paths and increase throughput. Packet sequencing is
not maintained however, and the buffer control circuiay is complex. The E-cube method restricts
the routing path, and throughput may decrease because of crowded paths, but packet sequencing is
retained and buffer control circuiy is simple.

4.3, Intercluster Network Simulation

We simulated both methods under condidons expected on the actual PIM/p machine. The
network is a four dimensional hypercube with four 256-byte buffers at each router node. We
simulated configurations using both one and four PEs connected to each router node. The packet
size was distributed uniformly between 0 and 2K bytes.

Figure 3 shows the network performance of each routing method. We tested three routing
methods: the E-cube and two types of structured buffer pools. The difference berween SBP1 and
SBEP is the flexbiliry of buffer bank assignme=t 1o message packe:s.

The E-cube has almost the same throughput as both the souctured buffer pool methods.
Since it has simpler buffer congol circuitry and maintains correct packet sequencing, we adopred
this method. As shown in Figure 3, the network with four PE ports per node performed better
than that with one PE port per node because message packet destinatdons are better randomized.

Transfer request rate = 20M bytes
20+

- 4 PE-pors 1 PE-port
M bytes [3 .

-

Ecube SBP1 SBP2 E-<cube SBP1 SBP2

FIGURE 3 Network Performance

3.

SUMMARY
We have presented and evaluated the main architecrural fearures of the parallel inference

machine PIM/p now being developed. These fearures are:

(1) A macro instruction call mechanism and cache memory assist instructions to decrease
cluster bus waffic. Simularion showed their effecdveness.

(2) Multiple PEs connected to each hypercube router node w0 increase network efficiency.

(3) Use of the E-cube deadlock free routing method for the intercluster network because of its
performance and simple buffer control circuitry.

ACKNOWLEDGEMENTS

We would like to thank Mr. J. Tanahashi, Mr. H. Hayashi, and Dr. §. Uchida for their

valuable suggestions and guidance. We would also like to thank all the PIM researchers both in
ICOT and in Fujitsu Limited. Special thanks goes 1o Mr. A. Matsumoro of Mitsubishi Electric

Co.

for the cluster simulation and measursments.

REFERENCES

(1]
(2]

(3]
(4]

(5]
(6]
[7]
(8]
(%]

Goto, A., Overview of Paralle! Inference Machine Architecture (PIM), Int. Conf. FGCS
(1988), pp. 208.

Ueda, K., Guarded Horn Clause: A Parallel Logic Programming Language with the Concept
of a Guard. TRZ08, ICOT (1986).

Patterson, D. and Sequin C., A VLSI RISC, IEEE Computer, Vol.13, No.9 (1982), pp. 5.
Shinogi, T., et al., Macro-call Instruction for the Efficient KL1 Implementzdon on PIM, Int.
Conf. on FGCS (1988), pp. 953.

Kimura, Y. and Chikayama, T., An Abstact KL1 Machine and irs Instructon Set. Proe. SLP
(1987), pp. 468477,

Warsen, D.H.D., An Ahsmact Prolog Instrucdon Ser, Technical Note 309 (1983), Ardficial
Inreiligence Center, SRL

Merlin, P. and Schweitzer, P., Deadlock Avoidance in Store-and-Forward Deadlock, IEEE
Trans., Comm., Vol.28, No.2 (1980), pp.345-354,

Raubold, E. and Haenle, J., A Method of Deadlock-Free Resource Allocation and Flow
Conwol in Packe: Networks, Proc. ICCC 1976 (1976), pp. 483-487.

Dally, W. and Seitz, C., Deadlock-Free Message Routing in Multiprocessor Interconnection
Networks, IEEE Trans., Comp., Vol.C-36, No.5 (1987).

