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Ahbstract

In the area of synthesis problem such as scheduling, design and
plapning, there are two kinds of constraints, One kind is a hard con-
straint which a solution must satislv. The other is a solt constraint
which represents preference over solutions. In this paper, we pro-
vide a logical foundation of soft constraints. Let hard constraints be
represented as first-order formulas, Then a solution to those hard
constraints becomes an interpretation which satisfies the axiom set,
and soft constraints can be regarded as providing an order over those
interpretations. and the most preferred solutions are the most pre-
ferred interpretations in that order. We use a meta-language which
presents a preference order directly. This meta-language can be trans-
lated into the second-order formula Lo provide a syntactical definition
of the most preferred solutions. We also give a method to calculate all
the most preferred solutions based on the proofl theory and the model
theory.



1 Introduction

There are alot of research papers on constraints{s, 12]. But most of those pa-
pers only consider hard construints which every solution must satisfy. How-
ever, n the area of synthesis problem such as job shop scheduling, circuil
design and planning, there is another kind of constraints, that is, sofl con-
straints which provides prelerences over solutions [3, 4. 11].

This paper is an altempt to give a logical foundation of soft constrainis
by using an interpretation ordering which is a generalization of Cireumserip-
tion [7].

The idea of formalizing soft constraints is as follows. Let hard constraints
he represeuted in the first-order formulas. Then an interpretation which sat-
isfies all of those first-order formulas can he regarded as a solulion. Then soft
comstraints can be regarded as an order over those interpretations because
soft constraints represent criteria over solutions to choose the most preferahle
S

A model theory in circumseription defines an order over interpretations of
first-order formulas based on set-theoretic inclusion of extensions of certain
predicates. However, if we use circumscription for soft constraints, we must
specify which predicates are minimized to get a desired result and it is not
always clear how to clhoose those predicates. Instead, in this paper we use a
meta-language [9] which is a generalized form of circumseription and provides
a direct representation of soft constraints.

The structure of the paper is as follows. In section 2, we consider some as-
pects of soft constraints. In section 3, we review a meta-language and use it to
provide syntactical definition of the most preferred models based on a second-
order language. In section 4, we give examples of soft constraints expressed
by meta-language. In section 3, we consider two kinds of proofl methods.
One is a proof-theoretic method which uses inference rules of second-order
logic and the other is a model-theoretic procedure which computes all the
most preferred models in propositional logic and the first-order logic with
domain closure axioms. In section 6, we compare with some related works.
And finally, we talk about future research. Proofs of the theorems are in the
appendix.



2 Soft Constraints

In this section, we consider some aspects of soft. constraints,

Suppose the following situation where we make schedule for meeting ol
the president, vice president and a manager of a company.

1. The president musf attend the meeting.

2. The vice president should preferably attend the meeting.

3. The manager also should preferably attend the meeting. llowever, the
schedule of the vice president is prioritized to the schedule of the man-
ager.

The first condition is a required constraint and a solution must satisfy the
condition. However, the second and the third conditions are soft constraints
and are regarded as eriteria o choose the most preferable models among the
solutious of hard constrainis, In this case, il there are solutions both of which
satisfy the hard constraint., we choose solutions which also satisly the soll
constraints, Ilowever, if there is no solution which satisfies soll constraints,
we just ignore those soflt constraints, Soll constraints, therefore, way not
always be salisfied,

Looking into the third conditions, there is a note that the sccond condition
is prioritized to the third condition. Il there are two solulions in one of which
the second condition is satisficd and the third is not satisfied, and in the other
ol which the Lhird condition s satishoed and Lhe second 15 not, then we choose
the former becanse of the priority.

(Clonsider another situation where a value in a part of a solution should
be as large as possible. In this case, we can regard those conditions as a
criterion which chooses a solution which has a larger value for that part.

To summarize, there are Lhe Lhree kinds of solt constraints stated below.

1. Soft constrainls without priorities:
In this case, the most preferable solutions are the ones that satisfy soft
constraints as much as possible, However, il one solution satisfies a set
of soft constraints and another solution satizfies a dillerent set of soft
comstraints and the former set does not include the laller sel and vice
versa, we cannot say which solution is better.

2. Soft constraints with priorities:
In this case, we may be able to distinguish solutions which we cannot



distinguish in the previous case. The most preferable solutions are the
ones that satisly as many prioritized constrainls as possible.

J. General soft constraints:

Any order over solntions can be regarded as a general case of soft
copstraints. If we can define an order of =olutions, we choose the most
preferable solutions in the order. The above Lwo cases are an instance
of this case because those cases define an order of solutions.

The most preferable solutions can he defined as follows by an order of solu

tions. Let § be a set of the most preferable solutions and Sy be a set of the

solutions satisfying hard constraints and < he an order over solutions.

def : . :
SE {o]a € S, and there exists no 8 € S, such that # < o},

where smaller solutions are preferable solutions.

We can paraphrase the above definition o first-order logic as follows.
Hard constrainis can be regarded as the first-order axiom set which solutions
must satisfv. Then a solution o those hard constraints becomes an inter-
oretation which satisfies the axiom sct, and soft constraints can be regarded
as providing an order over those inlerpretations, and the most preferred so-
lutions are the most preferred interpretations in that order. Then, we can
define a set of the most preferable solutions as follows. Let € be a formula
which represents a conjunction ol hard constraints, and M, M’ be logical
interpretations, and < be an order over inlerpretations,

{M|M = and M s comparable with M and
there exists no M’ such that M'}=C and M'<M}.

where smaller interpretations are preferable.
Then, we can see that the logical interpretation in the above set is minimal
model with respect to the order =,

3 Interpretation Ordering by Meta Language

In this section, we review our previous work (3] on meta-language by which
we represent order over interpretations,



3.1 Preliminaries

In second-order logic, we shall use predicate variables in addition to symbols
from first-order logic. When we talk about a variable », v is an individual
variable or a predicate vanable.

An interpretation M consists of a nonempty set [, called the demain of
Lhe inlerpretation. and the following assignment mapping.

1. Fach individual constant a is mapped onto an element (a)¥ of ).

2. Each n-ary function constant f™ is mapped onto a function { f"}* from
D" o D,

3. Fach n-arv predicate constant P is mapped onto a subset {P"JM of
D", and each propositional constant is mapped onto one of the truth
values, T or F.

We consider the following assignment [unction ¢ with respect to damain
.

1. Each individual variable # is mapped onto an element of I

2. Fach n-ary predicate variable p™ is mapped onto a subset ¢(p") of D",
and each propositional variable is mapped onto one of the truth values.

We denote all assignment functions (with respect to [J) as ¢,. We denote
an assigninent lunction ., which differs from & in at most the assignment,
of the variable v. We write as ¢,, ., an assignment function which differs
from @, ..., in at most the assignment of v,.

Let M be an iuterpretation with domain [), and ¢ be an assignment
function with respect to the domain D, and t be a term. We extend an
assignment function ¢ to a function ¢ that assigns to each term f an element
AM(t) in D as follows.

1. If t is an individual constant, then ¢M{t) = (¢
2, If {15 an individual vanable, then ;le{i'} = ¢(t).
3. 1f tis of the form f*(ty, ..., 1,), then oY () = (/)M (M (1), ..., 8™ (1))

]M

Let M be an interpretation with domain D). An assignment function ¢
(with respect to the domain D) satisfies a2 wif A4 in M (written as M 4 A)
if and only if the following conditions are satisfied.



1. If Ais of the form Py, .. 1, ) where PP" 15 a n-ary predicate constant,
then < o™it ).....oM(t, ) = € (P*)M. If Ais a propesitional constant
P,othen { P =T,

LA s of the form p™ iy, .. 1, ) where p™ 18 a n-ary predicate variable,
then < Mt ., 0M(1,) = € o(p™). If A is a propositional variable m,
then (p)™ = T.

3. 1F A is of the form ~H, not M |-, B (written as M i, ).

4. I Als of the form B 5 C| either M =y Bor M |, C.

5 I A is of the form YolH where v is a variable, lor everv ¢, in ©p,

ME, B

[t for every ¢ € ®5, M =, A then we write M = A and we call M a
maodel of A.

[ R

3.2 Wdr(Well-Defined Relation)

Now, we define a well-defined relation (wdr) with respect to comparable inter-
pretations M and M' as [ollows.

Let M and M be interpretations. M and M’ are comparable with respect
to a tuple of predicate constants P if and only if the following conditions are
satistied.

I. M and M’ have the same domain £,

2. Tor every individual constant, function constant, and predicate con-
stant not in P, M and M have the same interpretation.

Definition 1 Well-Defined Relation (wdr)

Let M and M' be comparable interpretations with respect to a tuple of
predicate constants P, We say the following expressions are well-defined
relations {wdrs) with a top-level assignment function (taf) ¢ with respect to
M and M.

1. If 4 is a wif and & is an assignment function, then M &=, A M’ =, A
152 a wdr with a tal ¢ called an atomic wdr.
2. Il A 1s a wdr with a taf ¢, then =4 is also a wdr with a taf 4.

3. If Aand B are wdrs with a taf ¢, then 4 O B is also a wdr with a taf
.



4, If A s a wde with a taf @, then (Yo, e Ppid 15 2 wdr with a taf ¢
called a gwanfificd wir.

3o not confuse the meta-logical connectives with ordinary logical connec-
tives, The meta-logical connectives are the following abbreviations of English
sentenees nzed n the defimition of satisfaction.

oM =y A means o satishies A in M7,

2. A means “A is not troe”.

3. A o B means “cither A is not true or B is true”,

4. (¥, c0p 04 means “for every ¢, in @p which differs from @ in al most

the assiguinent of v, A= true”,

If A and B are wdrs with a taf ¢, then A A B, AVE, 4 = B are
ahbreviations for —(A 2 =B), (—-A) 2 B, (A = B} A (B o A) respectively.
And il Ais a wdvr with a tal ¢, (da.2®,,)0.4 is an abbreviation for —({Ve,£
Gpi-A)

3.3 Translation from a Wdr to an Atomic Meta-relation

I this subsection, we introdnee a translation [rom a wdr 1o an atomic meta
relation of M.

A predicate variable and a predicate constant are simalar if and only if
they have the same arily. A Luple of predicate variables pl= (py, ..., pa))
and a tuple of predicate constanis P(= (P, ..., P.}) are similar (or we say p
is similar to P} il and only il cach variable p; of p and each corresponding
constant 2 of P oare siinilar, We write a wif A with some of the predicate
constanls Py, ... P, in a tuple of predicate constants P as A(P). Then we
write as A{p) the resull of substituling in A the predicate variables pr, ..., pa
for all occurrences of I, ..., P, respectively. By the definition of wdr, we can
convert any wdr Lo an atomic wdr of M by the following translation.

Translation: From a wdr to an atomic wdr of M

Let M’ and M he comparable with respect to P, and let R(M", M), be a
wdr with a taf ¢. Let p be similar to P such that every predicate variable
n s not contained in RIM M.

I. R(M", M), is of the form M |-, A. Tt is translated into itself.



2. RIM' M), is of the form M' =5 A(P). It is translated into M =,
Alpl

3 RIM M), bs of the form - A(M", M),. It is translated into M 4
~A(p), where A(M", M), is translated into M =, A(p).

1. R{M', M), 1s of the form A(M' M)y O BiM’' M).. It is translated

into M =, A(p) O Bip), where where A(M', M), is translated into

M . Alp), and B{M', M), is translated into M =, B(p).

RIM'. M) is of the form (Vé,e®p)A(M', M), . 1t is translated into

M =, YeA(p), where A(M', M), is translated into M =5 A(p).

) |

Example 1 (Translation from e wdr inte an atomic wdr)

Let M and M’ be comparable with respect to {(P), let {p) be similar to (P),
and let ¢ be an assignment function. Let R(M’, M), be the following wdr.
We show a process of translation.

(Vo:€@p)((M' [y, P(2]) D (M =4, P(x))

(Ve €@p)((M =s, Plz)) 2(M' |y, Plx)))
== (Vo £0p (M |54, pl2)) D(M =4, Plaz))N

(VP n)((M s, P(x)) D(M =4, plx)))
== (Vo-£®p ) (M =4, (plx) D P(x))\ (Ve p)(M =4, (P(z) D piz)))
= (M Vrip(z) D Plz)))A-(M BV (Plr) Dplz)))
= (M Ve(p(z) D P(x)))AM(M =y ~Vz(P(z) D p(z)))
— M4 (¥e(p(e)  P(a) A~Va(P(z) D () O
3.4 Syntactic Definition of the Most Preferable Solu-
tions in the Second-order Formula

In this section, we show a syntactic definition of the most preferable solutions

by combining hard constraints represented as the first-order axioms and soft
constraints represented in meta language.

It M and M’ are comparable and ¢ satisfies the following condition in
Lemma 1, we can show thal a wdr 1s true if and only il an atomic wdr of its
translation is true,



Lemma 1 Let M and M be interpreiations with domain 1) which are com-
parable witl vespeet to Poand et RIM, My, be a wdr. Let p be sunilar to P
sich that every predicate vaviable in p is not contuimed in R{M', M\.. Lel
M b Bip) be an atowmie wdr of its transtation. If for every Proin P oand p,
. olps) = (P then R{M' .M )s is truc if and enly f M =, Rip) s

frife,

Now we show the lollowing theorem closely related to a link hetween
minimal models in preference order and sccond-order wif,

Theorem 1 Let M and M be interpretations unth domain D) which are
comparable unth respect to PLoand et ROM', M), be a wdr. Let p be similar to
P sueh that cocry predicate variable in p s not contuined in R{M', M },. Let
s franslation wsimg p be M =, B(p). There exists M such thal RIM', M),
is true if and enly f M =, 3p..3p, Rp) 15 true.

We say that M 15 a minimal model with respect to a first-order formula
AP and a wdr R{M', M), 0f and only if the lollowing condition is satistied.

M s a model of AAP) and for cocry interpretation M’ which
s comparalble with M, if M' ix a model of A(P) then for every
assignment function ¢, =R{M', M), 15 true.

Then next corollary shows that if an interpretation satisfies a second order
formula obtained from A(P) and an atomic wdr translated from a wdr, it is
a minimal model with respect to A(P) and that wdr.

Corollary 1 M is a minimal model with respect to a first-order formula
AP} and a wdr R{M' M), if and only if M is a model of:

AP} A 2 dpy-dpa(Alp) A Rip)),
where a franslalion of the wdr using p s M =, R(p).

Example 2 (Syntactic Definition of a Minimal Model)
Consider the wdr R{OM', M), of Example 1. The wdr R{M', M), means that

M" 15 more preferable than M if and only if M’ have a smaller extension of
P than M, Since the wdr is translated into:



M &=, (Ve(p(z) 2 Plz)) A=V P{z) 2p(z))),

M s a minimal model wort A{P) and the wdr if and only if M is a model
of the following formula:

A(P)A-Ip(A(p) AV (p(z) D Ple))A-Ve(Pla) Dplx))),
which is a definition of circumscription to minimize P. 0

If we regard A(P) as hard constraints and R{M', M), as soft constraints,
and assume that M’ is preferable, then minimal models are the most prefer-
able models of hard constraints in the order defined by soft constraints. By
Corollary 1, minimal models are models of:

A(P) A =3py...3p.(A(p) A R(p)).

This formula, therefore, gives a syntactical definition of the most preferable
solutions.

4 Representation of Soft Constraints

In this section, we provide a way of representing soft constraints. Before
doing that, we introduce notations for brevity. Let P be a tuple of predi-
rate constants or a tuple of predicate variables, and x4, ..., 2, be individual
variables. E(P,zy,...,2,) denotes a formula which includes some of those
predicate constants and those individual variables as [ree variables.

M7 <[Pl A ig an abbreviation of the following wdr:

H’fb“C“I]H---H‘;’zﬂ'j...:nethpi
(M e, . E(Poxyy e za)) D (M g, . E(Pox, . 20))).

And M =FP#resn) pf 5o an abbreviation of the following wdr:
(M’ {_::.'(F..r;,....t..] M) A (M Ef{P,zhu.,z,.} M)
E(P.x,...,z2;) < E(Q,x,, .., r,) is an abbreviation of the following formula:
Vo V. Vo (E(Q, 2y, .y 20) 2 E(P, 21,00 70))

And EiP,xq,....2,) = E(Q,r,....1r,) 15 an abbreviation of the following
formula:

(E(P,xy, ) < E(Quzy, ez ) ) ANME(Q, 2y, 0y 2y) £ E(P, 14, ..., 24)).

10



4.1  Soft Constraints without Priorities

I.i'r '!'UrIlIit-iUJ]!" 'r'l"]]i{.'l!l il hi]l'lili.l.lll H}LUI.I]IL] 521li5f}' i 'IJllIi']'l il FJEJHH”I].F ]I{‘ repro-

sented as the following lormulas:
EVPL s o de v B (Podys oo )
Then, we van represent a soft constraint by the above formulas as follows:
RIM' M), (M <, MyA=(M <, M),
where M =<, M is an abbreviation of the following wdr:
Ny (Mg 0mem ),

This relation intuitively means thal an interpretation which satisfies &y, ...  F,,
as rnueh as possible is preferable. Then, we can show a synlactic definition
of the mosl preflerable solutions in the above order which satisfy hard con-
strainis denoted as 4(P):

A(P) A =dp{A(p)n
T;]IZEJ-EP.'IH"'-.‘TTI] “ E!(Pﬁhr---”r:l}} M
"N E(P oy ) < By, 1)}

For example, if P{x) 2 Qiz) should be satisticd as much as possible, then
the syntactic definition of the most preferable models are as follows:

ALP.Q)) A —Ap=q( A((p, q))A
Yr{(P(r} 2 Q(z)) O (plx) 2 qlz)))A
=Ya({p(e) 2 qle)) D (Plx) D Qa)))

4.2 Soft Constraints with Priorities
Let formulas which should be satisfied in the first place be
EHP 2y 2 ) By Pz, 2y),
and formulas which should he satisfied in the second place be
EF{P“EL...,I“],....Efnz[P,;rl,.,,..r-,,J,

and formulas which should be satisfied 10 the k-th place be

11



FSP. . rn)s . B

Wi

[ S T
Then a soft constraint by the above formulas is defined as [ollows:
RIMOMY S (M <, MY A =(M <. M.

where M <. M s an abbreviation of (W° 5;; Miaona (A ‘E; M) and
M" <% M is an abbreviation of the following widr:

(ASZ) A (M7 =TTy S (A (e BTmesd gy

i=1

where M" <2} M is a wdr without conditional part.

This relation means that interpretations which satisfy £}, ..., E! |
as possible is preferable and if there are interpretations which satisfy the same
formulas in the first place, then interpretations which satisfy E?, .., E2  as
much as possible are preferable and, ... if there are interpretations which
satisfy the same formulas in the (& 1)-th place, then interpretations which
satisfy £Y..... E}  as much as possible are preferable,

Then, we can show a symactic definition of the most preferable solutions
in the above order which satisly hard constraints denoted as A{P):

ay mmneh

AP A -TplAlp) A (p < PY A~ (P < p)).

where p < P is an abbreviation of (p <'P)A L A{p <*Pland p <' P is
an abbreviation of the following formula:

N A E Py tns i) — B (P, 3))) D
AL E (ot s n) € BHP 21, o iy)))

The meeting scheduling problemn in Section 2 belongs to this case and we
explain it in the next subsection.

4.3 Meeting Scheduling

We show a wdr which corresponds to soft constraints in the meeting schedul-
ing. 'z} represents that the meeting will be held on day & and P(x), V(x), M(x)
represent that the president, the vice president and the manager attend the
meeting ou day x. Let P be {C, PV, M}. Let us represent hard constraints
for inconvenient dates. For example, if day z is inconvenient for the presi-
dent then /*(x) is included in hard constrainls. As another example, a hard

12



constraint in which the president must attend the meeting is represented as
follows:

Fe(C'(x) 2 Plx)).

The =oft constraint in which the vice president should preferably attend the
meeting means that the following formula should be satislied as much as
possible:

ENP.x) = Clx) D V(x).

And the soft constraint in which the manager should preferably attend the
meeting means that the following formula should be satisfied as much as
possihile:

Ef(Poa)=C(a) D Mlx).

And the priority of the schedule of the viee president to the schedule of
the manager means that L1(P.z) should be satisfied more preferably than
LE(P . x). Then the sofi constraint by the above formulas is defined as follows:

RIM' M), 2

M <EXPD A (o = Ay 5 (e B ag))a
(M =BT ppa i =EE 4y o (v <EPD am)),

This definition intuitively means that ("(x) D V(x) should be satisfied as
much as possible and then C'{x) 2 M{z) should be salislied as much as
possible in a situation where C'(z) O V(x) are maximally satistied. By this
definition, we first consider the vice president’s schedule and then consider the
manager’s schedule. Lel hard constraints be represented as A((C, I, V, M)).
Then a syntactic definition of the most prelerable solutions is as follows:

A(C, PV M)y A =Fe3pTedm{ Al(e, p, v, m) A
“ﬂ?ﬂ'? i, trr} {_: {f}, P? V-, ﬂ‘_f”ﬂ —-[:{(-:1 P., V. J‘r‘f} i [:C., P, ﬂ'!.}}},

where (e, p.v,m) < (C, P,V, M) is an abbreviation of the following formula:

Yr((C(x) D V() D (e(x) D v(z)))A
(V2((C(x) 2 V(x)) = (efz) D v(2))) D
vr((C(x) D M(z)) D (e(z) D m(x))}).

13



4.4 General Soft Constraints

By a wdr. we can represent an order which prefers a solution which has a
larger value in a parl of a solution. For cxarmple. if we would like to have
a solution where o+ of Q(r) is maximum, a soft constraint for that arder 1s
defined as follows '

?,'L".|'_."|_.f-'~ _.”":I?I '!i!
Voo EP Yo, cPn( (M = Ol A (M= D (M =r=y))
This order means that an interpretation in which the value of ¢ of O r)

is larger is preferred. A syntactic definition of the most preferable solutions
is as follows:

ALY A ~Zgl Alg) A Yyl (gla) AQu)) D r=u)).

5 Method of Calculating the Most Prefer-
able Models

There are two kinds of methods of calculating the most preferable models.
One is a proof theoretic method and the other is model theoretic method. In
this paper, we describe both methods.

3.1 Proof Theoretic Method

In the proof theorctic method, we calculate a formula which is true in all the
most preferable models by inference rules of second-order logic *. We show
an example of the method by using the meeting scheduling problem. In the
meeting scheduling problem, the syntactic definition of the most prefererable
solutions is as follows:

ANC, PV M) A =3eTpdeTm(A{(e.p, v, m))A
(le,pyvom) < {C, PV MDA =((C, PV, M) < (e, p,e,m))), (1)

"However, we: must have a hard constraint. in which & of Qiz) is unique,

“However, in the second-order logie, no inference rule is complete. That is, there Ay
be a formula which is true in all the most preferable models and cannot be derived by any
inference rules.

14



where (e porom ) < (O, P V. M) is an abbreviation of the following formula:

Wal( ) 2V () 2 elx) 2 vlx)hn
(V((Cle) D Vi) = (elz) 2 v(z))) O
Wel(Cle) 2 M{e)) D elx) D miz))]).
Now, using the above definition of soft constraints, we calculate the most
preferable meeting date. Suppose we have the following hard constraints.

1. T'he meeting rmust be held:

1 Cx). (2)
2. The president must attend the mecting:
wr(C(r) 3 Pir)). (3)

3. We consider a meeting schedule for day 1, 2 and 3. Then we have the
following domain closure axiom:

Yr(lr=1Vr=2vz=3)). (4)
And we have the Tollowing axiom because 1.2,3 are all different:
L#2A2#£303#1. (5)
1. The president cannot attend the meeting on day 1:
=P{1). (6)
5. The manager cannot attend the meeting on day 2:
~M(2). (7)

Then A({. P. V. M) becomes conjunction of those formulas. Now, we cal-
eulate most preferable meeting date under the above hard constraints.
(1] 15 equivalent to the following formula:

A((C, PV, M) R¥evpieYm(( Al (e py v, m P

E{f:-.ph t".ﬂ?':l E {[?1 Fs 1': *'Hj:l} 2 {l:!’f,_P, ”!-m)_“?* P" 1}1 M}”* {B‘}

where (e, p,v.m)= (. F, V, M) is an abbreviation of the following formula:

Ve((C(2) 2V ()= (e(2) D)) AVa((Clx) D M(2)) = (clx) Dmia))).

Any formula obtained by replacing e, p,v,m in (8) by any predicates
must he true. Suppose we replace each of ¢,p,v,m by Az(x = 3). Then,
Alle, poo,m))A((e,pyv,m) <(C, P,V, M)) in (8) becomes true. And (e, p,v,m}) =
(C, F,V, M) becomes the [ollowing:



V() o Viz)) AVe(Clz) o M(x).

Then [rom (7)o we gel =C{2). And, from (3) and (6), we get ~C(1).
Therclore, from (2) and (4} and (5], we get ('(3). This means that day 3 is
the most preferable meeting date in this situation.

The conclusion may be withdrawn by adding another constraint. For
example, suppose a new constraint that the vice president cannot attend the
meeting on day 3 is added. That is, the following constraint is added.

-V{3). (9)
Then, A({C, £, ¥, M}] becomes conjunction of the previous A((C, PV, M)
and (8). Suppose we replace cach of ¢,p,v in (8) by Ar(r = 2) and m by
Arfalse. Then, we can get the following from (8).

Yr(C(z) 2 Viz)).

Then from (9). we get =(7(3). And, from (3} and (6], we get = 0(1). There-
fore, from (2) and (4) and (5}, we get C'(2). This means that day 2 is the
most preferable meeting date in this new situation because the schedule of

the vice president has the priority to the schedule of the manager. This
cxprosses nonmonolone character of soft constraints.

5.2 Model Theoretic Method

[n the model theoretic method, we pick up all the most preferable models hy
interpretation ordering,.

T'his method consists of two steps. In the first step, we calculate all
models which satisly hard constraints. Aud, in the second step, we check
whether a model is a minimal model in the order over interpretations.

We describe this procedure in propositional logic. Let hard constraints
be represented as A{P) and an order over interpretation with respect to a
tuple of propositional constants P be represented as RIM', M),.

L. We construct an interpretation by assigning every propositional con-
stant to a truth value and check if the interpretation satisfies A(P). If
it satisfies A(P), register if as a model. Let a set of models of A(P) be
M.

2. For all M € M, we check if there exists M’ € M such that R{M’, M),
is true. Il there exists no such model, then register M as a minimal
kel
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Both the first and the second step will terminate in propositional logic,
hecanse the number of models is finite. However, the procedure may not
terminate in the first-order logic, because the domain of models may be
infinite. If we have a finite domain closure axiom in which we can count
all of abjects in the domain, we can translate all quantified formulas (and
also meta-quantified formulas} into the formula which consists of ground
sentences onlv. Y1 P(r) becomes AT, Pla;) where a,,...,a, are all terms in
domain closure axiom. Vo, € ®pd becomes A, A, |, where A, ), 1s a wdr
obtained by replacing v by ¢,. Then, we can calculate all minimal models in
a similar way to propositional logic by regarding an atomic formula in the
translated formula as a proposition.

We explain the above translation and a process of calculating all minimal
models by using the meeting scheduling problem. For example, let the meet-
ing be scheduled in one day out of 1, 2, 3. Then we have a domain closure

AXIONL:
YVr({r =1vVe=2Va=13))
We have the following axiom because 1,2,3 arc all different.
1#2M2#3A3#£1

Given the above axioms, we only need to consider the following atomic
[ormulas.

C(1), C(2)}, C(3), P(1), P(2), P(3),
V(1),V(2), V(8), M(1), M(2), M(3).

Henceforth, we consider the above atomic formulas as the following proposi-
Lions:

clic'lu C::h FI-PE:PS.- _th;z? V31 Mh Mh‘”3

Then, an interpretation can be constructed by giving a truth value to every
proposition.

We represent an interpretation as a set of propositional constants or nega-
tion of propositional constants which are true in the interpretation. For ex-
ample, an interpretation in which Cy, Py, V; are true and the others are false
can be expressed as:
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{=C.CamCan I P - Py 2V VG AV S My - M = M )
We have the following hard constraints.
I. The meeting must be held:
3xC{r)
From the domain closure axiom, the above is equivalent to:
v O v O,
The president must attend the meeting:

Vo Cfz) > Plx)).

]

This is equivalent to:
(CrDR)A(CID P A (Cy T Fy),

3. Since P(r) expresses that the president attends the meeting on day r,
if it 35 Lrue, C'f{x) (the meeting is held on day z) is also true:

Yol Ple) > Cl)).
This is equivalent to:
(PLOC) APOYC) A (PaD ().

4. The sarve thing holds if the vice president or the manager attends the
meeting. We can expand these constraints as follows.

(Vi D C)A(V DG AV D C),
(M; DCOA(M D C)N (M3 D Cs).

3. Suppose the president cannot attend the meeting on day 1 and the
manager cannot attend the meeting on day 2.

A M,

In the first step, we find out all models which satisfy the above hard con-
stramts by producing all combinations of truth value for all propositional
constants and check each of them if it satisfies the hard constraints. Then in
the second step, for each model M, we check whether it is a minimal model
or not. It is done by checking if there exists M’ such that R(M', M), holds
or not. If there exists no such model, M is 2 minimal model.

From the domain closure axiom, we can expand the previous wdr of the
meeting scheduling as follows.
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RIM. M), = (M =, Myn—(M =4 M')
where M’ <, M is the following abhreviation.

(M s Cy 0V DM e Cr WA
(M=o (2 0V2) D(M" =g C2 2 V30N
(M a2V 2 ﬂrf Fo Cs 2 VallA
m{ M =, J_zv =(M' s, Ci WA
(M [y Co 2 Vi) = (M s CaD V)N
(M = a:m] (M =4 CsDV3)D
mu E, Oy M DM =y G D M)A
(M =y Ch o M) _"[_ﬂ-r]f b=,!-. If.n'j_} 'HIJ:I-II
(M =y CaD Ms) (M |y CaD Ma))))

We compare models by this wdr, For example, the following two inter-
pretations are models which satisfy the above hard constramts.

I] = {_‘{.‘11 '1(_?2__ C:h _|F1.'r -'-'L}i‘. Fu,—!.i-'rl,"llp'}.‘ ""r_:h _"_Iw'f‘ 1_".“{-21 J‘!’f&]‘,
f; = {_'{.'IL f:'b "r‘m _'PI . Fh"PLts_'Vl- V:.:s _‘Vs-. _‘Mh “fffzf"ﬁ’{'s]-

In I, the mecting will be held on day 3 and all members will attend it,
whereas in Iz, the meeting will be held on day 2 and the manager does not
attend it. We can sce that f; is preferred to I, because R([y, ) holds. This
result coincides with the intended arder of solutions. And from this result,
I, is not a minimal model. In this way, we select all minimal models. In this
case, only I} is the minimal model.

And, suppose a new constraint that the vice president cannot attend the
mecting on day 3 is added. That is, the following constraint is added.

"'Vj.

Since [, is no longer a model, we have to find another minimal model. Then,
the minimal model becomes I;. The following interpretation is a model but
not a minimal model.

= {-'Cl\_'c’.hCS? qpl'.--'Pi‘s Fﬂ-& _'vlu_'vh _‘1'@1_.1*1'{11 _‘M'h M-'i}

In I,. the president and the vice president will attend the meeting, whereas
in I, the president and the manager will attend the meeting. From the
priorities of the soft constraint, we choose I3 by giving high priority for the
schedule of Lhe vice president.



Finallv, if & wdr is a (stricl} partial order. we can calculate minimal
models a little more efficiently. We say R{M". M | is a (strict Jpartial order
with respect to P if for every 5 and every ¢, the following conditions are
satisfied.

|. For every interpretation M, R(M. M), does not hold.

2. For every M and for every M" and M" which are comparable with M
with respect to P.if R(M" M'), and R(M". M), hold, RIM", M),

holds.

When the above conditions are true, we can calculate minimal models by
the following procedure,

1. We calculate the set of models of hard constraints, A(P). Let M be
this set.

[ ]

Let A be emply in the first place.

3. Take a model M £ M which is nol checked vet.,
{a) Il there is no M' € A such that R{M", M), holds, add M to N,
(b} Remove all M' € A from A such that R{M, M), holds.

4. If we check all models in M, output A" as a set of all minimal models.

We do not have to compare a model with every model in M by this method.

6 Related Work

In this section, we compare our framework with prioritized circumscrip-
tion [8]. Shoham's Prefercutial Logic [10], and HCLP{Hierarchical Constraint
Logic Programming) [1].

6.1 Prioritized Circumscription

We can express soft constraints with priority by prioritized circumscription [8]
by minimizing the negation of desired conditions. However, it is not so clear
which predicate shonld be minimized in circumsecription to express general
soft constraints such as maximizing a value in a part of solutions, whereas
we can express those kind of soft constraints in the meta-language directly.
However, since there is strong connection between prioritized circumseription
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and stratificd logic program [6], it is possible to translate a class of soll
constraints to logic programs for computation.

Besides this technical difference, we have a different motivation from cir-
cumscription. The motivation of circumseription is to supplement lack of
incomplete information, whereas the motivation of using the meta-langnage
is to provide preferences over solutions with complete information in this
paper.

6.2 Preferential Logic

Shoham [10] gives a general semantic framewaork on various formalisms of
nonmonaclonic reasoning.  His framework is to define a new logic by aug-
menting a standard logic by introducing a strict partial order over its inter-
pretations. Although his framewaork s very general, he does not provide any
proof theory. In this paper, we represent an order over interpretations in the
first-order logic by defining meta-language and provide a syntactic definition
in the second-order logie.

Like circumscription, he regards nonmonotonic reazsoning as supplemen-

tary role in a situation with incomplete information.

6.3 HCLP

HCLP [1] is the first attempt Lo introduce constraint hierarchy into constraint
logic programming. We can express prioritized constraints in a body of a
Haorn clanse, However. we can only express constraints as an atomic formula
and we cannot compare solutions abtained from different derivation in HCLI.
On the other hand, our framework can express constrains in any form of
formula and s declarative becanse il is based on a model theory.,

7 Conclusion

The main contributions of this paper are as follows.
1. Proposal for more expressive representation of constraints:

We propose a logical representation of a soft constraint which expresses
a preference over solutions. This representation is regarded as a new
knowledge representation for synthesis problems.
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A new application of nonmonotonic reasoning:

The original aim of nonmonotonic reasoning is to formalize human in-
ference in a situation with incomplete information. In this paper, we
use the samc method but apply it to formalizing preference over solu-
tions with complete information. Therefore, this paper can he regarded
as giving a new application to nonmonotonic reasoning.

We think we must pursue the [ollowing research.

1.

1.

Efficient implemnentation:

The described method to calculate all minimal models has a bottleneek
in the first step where we caleulate all models. If we need only a formula
which is true in all minimal models, we can check a part of models
related to the formula. We think that an cuhanced method is closely
related to ATMS [2].

. Extension to the first order logic without domain closure ax-

iom:

[ the described method, a domain of models must be finite. Since
a domain may be infinite in the first-order logic, our method cannol,
be applied to the first-order logic in general. However, soft constraints
are formalized in the second-order logic, so the best we can do is to
lind some useful subclasses in the first-order logic to be computable.
We think that the relationship between prioritized circumscription and
stratified logic program [6] is very important becanse we can express
soft constraints with priority by using prioritized circumscription.

. Preference of derivation:

T'here is another meta-constraint which is related to efficient derivation.
For example, in scheduling problems, an expert have a constraint Lhat
a critical schedule must be allocated in the early stages in reasoning
pracess. This preference is different from preference over solutions,
but it is very important to gel a solution very efficiently. To do this,
we have to have another knowledge representation which deals with a
process of derivation,

Preference over solutions with incomplete information:
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Planning with incompiete information is often needed in robot plan-
ning. I this case. we have to combine original usage of non monotonic
reasoning to supplement unknown infornation and soft constraints to
choose possible plans.
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Appendix: Proofs of Theorems

Lemma 1 Let M' and M be interpretations wnth domamm ) which are com-
parable with respect to P, and let R{IM', M )4 be a wdr. Let p be similar to P
such that every predicate variable in p is not contamned in R(M', M. Let
M 4 Rip) be an atomic wdr of its ranslation. If for every P in P and p,
inp, o(p) = (PYM, then R(M', M), is true if and only if M =s f(p) s

frie.

Proof. Induction on the number r of meta-logical connectives and gquantifiers
m R{M', M), Assume the result holds for all integers < r.

1. R{M', M), is of the form M =, A. This case is trivial.
2. R(M' M) is of the form M’ |, A(P). It is translated into M |54

A(p). A(P) does not contain any predicate variable in p and for every
p; in p and corresponding F; in P, #(p;) = (F)™. Since p; in M is
interpreted as same as P, in M', M’ =4 A(P) is true if and only if
M 4 A(p) is true.

3 R(M',M); 15 of the form —A{M', M), It is translated into -A,,
where A(M’', M), is translated into A4,. By the inductive hypothesis,
A(M', M), is true if and only if Ay is true. Therefore - A(M', M), is
true if and only if =4, is true

4. R(M', M)y is of the form A(M',M); O B(M',M),. It is translated
wto Ay By, where A(M', M) 1s translated into Ay, and B(M', M),
is translated into By. By the inductive hypothesis, A{M', M), is true
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if and only if A, is true, and B(M", M, is true if and only 1f B, is true.
Therefore. A{ M M1, O BIM M), is true if and ouly if Ay O By is
true,

A, RIM', M), s of the [orm (Yo, e® ) A(M, M)y, . It is translated into
(Ve @) A where A{M M, 1 translated into Ay . By the induc
pive Lvpothesis, A(M M., is true il and enly if Ay, is trie. Therefore,
(e c®n) A(M, M), is true if and only if (Yé,c®p)As, is true. U

Theorem 1 Lei M' and M he interprelations with domain D which are
comparable wilh respect to Pand let RIM', M), be a wdr. Let p be simalar to
P such that every predicale varable in p s not contained in RIM', M )4. Let
its translation using p be M s R(p). There exists M' such that RIM' M),
is true if and only if M =, Spr 3paRip) s frue

Proof. Asswme there exists M’ such that R{M', M), is true. Since RUM', M),
does nut contain any variable in p, lor every o4, . in ®p. RIM Mg, ..
is true. Let for every g in p and £2in PLgy, . (pi) = (PAM'. Then. by
Lemma 1 RIM' MY, s true if and omly if M g, . Hip) s true
Then, by the definition of satisfaction, M {=¢ 3p;...3p. f(p) is true.

Assume M 3 Ipa RR(p) is true, From the delinition of satisfaction,
MEa, . fip)is true. Take M" such that M’ and M are comparable with
respect 1o P, and for every P in P and p; in p. (2" = ¢y, 5. (p). Then,
by Lemma 1. M o L Rip)is true il and only il R{M". Mg, ., is true.
Since R{M' M), . does not contain any variable in p, for every ¢ in ®p,

RIM' M), s true. O

Corollary 1 M is a minimal model with respect to a firsl-order formula
A(P) and a wdr R{M' M), if and only if M 1s a model of:

AP) A =3p.ZpalAlp) A RP)),
where a translation of the wdr using p is M |5y R(p).

Proof. Assume M iz a minimal model with respect to a first-order for-
mula A(P) and a partial order refation R{M', M}s. Since for every com-
parable interpretation M" with M, if M’ is a model of A{P) then for every
assignment function ¢, ~R{M’, M), is troe, there is no comparable inter-
pretation M’ with M such that for every assignment function ¢, (M’ |=4
AP A RIM', Mg 15 true.
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since (M =L AP AR(M . M), is a wdr, we can translate it into the
fullowing atomic wdr:

M . Alp) ~ Rip).

By Theoremn 1, M = =3p..Fp,{Alp) & Rip)) is true. And since M is a
model of A(P), M = A(P) A - E|p1 LaZpal Alp) o Hip)).

Assume that M |= A(P}A =3p;. dp, (Alp) A R(p}). Then M is a madel
of A(P}. And by Theorem 1, M = —dp,..3p.(A(p} A R(p)) is true if and
only if there exists no comparable model M" with M such that for every
assignment function &, (M" 4 A(P)} A R(M'. M), is true. Therefore, for
every comparable interpretation M’ with M., if M is a model of A(P) then
[or every assignment function o, SRIM' M), s true. Thus, M is a minimal
mode]l. O
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