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Abstract

A programming system can be delined as an environment where one can input pro-
grams and exccute goals. After describing two approaches, ie., meta-exleusion and
reflective extension, for enhancing meta-interpreters, they are combined tugether and
refluctive operations on such meta-nterpreters are discussed. Based on these meta-
inlerpretation technigues, an experimental reflective programming system (ExHeps) is
deseribed. The whole system consists of two layers, i.e., abstract machine layer and ex-
ccution svstem layer, and both layers are totally written in parallel logic language GHC.
T'wo examples of reflective programming, i.e., load balancing and dynamaic reduction count
control. are shown. An actual program execution example on ExReps is also shown.

1. Introduction

Various kinds of parallel logic langueges have been proposed so far. PARLOG 6],
Coneurrent Prolog [15] and GHC [25) arc examples of such languages. In these langnages,
we can create processes dynamically and express the synchronizalion between processes
quite easilv.

Therefore, it seems to be quile natural to try to describe an operating system in these
languages. In fact, various proposals have been made for systems programming from the
very beginning of perallel logic languages [5] [16). PPS (PARLOG Programming System)
[8] and Togix [18] are the examples of such systems.

In this paper, we try to describe an experimental reflective programming system writ-
ten in GHC. A programming system can be defined as a small eperating system where
one can inpul programs and execute goals. Our objective is not building up a practical
programming system like PP'S or Logix. Rather, our interest exists in expressing a simple
programming syslem more systematically and more concise manner. We would also like
to test new features of a programming system such as reflective operations.

The organization of this paper is as follows. Section 2 describes two approaches for en-
hancing self-description of GHC. After describing meta-extension and reflective-cxtension,
we combine them together and describes about reflective operations. Based on these tech-
niques, an experimental reflective programming systern (Exlteps) is shown in Section 3.
The whole system consists of two layers, i.e., the abstract imachine layer and the execution
system layer. Both layers are described using enhanced meta-interpreters. Two examples



of reflective programming are shown in Section 4. The actual program excculion example
on ExReps is shown in Section 5.

2. Enhanced self-descriptions

The original notion of self-description seems to derive from the description of EVAL
in LISP. Hoth of programs and data structures are expressed as S-expressions. Self-
description tries to describe the features of the language in itself, i.e., it trics to describe
the evaluation step of the program in itself.

In Prolog world, the following 4-line program has been known as Prolog in Prolog or
vanilla interpreter [1].

exec(true) =1,

exec((P,0)):=! exec(P) ,exec(Q).
exec(P):-clause((P:-Bedy))},exec(Body) .
exec(P):-sys(P},',P.

The meaning of this meta-interpreter is fairly simple. The goal which should be solved
is given as an argument of exee. Il it is “true,” the execution of the goal succeeds. 1f it is
a sequence, it is decomposed and executed sequentially. In the case of a user-defined goal.
the predicate “clause” finds the definition of the given goal and the goal is decomposed
to its definition. If it is a system-defined goal, it is solved direcily. Though this 4-line
program is very simple, it certainly works as Proelog in Prolog.

The GHC version of this meta-interpreter can similarly be written as follows:

exec(true):=-trueltrue.
exec((P,0)):-truelexec(P),exec(q).
exec(P):-not_sys(P) Ireduce(P,Body),exec(Body).
exec(P}:-sys{P)|P.

This GHC program is almost the same as the Prolog program. If we compare this 4-
line program with the self-description of Lisp, it seems to be too simple. 1t only simulates
the top-level control flow of the given program.

We would like to enhance this 4-line program and obtain various enhanced meta-
interpreters. How should we extend our meta-interpreter? It seems that there exist two
directions for that.

2.1. Meta-extension

One direction is developing various mela-interpreters to control program execution
in the programming system. We call this extension as meta-extension. This approach
is simnilar to those which have already been proposed by [10). This extension aims at
obtaining ebject-level information from ebject-level world to meta-level world. Here, meta-
level means the fop-level where the execution of programs are performed, and object-level
means the interpreted-level where the execution of programs is done in an interpretive
manmner inside a meta-interpreter.

There exists various object-level information. The “success” and “failure” of goal
execution can be considered as object-leve! information. luput and output can also be
considered as such.



The simple failsefe mela-interpreter, such as seen in [5] can simply be obtained by
making the notion of “success” and “failure” explicit in the meta-interpreter. This
modification is very simple and can be expressed as follows:

exec(true,R) :=true|R=success.

exec(false R) :-true|R=failure.

exec((P,Q),R):-truel
exec{P,R1),exec(Q,R2),and_result(R1,R2,R).

exec(P,R) :-not_sys(P)|
reduce(P,Body},exec(Bedy,R).

exec(P,R) :~sys(P) |sys_exe(P,R}.

Here “success™ means that the given goals are all processed successfully, “failure”
oceurs when system goal is failed or there are no conunittable clauses in “reduce.”
Similarly mierruptible mela-interpreter can be defined as follows:

exec(true,In,lut) :-truelOut=[success].
exec((A,B),In,0ut):~truel
exec(A,In,01),exec(BE,In,02) ,merge_result(01,02,0ut).
exec(A,In,0ut) :-sys(A),var(In)|sys_exe(4,In,0ut).
exac{A®io,In,0ut):-var{In)|Out=[Ag1c].
exec(A,In,Dut):-not_sys(A),var(In)|
reduce{h,In,Body,Out,Newlut) ,exec(Body,In,NewOut) .

exec(A, [suspend|In],Out):-truelwait(A,In,0ut}.
exec(A, [abortiIn],0Out):-truellut=[aborted].

walt (4, [resume|In],Out) :~truelexec{A,In,Out}.
wait(A, [abort|In],0ut) :-true|Out=[aborted].

This “exec” has also been proposed by [3]. It has two streams, “In” and “Out,”
which explicitly connect meta-level and object-level, The “success” and “failure” of
Lhe object goal execution is processed as a message to the meta-level by using “Out”
stream. If the goal has the form “A€10." it means the ifo operation and the goal is sent
to “Out” streamn. Note that “var{In)" is the special predicate which checks the absence of
messages in the argument variable. Also, “0ut”™ stream can transmit failure or ercepiion
information, produced by “sys_exe” and “"reduce.” to the meta-level

This “exec” is very useful if we would like to control the program execution from the
meta-level. We can “suspend,” “resume,” or “abert” the execution of the given goal by
sending appropriate messages from “In” stream.

2.2. Reflective-extension

The other direction for extending meta-interpreter is to realize reflective capabilitics,
such as seen in [12] [19]. We sometimes want to catch the current state of the system
and modify it dynamically,. We call this extension as refleclive-extension. By using this
extension object-level program can obtain meta-level information. This capabilities scem
to be very useful in writing advanced programming system.
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The extension depends on what kind of resources we want to control. We sometimes
want to manage processes dynamically at execution time. Therefore, we introduce a
scheduling queue explicitly in our meta-interpreter. The enhanced meta-interpreter can
he shown as fallows.

aexec(T,T,R) :-true|R=success.
exec([true|H],T,R):-truel|exec(H,T,R).
exec{[falselH],T,R):-true|R=failure.
exec([P|H],T,R):-not_sys(P) |
reduce{P,T,NT) ,exec(H,NT,R).
exec([P|H],T,R):-sys(P) |
sys_exa(P,T,NT) ,exec(H,NT,R}.

The first two arguments of “exec”, "H” and “T,” express the scheduling queue in
Difference list form. The use of Difference list for expressing scheduling queue was origi-
nally invented by [13]. We remove a goal from the top of the queve. Then “reduce” or
“sys_exe” processes that goal. In the former case, the goal is decomposed to sub-goals
and they are appended to the fail of the scheduling quene.

Next we introduce two more arguments, “MaxRC” and “RC,” to contral reduction count.
This enhancement is motivated by [9]. We assume that reduction count corresponds to
the computation time in conventional systems. “MaxRC” shows the limit of the reduction
count allowed in that “exec.” “RC” shows the enrrent reduction count.

exec(T,T,R,MaxRC,RC) :=true|R=success(RC).
exec([true|H],T,R,MaxRC,RC) : -true|exec(H, T R, MaxRC,RC) .
exec{[false|H],T,R,MaxRC,RC) :-truelR=failure(RC).

exec([PIH],T,R,MaxRC,RC) : -MaxRC<RC|
=count_over{RC}.
exec([PIH],T,R,MaxRC,RC) : —not_sys(P) ,MaxRC>=RC |
reduce(P,T,NT,RC,RC1),exec(H,NT,R,MaxRC,RC1).
exec([PIH],T,R,MaxRC,RC) : -sy=(P) ,MaxRC>=RC|
sys_exe(P,T,NT,RC,RC1) ,exec(H,NT,R,MaxRC,RC1).

MNotice that “reduce” or “sys_exe” increments “RC” by one when the actual compu-
tation takes place.

2.3. Combining together

Though we showed meta-extension and reflective-extension in the previous sections,
they are not conflicting to each other. In fact, they can be combined together as shown
helow.

exec(T,T,In,0ut,MaxRC,RC) : =truel
Out=[success{reduction_count=RC}].

exec{[truelH],T,In,Out,MaxRC,RC) i -truel
exec(H,T,In,0ut,MaxRC,RC}.



exec(H,T,In,0ut,MaxRC,RC) - -MaxRC>=RC|
Dut=[count_over] .

exec([AlH],T,In,Out ,MaxRC,RC):-
sys(A),var{In) ,MaxRC>RC|
sys_exe(a,T,NT,RC,RC1,0ut ,KOut),
exec (H,NT,In,NOut,MaxRC,RCL) .
exec([AQio|H],T,In,Out,MaxRC,RC) -
var(In) ,MaxRC>RC|
Out=[AQic |NOut],
RC1=RC+1,
exec(H,T,In,NOut,MaxRC,RC1).
exec{ [AIH],T,In,Dut,MaxRC,RC):-
not_sys(A),var(In), MaxRC>RC|
reduce(A,T,NT,RC,RCL,Out NOut) ,
exec(H,NT,In,NOut,MaxRC,RC1).

exec(H,T, [Mes|In],Out,MaxRC,RC) :=truel
control_exec(Mes,H,T,In,Out,MaxRC,RC).
exec(H,T, [goal(G) |In],Out ,MaxRC,RC): -truel
NH=[G|H],
exec(NH,T,In,Out,MaxRC,RC).

As mentioned before, meta-erfension essentially cares for object-level information to
the meta-level. On the other hand, reflective extension cares for meta-level information
ta the object-level In this inlerpreter, we see these two extensions are combined in a
harmonious manner,

2.4, Reflective operations in an enhanced interpreter

Implementing various reflective operations, such as seen in [12] [19] is not too difficult,
once we gel the enhanced meta-interpreters.

Refllective operations must be executed urgently. However, there is no notion of job
priority in our interpreter. Therefore, we introduce the notion of express quene to execute
erpress goals, which have the form “G@exp,” as a preparation.

We add two more arguments, which correspond Lo the express queue, to our interpreter.
The following two definitions describe the transition between the normal state and express

stato,

exec{[GRexplH],T,In,0ut,MaxRC,RC) :-var(In)|
exac([GIET] ,ET,H,T,In,0ut ,MaxRC,RC).

exec (ET,ET,H,T,In,0ut,MaxRC,RC) :~var{In}|
exec(H,T,In,0ut,MaxRC,RC).

The first two arguments of eight-argument “exec” correspond to express queue. If the
normal six-argument “exec” comes across the express goal, the eight-argument “exec” is

called and it enters the czpress stale.



In express state, the normal execution of goals are frozen, It “exec” omly executes
express goals, and the reduced goals are also entered to the express queue. If the express
queue becomes cmptly, it simply returns to the normal state.

We consider four kinds of reflective operations, “get_re,” “put_re,” “get_q" and
“put_q,” of which ebject-level program can make use. The meaning of these operations
is shown in Figure 1.

meta-level

object-level

Figure 1 Reflective Operations in GHC

Two kinds of meta-information are reified here, ie.. scheduling gqueue and reduction
count. “gat” operations obtain meta-information for the ebject-level. On the other hand,
“put” operations return the information to the meta-level.

The meaning of each operation is as follows: “get_rc” gets “MaxRC” and “RC” from
the meta-level, “put_rc” resets “MaxRC” to the given argument, “get_g" gets the current
scheduling quene, and “put_g” resels the scheduling quene o the given arguments. The
followings are the definifions of these reflective operations:

exec([get_rc(Max,C) |EH] ,ET,H,T,In,0ut ,MaxRC,RC} :-tTue|
Max:=MaxRC,C:=RC,RC1:=sRC+1,
exec(EH,ET,H,T,In,0ut,MaxRC, RCL) .
exec([put_rc(C)|EH] ,ET,H,T,In,Out,MaxRC,RC) : -true|
RC1:=RC+1,
exec(EH,ET,H,T,In,0ut,C,RCL).
exec([get_q(NH,NT) |EH] ,ET,H,T,In,Out, MaxRC,RC):-truel
RC1L:=RC+1,NH=H,NT=T,
exec (EH,ET,H,T,In,0ut,MaxRC,RC1).
exec([put_q(NH,NT} |EH] ,ET,H,T,In,Out,MaxRC,RC) :-truel
RC1:=RC+1,



exec(EH,ET,NH,NT, In,Dut,MaxRC,RC1) .

The implementation is quite straightforward since scheduling queue and reduction
count have already been explicit in the meta-interpreter.

3. ExReps programming system

We have already described the enhanced mcla-interpreters. As stated before, these
extensions provide us the basis for building up our programming systern.

ExReps, which stands for “Experimental Reflective Programming System,” has actu-
ally been built up based on these techniques [22]. Since our ExReps also consists of huge
amount of codes, we try to show the simplified version of the svstem and describe how
the programming system will be constricted using meta-interpreter techuiques.

3.1. Overall structure

T'he overall structure of ExReps is shown in Figure 2. ExReps is implemented on
PSI-11 Machine [13]. Since the current version of P5I-1I only understands ESP which is
the object-oriented dialect of Prolog [2], we install GHC system first. This GUC system
is a slightly modified version of [26] and exccutes the compiled GHC programs.

User Program

/\\

Execution System

_—--"'"——\',_,

Abstract Machines

,..-—""’\\

GHC system

T

P51-11 machine

Figurc 2 Overall structures of ExReps

We expect ExIteps should also be adaptable to distributed hardware. Therefore, we
construct distributed abstract machine layer on top of GHC system. The construction of
this layer is originally motivated by [23]. The execution system, which foads uscr programs
and executes user johs, is constructed on top of these abstract machines.

-]



3.2. Communication to the external world

How to realize the communication to the external world is the critical problem to
implement a programming system. One possibility is utilizing i/o operations which have
side-effects. llowever, this means that ifo is handled as somewhat extra-logical things.
Another possibility is assuming a conceptual process which corresponds to the actual
device,

We adopted the latler approach, i.e., we assumed a conceptual process for each physical
device. Every conceplual process has a single stream to which we can send messages.
We have prepared “catch” predicate to catch the stream [rom the physical device. For
example, a stream to the prinfer can be caught by executing “catch(printer,X).” This
predicatle 1s a special one, which we can execute only once in our program for each device.

For simplicity, we assumed these coneeplual processes always consume the stream. We
can manipulate the device by sending an appropriate message sequence from the siream.
{INote that ifo operations executed inside meta-interpreters are actually transformed to
the message of the mele-level stream in our svstem.)

3.3. Window and keyboard controller

The typical ifo device we assume here is a window which is created on a bitmap
display. It is possible to input and output messages from there. Of course, window is not
a physical device, since we can create as many number of windows as we want. It should
be called as a wirtual device. In our approach, virfual processes can be created by the
create predicale in a program.

For example, a window is created when “create(window,X)" is exccuted. The input
and output to the window are expressed as messages to stream “X.” (The actual input
i completed when we move the cursor to the window and type in messages from the
keyboard.} We assume that the virtual processes which correspond 1o devices are deleted
by instantiating the stream “X" to “[1.7

However, we should note that input and output are executed as a message to the
window stream, i.e., Lhe window does not accept keyboard input without a request from
the program. I'herefore, we need keyboard controller program which always generates this
request. This can be written as follows:

keyboard(Dut,In):-truel
Out=[input{[0],T}|0ut1],
keyboard(T,0utl,In).

keyboard(halt,Dut,In):-truel
Out=[1,
In=[].
keyboard(T,0ut,In):-goal_or_command(T) |
In=[T|In1],
Out=[input([@],T1) |0utl],
keyboard(T1,0utl,Inl).

Here, we assume that the first argument “Out” is connected to the window and the
second argument “In” is connected to GHC programs. Note that “input([@],T)” out-



puts “@" first, and user’s input will be entered into “T,” ie., “@" is used as a prompt for
uscr input.

3.4. Abstract machine layer

Thus far “exec” has been used to express user process. However, it can be considered
as a kind of mirtual processor since it has a scheduling quene and a reduction counter. This
view of “erec” opens the new world. By connecting “exec” we can construct a virlual
distributed computers.

To manage input and outpul from “exec,” we also prepare the network manager “nm."
For example, we can define the following ring-connected distributed computers by using
“exec” and “nm.”

d_machine:-truel
am{Nm4 ,Nmi,Inl,0utl),exec(T1,T1,Inl,0utl,_,0},
nm(Nml,Nm2,In2,0ut2),exec(T2,T2,In2,0ut2,_,0),
nm(Nm2,Nm3,In3,0ut3),exec(T3,T3,In3,0ut3,_,0),
nm(Nm3,Nmd, Ind,0utd) ,exec(T4,T4,Ind,0utd, _,0).

Four “nn” processes arc connected to the uni-directed ring. The output of one network
manager is connected to the input of the other network manager. Each “nm” is also
connected to a “exec.” The scheduling quene of “exec” is initially empty. User goals can
be entered in “exec” from “In.”

Inside of eacl “exec.” the ordinary GHC program runs. However each “exec” can
throw goals which has pragma [17] to other “exec” through “Out” stream. We assume
that goal “A" which has pragma “@P” is expressed as “AQP." The kind of pragma depends
on the topology of abstract machines. We assume that pragma “@forward” is used for
uni-directed ring.

The handling of pragma is carried out by simply adding the following definition to the
six-argument “exec.”

exec ([AQP|H],T,In,0ut,MaxRC,RC) -
1s_pragma(P),var (In) ,MaxRC>RC|
Out=[AQio |NOut],
RC1=RC+1,
exec(H,T,In,NOut,MaxRC,RC1).

Each “mm” delivers the goal with pragma. If the goal has the pragma, “nm” simple
peels off the outermost pragma and sends the remaining part to the next “am.” The goal
which has no pragma is dropped to the “exec.” Therefore, goal “A2forward@forward”
will be dropped to “exec” located ahead by two.

However, vou may notice that these distributed computers are isolated from the ex-
ternal world, The program of distributed machines with i/o becomes as follows:

d_machine:-truel
create(window,0),
keyboard(01,1),
merge(I,Nmd, Nmd’},



nm{Nm4’,Nml,Inl,0utl),exec(T1,T1,Inl,0utl,_,0),
nm{Nml,Nm2,1n2,0ut2),exec(T2,T2,In2,0ut2,_,0),
nm{Nm2 ,Nm3,In3 ,0ut3) ,execi{T3,T3,In3,0ut3,_,0),
nm{Nm3’ ,Nm4,In4,0ut4),exec(T4,T4,In4,0ut4,_,0),
dist{Nm3,Nm3*,02),

merge(01,02,0).

Figure 3 shows the overall structure of the distributed machines. Comparing to the
previous program, a window and a keyhoard controller are added for the interface to the
outer world. “merge” is added to join input stream “I" to “Nm4.” We assume that goal
“A@ie” simply goes through “nm.” “dist” captures the i/o goals and send them to “02.7

window

Figure 3 Dhistributed abstract machines

Note that the distributed computers shown here is the extremely simplified version of
actual ExReps systemn, In the actual system, we can build various kinds of distributed
abstract machines and there exist different pragmas for different topologies. Though
“@forward” was used for uni-directed ring, we use “@right,” “0left,” “Qup” and “@down”
for square mesh. Potentially it is also possible to apply more complicated pragma strategy
such as seen in [3] [11].

3.5. Execution system layer

In this section, we first describe the shell which plays the central role in the execution
system. Then we describe database server which provides us the capability to load user
programs. After that, we try to assemble these parts into the execulion system.
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3.5.1. Shell

The shell creates the user task or enters the program to the database, depending on
messages from the user. The [ollowing is the program for the shell.

shell([],Db,MaxRC,0ut) :-truel
Db=[],0ut=[].
shell([goal (Geal) |In],Db,MaxRC,Out) :=truel
create(Window, WOut),
keyboard (KDut,Eln},
exec( [GoallT],T,EIn,EQut,MaxRC,0),
shall(In,Db,MaxRC,0ut),
merge{KOut,EQut,Wlut) .
shell1([db(Message) | In],Db,MaxRC,Out} :~truel
Db=[Message|Dbil],
shell(In,Dbi,MaxRC,0ut).

The “shell” has four arguments; the first is the input streams, the second is the
stream to the database scrver, the thivd is the internal state which specifies the maximum
reduction count allowed for the user process, and the fourth is the output stream.

This program works as follows: If the input stream of *shell” is “[],” it means
the end of input. All streams will be closed in ihis case. If “goal(Goal)” is in the
input stream, the enhanced meta-iuterpreter which contain “Goal™ as its argument is
created. A window and a keyboard controller are also createrd accompanied with eree. If
“db(Message)” is in the input stream, “Message” is sent to the database server.

Figure 4 shows Lhe snapshot where processes are created in accordance with the user
input. Note that each erec has their own window and keyhoard. Once created they run
independently from the shell. Since the keyvhoard controller always try to request input
from the window, the user can input the commands from the window to erec.

shell

I'igure 4 The creation of processes in shell
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3.5.2. Database server

In the execution system, we need a database capability which can add, delete and
check program definitions. In naive implementation, we need to consult db_server every
time we execute user-defined predicates. In fact, PPS tries to realize the database in
such way [7]. However, this is very complicated and this may cause a database access
bottleneck. Therefore, we have implemented db_server as follows, using side-effects:

db_server([add(Ceode) |In] ,ready,Dut) :-truel
add_definition{Code,Done,Dut,Outi},
db_server{In,Done,0utl).

db_server{[delete(Name,Arity)|In], ,ready,0ut) :=truel|
delete_definition(Name, Arity,Done,Dut,Outi),
db_server(In,Done,0utl).

db_server([definition(Name,Arity)|In],ready,Out):-truel
definition(Name,Arity,Done,Out,Outl),
db_server(In,Done,0utl).

The “db_server” predicate has three argunients. The first argument is the input from
the system. The second argument “Done” is used Lo scquentialize database access. The
third is the output to the system.

3.5.3. Building up the execution system
Now we connect components together and building up the exccution system [22]. The
example is shown below:

exe_system:-true|
create{window,Dut),
keyboard(Outl,In),
ghell{In,Db,MaxAC,0ut2),
db_server(Db,ready,0ut3),
merge3{Outl,0ut2,0ut3,Out).

This program can also be illustrated in Figure 5. A window, a keyboard controller,
a shell and database server are connected together. The outputs of the shell, database
server and keyboard controller are connected together to the window. Since the keyboard
controller always generates the read request to the system window, we can always input
goals from it.



Figure 5 Execution system layer

This program should he installed on top of abstract machines. Since this program does
not include pragma, all components are installed in one abstract machine. However, we
should note that user programs can be executed on several ahstract machines by putting
appropriate pragma Lo user prograins.

4. Reflective programming examples
In this section, we show two examples of reflective programming. The first is the load
balancing program, the second is dynamic reduction count confrol

4.1. Load balancing

The first example is the load balancing program which is executed directly on top of
abstract machine. It is possible to consider the load balancing problem using reflective
operations. The load balancing program is shown below. If we enter “load_balance@exp”
goal as a goal which is execited on the abstract machine, this goal automatically circulates
among abstract machines and performs load halancing.

load_balance:-truel
get_q{H,T),
length(H,T,N),
balance(N,H,T).

balance(N,H,T) :-N>100|
X:=N=-100,
threw_out (X, H,T,NH,NT),
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load_balancef@exp@forward,

put_gq(NH,NT}.
balance(N,H,T):-N=<100|

load_balance@explforward.

When “load_balance@exp” is executed inside an abstract machine, it goes into the ez-
pressstate. In erpress state, the current scheduling queue of the abstract machine is taken
out and the length of the quene is computed. 1fit is longer than 100, “throw_out(X,H,T,NH,NT)"
picks up excessive goals from the scheduling queue (H,T), puts these goals into “X,”
throws “X” out and put remaining goals inte “NH" and “NT" in Difference list form.
“load_balance@®exp” goal is also thrown out to invoke load balancing to other abstract
machines. If it is shorter than 100, it simply forwards the “load_balance@exp” goal to
other abstract machines.

4.2. Dynamic reduction count control

The second example is dynamic reduction count control program which is executed
at the user program level. The [ollowing program shows how to define the “check_rc”
predicate which checks the current reduction count of the system and changes it if allowed
fewer than 100 reductions.

check_rc:-truel
get_rc(MaxRC,RC),
RestRC:=MaxRC-RC,
check{MaxRC, RestRC) .

check(MaxRC,RestRC) : -100>=RastRC|
get_q(H,T),
input([reduction_increment,@],AddRC),
MRC : =MaxRC+AddRC,
put_rc(NRC),
T=[check_rcfexp|NT],
put_q(H,NT) .

check(MaxRC,RestRC) : ~100<RestRC|
get_g(H,T),
T=[check_rcQexp|NT],
put_q(H,NT).

When “check_rcQexp” goal is execcuted, it tries to get “MaxRC” and current “RC.”
Then it computes the remaining reduction count “RestRC.” In the case “RestRC” is less
than 100, it gets “AddRC" from the user, computes “NRC,” stores this number as the new
“MaxRC" of the system, and returns to Lhe normal state afler adding “check_rc@exp”
goal to the tail of the current scheduling queue.

We assumed thesc reflective operations in a very primitive manner. In a sense, these
are very dangerous because we can easily access and change the internal state of the
system. However, we need these capabilities for advanced system control. Our current
interest exisls in examining the reflective operations i a programming system.
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5. User program execution on ExReps

An example of the actual program execution on ExReps is shown in Figure 6. As
mentioned hefore, we install GHC system first on PSI-II. Then we execule the abstract
machine ronstruction program. The execution of this program opens “VM_window” in
PSI-IT display {the upper-left corner of Figure ). We specify the topology and the size
of the netwark. In FExReps svstem, we can huild various distributed abstract machines,
such as finear array, square mesh. hexagonal mesh. rving, tree and hyper cube.

naka (mash, (3.4]).
pa.

EIFER ] mbort
resums  halt n
atmte  socrol

Bauccass
goal =tourGueand{[{3.!
1J_..A-lE"II-[E--"'rI.uii]']'ll

halt s&rall

#tourbusansl obeck
is ereated I}

oA LB, C, 2000 87 LB E o L
orwer diforeard yetorwaralt orwars torwar
arward

Figure 6 User program execution on ExReps

In this case, we typed in “nake (mesh, (3,4))," which created the 3 by 4 mesh network.
The abstract machines are shown in “VM_area” window (lower-left corner). Here, each
abstract machine is also shown as a window and the executing goals are displayed in real
Lite manncr.

Then we construct execulion system layer on top of abstract machines. I'his is done
simply by tvping in “ps” from “VM_windew.” which creates “PS_window.” We can input
user programs and goals from “PS_window.” We loaded the distributed four gueen pro-
gram and executed it. When we input the goal, it automatically creates the user-process
window [ “fourQueen/1” window in this case). We can “suspend,” “resume,” or “abort”
the execution of the goal dynamically by sending appropriate messages from this window.

This four gueen program contains pregma and has been executed in a distributed

manner.



6. Conclusion

Two approaches, i.e., meta-exiension aud refleclive-eclension, are shown for enhancing
GHC meta-interpreters. Though several works, such as [5] [10] [14], have been investigated
for meta-ertension, no previous work is proposed for reflective-extension and reflective
operations in parallel logic programming world,

In our approach, the extension depends on what kind of resources we want to control.
Since we wanted to control the scheduling ol processes and computation time, we intro-
duced scheduling guene and reduction counter explicitly. Other resources, such as variable
environment, can also be controlled in a similar manner [21]. Though reflective operations
are defined as an ad hoc way, defining il refllective operations in more sophisticated way,
such as seen in [19] [27], is also possible.

In relate to ExReps, the current version is implemented on P51-11. However, we imagine
that the extension to distributed hardware, such as Multi-PS] [24], will not be difficult.
Qur approach can be classified as software-oriented approach. In contrast, PIMOS [4]
tries to implement their “exec” { She 'vn) dircctly as a built-in predicate.

PIMOS trics to realize various features of distributed operating system in machine-
dependent or hard-wired way. All key features, such as exception handing, task manage-
ment and load balancing, are concentrated to this *exec” implementation.

On the other side, reflective operations work as wires which connect mefa-level and
object-level in our approach. The object-level world can obtain meta-level information
through these wires. User can write object-level programs which handle meta-level in-
formation and the modified met-level inflormation can be reflected back to the meta-level
These result the [lexible and powerful systemn which consists of small core. Therefore, we
believe that our approach is more suitable, especially in the case of distributed environ-
ment.

Also note thal the programs shown here are the extremely simplified version. The
more complete version of ExReps, running on PSI-11, has already been demonstrated at
FGCS'S8 and is available from the author [22].
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