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Abstract

This paper describes LIS-toe NI transformation which maps a proof in LK te a proof in NE, We
prove that & cut-free preof in LIS 1s mapped to a normal proofin KK, in a sense, by the transformation.
This iz used to develop user onented explanation facilities in antomatic theorem provers and proof
checkers.

1 Introduction

It is well known that there are theoretical similarities between the cut-elimination theorem for LY and
LE |Gend4| and the normwlization theorem for NJ [Prafi]. These theorems say that every purely logical
proof can be reduced to a definite, though not unique, normal form. The essential properties of such a
normal p‘rc»nf means that it is not rowndabout. No 1'1IJJ:I'.'1'.'1.ILb ArE QECESSATY lir Lhie [_lrr.ir.lf exeipl lhu.sr.',
contained o its final resull, whose use was essential to the proof These facts raise the problem of the
correspondence between cut-free proof in LK {and L1} and normal proof in WK (and NJ1j. This paper
provides a positive answer to this problem for LK and NK.

{Zuc?4] deseribes Ll-te-NJ transformation and gives a careful and detailed analysis of the corre-
spondence between cut-elimination and normalization for an intuitionistic system including arithmetic.
Zucker's method 1s to deline 8 many-to-one mapping from proofs in L] to proofs in M. For any L1-proof
T, we can obtain a sequence of Ll-procds T, Ty, ..., in which every T 4q is generated by applying the
ent-elimination procedure to Dy and the sequence converge to cut-Iree prool. Zucker proves Lhat the
mapping’s image of this scquence 1s the sequence of Nl-prosfs whose convergence is a normal proaof in
L1

This paper preseats the LEK-to-NK transformation for the man-machine inleraction in sulomatic
theorem provers and proof checkers, From this point of view, we are interested in the correspondence
between cutfree proof and normal proof rather than the correspondence between the cul-eflimination
procedure and the normalization pr{:l-l:{_'dur-:r. First, we desenibe the L1-to-NJ transformation u:sil!.g the
notation wsed in [ZucT4] which is described in the appendix. This transformation is defined in a natural
sense aml A straightforward way, And we present LE-to-NK translormation s lo inference roles using
the LJ-to-ND transformation. The idea 15 the transformation which maps an original LK-proof to another
LK-proof to which an extended LJ-to-NJ transformation can apply. Lastly we prove a cut-free proof in

LK is transformed to a NI{-prunf‘ which 15 normal in some sense,

2 LJ-to-NJ Transformation

We will define a translormation ¢ which maps LI-proof to NJ-proof.
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The Basic Idea
basic idea is illustrated as follows. This is the same as [Zuc74].
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definition of y is by induction on the number of inference rules constituting the L) proof figure.
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2.3 Some comunents on

Hypothesis on unary index In any derivalion 27, all unary indices that occur in mitial el g
lower sequents of =1, v L and 3-L must be distinet,

Eigenvariable problem In the case of cnt and oL, #(T) may viclate the eigenvariable eondition in
#(Pz). The eigenvariable condition can be liberalized using the notion pure [Prags]. If this more
liberal condition is adopted, these (D) do not violate sigenvariable condition. So, each el s
NJ-prool. However, instead of adopting this condition, we assumne that every LK-proof is regnfar,

3 LK-to-NK Transformation
3.1 The Basic Tdea

We translate an LK-prool 1o another LK-prool which satisfies the following conditions. This translation
15 denoted by y.

1. The proof figure consists of two parts. One 8 the main-part. The other a gub-part.
2. The main part is an LI-proof. So, the main-part can he translated to Nl-prool by .

4. 'The sub-part consists of the same type LK-proof, whose end-sequent i — 4, =4 where 4 is an
arbitrary formula, combined with the main-part by cut, as follows.
oy
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This proof is translated to NK-proof as follows,
[~4"] T
()
L

— =1

A

elimination of double negalion

In the following, ¢ includes this translation to add to the definition of ¢ in the previous section.

To realize the above idea, we regard an LK-proof [ — Ay,..., 4, 88 an LK-proof

-'Al:----_"‘qf—l*"'-"'li-'-i:- ..

AL T — A And, when necessary, we move A, to the antecedent by

cut and move A; (1 € j € n,j # i) to the succedent by —L. The formula 4;, which is determined for

LK-proof T, is defined by the following function .
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Roughly speaking, F(P) is the thinning formula or the principal formula of the D-inferences helow
which there are no H-inference and no —-L.

3.2 Definition of v

In the definition of 3, let A, A deaote the following,

ﬁ:.q].---..:"l“ J'IL.ZB]_,...,Hm
&,z{ A LFD,) =4

Avyo it Avps o A if F(DY) = A
wo if F(D;) = 6
5| Buo Bicy, Bigy, .. By 3 F(Dy) = By

When F(Dy)[F(D2)] = ¢, =A" T — F(Dq) [-A 1T — F(Ds)] is exactly same as A, T — [=A, 11 — ],

1. inmilial sequent DP=A=4 D)= A= 4
2. thinning-T. D= }) r—— i
x(Py)
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(e} F(Dy) # D and F(Da) # ¢ Similarly to (D)) # C and F(D)) # 6
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=A" L 1T (T}
D geveral inferchanges
P » -ar X8 o DN 0 — F(Da)
(a) F(Du) = x(P)= C oD AL A = F(Dy)
several interchanges
—A A O D DT — FDs)
L D
(b) F(D1) £C V(D) = x(P)  x(Dy) 5L

C o0 =A T, oA T — F(Th)
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=&, AL C D DT T — F{D)

yi?) ) and x(P5) are defined as follows,
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F{t),=A" T — F(Dy)

x(P) VzF(z), ~A' T — F(D;) .
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A Ve Fx), T — F(D)
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oy — L, a
18. ¥-R D= A vrin)
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(b) F(Dy) # Fla) and F(Dy) £ ¢
(D)
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20. 3-K  Similarly to v-R
3.3 An extra transformation : v
) ) n
Applving ¥ to an LE-proof ' — Ay, ... dg, we con obiadn another LE-prool whose form is either
. x(D) . x(P)
—ArmA s A, =4, = A FD = A er Ay, A T = [T x(Dh=g)
After applving y. we can obtain an LR proof whose spl sequent 3s T'— 470 Ay, as follows.
()
¥ -'"11--'-"1-1 “"1‘111.---._'.f1.|'_|._'.|"1|+|_,...,—Uln,r 1—& Ai
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=As, ..o oA A, AR T — A A
several culs and interchanges

I'— Ay, ....An

— A, =4, Ay, =4, T =

=, mAL D Ay
several euls and suferclunges

T— ;... . A,

We refer to this transformation as o,
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3.4 A Modification of y : y’

In the case of (9) =L (D) # D of the definition of x, ¥(P) has redundant inferences. The right upper

sequent =0, A, T — of cutin x(P) is the same as the lower sequent of the below —-L. Inferences between

these *wo sequents are moving =0 Lo the succedent by =-Loand, moving T) back to the antecedent by cut.

These inferences are redundant. So we abtained another transformation v which is same as y except for

this case. In this case, the definition of 1" 15 as follows.

at-pr Y gy
=F(T ), -A DT —
several interchanges

4 DT —

-=1

X' =

3.5 Alternatives for y

Fur x, there are some alternatives which are described below. The difference between each alternative
and y is that each alternative transformation makes more redundant inference in mapped proof than y
because it is interested in the correspondence between LK and NI rather than the transformation itself.

We elinsinuie these redundant inferences by introducing the notion of F.

3.5.1 Gentzen’s Method

LK and NI are criginally introduced in [Gend4]. Genleen proves that these furinal systems formulate the
classical logic intraduced by Frege, Hussell and Hilbert. Gentzen gives LHK(Hilbert's formalism for clas-
sical predicate Jogic)-to-NK transformation, NK-Lo-LK transformation and LE-to-LHE transformation
i order to prove equivalence of LK, NK and LHK. These transformations are introduced as extende:d
version of LILI-te-NT transformation, NJ-te-LJ transformation and Ll-te-LHJ transformation.

IHK -t NK transformation and WK-to-LK transformation are obtained straightlorwardly, becanse
each conclusion of these systems consists of one formula, On the otber hapd, the conclusion{the succedent )
of D-formola of LK consists of an arbitrary number of formulas. So, a technique needs to be introduced
for a transformation on LK. Our basic idea 18 similar to Gentlesn's,

Genleen gives a transformation which maps the original LE-proof to another LE-proof which is T.J-
prool augmented by the proof of — A v =4, The transformed LE-proof can be mapped to LHR-proof
by using LJ-to-LHI transformation.

An overview of Gentzen's transfor mation follows, Fach inference of LE-proof is transformed according
to the following rule: The upper sequents are followed by inferences of several interchanges and - = L,
until all fuormulas other than side formulas in the succedent have been negated and brought into the
antecedent. Then follows an inferenee of the same kind as the one just trapsformed. Then follow new

inference T,
=4 —aA

I'— A4
and the negated lormulas are broughl back o the suceedent. Gontzen transforms the inference I into

LY inference augmented by — A v —4 a5 an axiom.
For cxample, in the cose of A - T,
IFr—ACALD




is transformed into:

I—AC I'— A, D
several inlerchanges aud = — L several inferchanges and - — [
A = =A L — D
r =R
A TT—=CAD
several inlerchanges and T
Fr—ACAD
3.5.2 Prawitz’s Method
In the definition of y, we regard a sequent I' — Ag oAy asasequent Ay L —A o, — A, AL T —
A Of course, we can simply regard a sequent ['— 4;,.. ., 4, asa seguent —Ap, .., mAyop, — A,

From this view, [Praf5] describes the connection between LK and NK. Frasiically, these two views are
equal. The difference is in the case where an original LK-proof includes redundant inferences such as the

following redundant repeat of interchange — I

D

I — AR
I'— B, A
I —A.B

This LK-proof is translated wo NK-prool as follows in the new view.

|
r 4]
#lx(D)) 2
R [5]
L

—a !

|
—-—H
i

2

According to the definition of v defined in the previous section, these redundant inferences are ignared,
thongh o resull proof from an automatic theorem prover may wol inclede these redundant inferences.

3.5.3  Another Simple Methad

Ou the other hand, more simply, we can regard a sequent T — Ay, ..., Ay 83 a sequent <Ay, ... Ay, T =
With this view, y can be redefined. In this section, this y is referred to vq.

The definition of vy 13 simpler than the definition of y, because we need not consider each case
according to whether F{Dy) = &, F(P\) £ ¢ , F(D,) = side formula or F(D ) # side formula,

For example, the case cul is as follows.

14



xu_f?lll

A, =0T
several inferchanges A DT Kﬁ[_'?':’ﬂ
—.-D_,-'wD -rﬂ,-ﬁ,l"—- : !.1, i h
cuf arveral interchanges
A=D1 DA —
xnlP) = cut

=4A, 1 =AT —
several interchanges
A, =A T —

Why do we adopt x rather than y47 The reason bs that the resnlt of yo has more redundant inferences
than that of ¥ does, For each formula A occurring in the suceedent of a sequent. in LR proof, yo generates

—E inference such as

1=

This type inference is ignored by using y. Generally, vo(D) is 2 more complicated Ni-proof than (7).
This means (D) is easier for people to read than yo{P). This is appropriate for our target.

4 Some Examples of  and y

Some examples for ¢ and y are listed.

41 —-AVA

A— 4
P= .-—--ui Wl =
— —=AV A=AV A
—=Av A
A -
A -Aw A
=[(mAVALA—
A=A A —
=4 v A — -4
=(=Av A — -4V A
A=AV A=AV A) —
AV A, (A VA) ~(~AVA)—
Y(x(D)) = —

15



AV A —=[=A v A)
i
—.A 1 2
B —AW
e(u(x(D))) = AvA J ( A)
AV
—Aw A

4.2 A>DB—--AVB

A—=4 A— B
AR A—F
AADB—H

AADD —=4vE

AR ==AvV B A
AR - =AVE -AVEH
AT B —=AvVH

A=A =R
A>DA—H
AASB - B
AADH —~-4Av H
=(—AVELA AP —
A=AV EB)LAD B —
=(=AY B, A2 H—-A
s(-AVEB) A2 H —=-AvE
=[=AVH),-[AVHE), A2 B —
- =AW B, =(=A vV B) AV E)LAD R <

vix(I)) =
(2)) AR —=-AVEH
1
A Ao B
H 2
—A B —u{—|.-'-1 WY
L
=A ] z
AV D of v 7
ple(x(D)) = | :
=AY B} 2
Ay

5 Cut-free Proof and Normal Proof

When we construct an NJ proof from an Li-proof by ¢, we notice the following properties[Prats),
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¢ Initial sequent 4 — A corresponds to un NI-proof consisting of 4.
As we go downward in the NJ-prouf, we successively enlarge, in two directions, the corresponding LI-proofl

¢ When we come Lo applications of R-rules, we usually enlarge the corresponding NJ-prool at the

bottom, applying the corresponding I-rules,

» When we come to applications of L-rules, we usually enlarge the corresponding NJ-proof at the top,
applying the corresponding E-rules.

Maore precisely,

e There is no sub-proof® which is put on the wajor premise of each E-rule.

» bach I-rule, L-rule. and elimination of double negation is placed under the sub-proof.

o Bach pinor peemise of =-F, W-E, 2-F and 3-E is the conclusion of the sub-prool
Tliese properties suggest the following theorem,

Theorem 1 Let D be a cut-free proof in LK, and et 3 he a path in ¢(x(D})), and let &1 02, ... &y be
the sequence of segments in . 'L'hen there is a segmenl oy, which separates two {possibly empty} parts
of 3, called the B part and the T-part of &, with the following properties,

1. Fach & in the E-part(j < i) is a major premize of an E-rule.
2, oy, provided that i # n, is a premise of an Frule or of the L-rule.

3. Each A; (i < j < n) in the F-part, except the last ane, is a premise of an l-rule or elimination of

double negation, And if elimination of double negation exists, it is unigue and the inference r
EES EoN

A
142

15 =1 and the inferemee is elimination of double nfga.tfcrn.

Proof. DBy induction on the length of T, properties 1 and 2 are proved and property 3 is partially

proved. For property 3, we proved that each o; in the I-part, except the last one (i < j < n), 15 8 premise
of an I-rule, elirmunation of double negation or the L-rule,

We assume that in the I-part there is a formula which is cqual 1o L. Let oy be the first occurrence

Tk

T4t

7j(that is 1) has subformula(s). This is a contradiction. Then there can be no formula which is equal

of such & formula in the branch. Then each inference {i < k< j)isan lrule. This means that

to L oin the [-part.
This completes the proof. &

Corollary 1 Let T be a cut-free proof in LK. Then i x(T)) is a noral prool in NI

Proof. If @(x(D)} is not a normal proof, then there is a maximum formula in p(x(P]). The branch
containing the maximum formula viclates theorem 1. This is a contradiction. Se ¢(x(DP}) 15 & normal

proaf. &
Of course, the above theorem and corollary are true on y'. But the following theorem is true on y'.

but fails on v,
Theorem 2 Let D be a cut-free proof in LK. Then the consequence of each elimination of doulile negation
in (%' (D)) is either a premise of an l-rule or & minor premise of 3-E, if the consequent is not end-formula

of @{x'(P}).
Lihe sub-proof means (T ) and @(Dg) of they exist
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Proof. An elimination of double negation in (x'(D)) corresponds to a cut in /(D) as follows.
¥ 'DF
— I = =0T x ':—r )
r—o

cut

This type of cut occurred in y'(P) in the case A-R, V-R, =L, 2-R, ¥R oand R The imnediate
inferences below the cut are AR, V-H, 2-L, 3-R. ¥-L and 3R This indicates that the consequence of
the elimination of double negation is the premise of A-1, w-1, -1, %-I, 3-1 or the minor premise of -,

in accordance with .
For example. in case of A-R{ F(Dy) # C.F(Dy) # 4 F(Dy) # Dand F(Da) £ ¢}, o[x'(P) =

N & r ] I
e (D1)) Chﬂ“"“ @) g w(y'(DL)) is as follows.
1
A [T
#(x' (1))
F{D —F(D
?(lr{i.);]]: { 1} I [ l:l = E
—!
&
P(X(D})) s similar to (y' (D).
So the thearem is proved. )

6 Conclusion

In this paper, we Jdescribe the transformation which maps TK-proof 1o N K-proof. The idea is the
transformation which maps LK-proof to anather LK-proof to which an extended LJ-to-NJ transformation
can be easily applied. We also prove that cut-free proof in LK is transformed to a normal proof in NK.

The transformation can be used for some explanation facilities of automatic thearem provers and
sonmwe inlecactive proof checkers to make o proof in a semi-rutomatic manner employing proo! procedurs

baszed on LK.
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A Several Concepts

This section describes several concepts and notations which need to be understood in order to read this
paper. Almost all the coneepls canwe from [Pragh] and almost all the notations from [Zue74).

Al LK

LK is exactly the same as in [Gend4].

A.1.1 Regular proof

A proof in LK is called regular] Tak87] if it satisfies two conditions (1) all eigenvariables are distinet from
one another, and {2} if a free varizhle a accors as an eigenvariable in a sequent 5 of the proof, then o
occurs only in sequents above 5. When a praof T — A is not regular, one can construct a regular proof

L

I — A

A2 Notutional Conveniences

D
1. LE-prool ‘D Dy, denotes LK-proof, ' — A denotes a proof 1" with end-sequent

Lﬁ I s different from T,

i
I — A, So, Dand ' — A denote the same pruuf. Bt T

n
— A

.lr 'IJI‘.‘JLLI1.|:'5 £ pruuf H\-]Ii‘:]l i}i- [Iléltll'.‘ up uf T} Z{[Nl. L]'III.‘ ;!I'ri.‘l'!‘.[!l'r' !

A.2 NK

NEK is exactly the same as o ['Gvnﬂtl].

A2l Lorule and E-rule

Iruwies are =1, A-T, w-1, 2-0, %=1 and 31 E-rules are —F, A-FE, V-F, o-F, V-FE and =E. We dop’t reyurel
the L-rule and elimination of double negation as special inferences in either I-rules or E-rules,

A2.2  Premise and Consequence

AL An . . R ,
It —_— 15 &l |r'|fl'_‘rf'!'|'l'f:|"1 II]]H i \ F'l war |.'.FL" '1-.. asay .'qn i-hf' [ATETTIS S E‘.Iltt H I]’ir’ CONSEfUence l}:r

this inference. A premise A; is a minor premise, if A; is o premise of an E-rule and does not have the
Lermmingl symbol as the elimuination symbol in the E-rule. A premise that 12 not minor 15 & major premise,
A.23 Puath
A path in an NK-preof 15 a sequence Ay, As, ... Ay such that

1. Ay is the top formula on the proof that is not discharged by an application of v-E or 3-E.

2. Ay (i = n) s not the miner premise of an application of 2-FE or =E and either

{a) A, iz not the major premuse of V-E or 3-E, and A; 4, i3 the formula oceurrenee immediately
below A, or
{b) A;is the major premiise of an application of W-F or 2-E, and 4,4, 15 an assumption discharged

in the proof by the application.
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3. A, is either a minor premise of 3-E or —E, the end-formula of the proof, or a major premise of an
application of v-E or 3-E such that the application does not discharge any assumptions.
A.24 Sepment

A segment in an NK-proof is a sequence of 4;, 45, | 4 of consecutive formula oceurrences in a thread
in the NK-proof such that

1. Ay is not the consequence of an application of V-E or 3-F.
2. A; (i < n) is a minar premise of an application of V-E or 3-T.

3. A is not the minor premise of an application of V-E or 3E,

A.2.5 Maximum Segment

A maximum segment is a segment that begins with a conscquence of an application of an T-rule, L-rule
or elimination of double negation and ends with a major premise of an E-rule

A28 Normal Proof

An NR-proof is called normal, when the proof contains no maximum segment and no redundant applica-
ticns of V-I or 3-F. Au application of V-E or 3-E in an NK proof is redundant if it has a minor Premise
at whick uo assumption is discharged.

A.2T MNotational Conveniences

I L P = T el
1. Contraction in NI An NK-proof r A . A denotes NK-proaf r -li'll'
A.3  Notational Conveniences
1. Symbals and indices A symbaf is a finite non-empty sequence of natural numbers. An index

16 a finite non-emply set of symbols. Symbols are denoted by @, 1., aud indices by a. 5, ... An
index consisting of one symbol, {}, is denoted by o For any number f, the index {i} is called a

unary index, and is denoted just by ¢
We consider the frlluwing twe operations on indices.

{#) The unien o U F of two indices o, 3 13 again an index.

{b} The product of o and @ is defined as follows.
axd Y ourle a7 e 4}

where & denotes concatenalion of sequences. For example, o+ 71 = 1727195 when ¢ — ‘1M’
and v = "12"3" Especially, a % ¢ = ¢ = a = ¢ for any indices .

2. Indexed formulas and sequents An fndexed formula iz an ordered pair of a formmla and an
index. We write an indexed formula (4, a) as A%, Tn the definition of the @, T in a sequent ' — A

i= sequence of ndexed formula.

3. Others Fur any sequence of index formulas T'= 4™, .., 4,"", T'"" denotes the sequence
of index formulas A, ™57, .. 4, 9=%7



