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PARALLELISM IN LOGIC PROGRAMMING
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This paper discusses two aspects of parallelism in logic programming: parallelism es o computational
formialism (often referred to as concurrency) and the imgplications of parallelism with regard to perfor-
mance, Two alternatives for a parallel logic programming system are compared in detail. One allows
programmers to describe processes and communication using concurrent logic languages, and the other

attempls to exploit the parallelizm of erdinary logic programs.

1. INTRODUCTION

Sinee the early davs of logic programming, its affinity to
parallelism has often been pointed out and studied [21][3}[7}.
There have been two major directions in research om paral-
lelism in logic programming over the last ten years. One
emerged from the process interpretation of logic programs
introduced in the late 1970s [12}, and led to the design and
{possibly parallel) implementation of a variehy of concurrent
logle programming languages amenalile lo process imterpre-
tation [4][34)[5)[37]. Thess languages aim at the description
of systems of processes and not directly at the deseription
af search problems. Control is an integral part of the lan-
guages, and wsers prOgram concurrent execation,

The other direction aimes at the parallel execution of
pure logic or Prolog programs ihat involve searching,
Programmers may specily conlrol only for guiding execu-
ti,pn_ OR-para]leliE:n Wk :~x1:1ll;LHL| first [ﬂ]{?ﬁ][ﬂ][‘t:]]-, a.nd
AND-pasallelism has hoen incorporated also [0][16]{45][15].

There has been & long history of contraversy helween the
propencnts of these two directions. Proponents of concur-
rent logic programming langnages claim that pure logic pro-
grams arc not expressive enough to describe efficient paral-
le! algorithms or to make effective use of Lhe eomputational
power of paralle] computers. Proponents of the parallel exe-
cutlon of erdinary logic programs claim Lhat concurrent logic
languages ate not lagic languapes because they fundamen-
tally lack completensss in the sense of theorem proving, and
that programming cencurrency is tee difficult for ordinary
programmess, Section 2 compares these two directions from
a semantical point of view and clasifies how their frameworks
are different. Section 3 discusses how these directions can
be used for writing eflicient programs. Section 4 concludes
the paper by proposing bow to reconcile these directions.

2. PARALLELISM AS A COMPUTATIONAL
FOHMALISM

2.1 Logic a5 a Programming Langunge
Logic programming was Lot from theorem proving with

Haro-elause legic. Kowalski [21] showed the procedural in-
terpretation of Horn-clavse logic, in which predicates are
interpreted as procedures that can compute bindings (the
values of variahles) as the result of computation. The capa
bility of computing values seems to be the minimum require-
ment for a framework to be called a programming language.

Since then, there have been two directions of rescarch in
logic programming. One is its extension and enhancement
within the framewerk of theorem proving. Various alterna-
tive data domains to Herbrand universes have been consid-
ared for constraint satisfaction problems. Studies on control
straeiures have yielded such techriques as coroutinizg, OR-
and AND-paralletism, and forward checking. The inclusion
of negation and other extensions of Horn-clause logic hawe
been investigaled alzo,

The viher direction s the attempt to demonstrate the via-
Lility of logic pregramming for diverse aspects of prozrame-
wing, The meost important is the design of a general pro-
gramming language. Prolog is the first such language, but
its generality rests more or less on impurs constructs such
as ents, side-effects, and meta-logical predicates. The re-
designing of these features is still in progress [42](24]. Other
aspects of programming we may wish to consider include
systerd and meta programming, concurrent Programming
and programming in the large, which motivated studles on
meta-interpreters, perpetual processes and modularization,
rospoctively. These paradigms may be put into practice siu-
ply by developing new interpretations of logic or new pro-
gramming techniques, or they may be put into practice only
by adding new language constructs. In Uhe latter case, we
should give clean semantics to the conalructs.

2.2 Process Interpretation of Logic Programs

In the late 1070, much rescarch was conducted on the
eoroutining (peendo.parallel) execution of logic programs
[31[30][14]719], while Kahn f20] had shown a network of com-
municating processes to be a simple and elegant framewark
of cencurrent programming. These twa lines of research were
put together by van Emden and de Lucena Filhe {12], whe



introduced process inter pretation of logic programs and ini-
tiated the use of logic for concurrent programming with com-
municating processes.

By a process we mean & nnit of computation that may ran in
parallel with other processes and communicate with them,
In their interpretation, each process sequentially executes
goals in its own slack, Goals belonging to different processes
may share variables, which may be nsed as communication
channels. In general, it is the attention io communication
that characterizes concurrent programs. The semantics of
processes should therefore deserlbe the process ol history,
rather than the result, of computation. The result of com-
putation is not necessarily important, and accordingly, pro-
cosses need 10t terminate.

In spite of the proposal of process interpretation, purs Horm
clause logic could not be nsed immediately for concurrent
programming because it was net clear what to do with its
ability to compute multiple solutions. We still had to design
a concrete programming language in which to describe com-
municating processos. The first concrete concurrent ngic
programming language was Relational Language [4]. Tt in-
troduced Dijkatra’s concept of the guard (107 into logic pro-
gramming for the first time. This made Relational Langnage
capable of describing don’t-care nondelerministic processes.
The subsequent concurrent Ingic Janguages sttempted 1o
refine existing ones or to enhance their expressive power.
These languages include Concurrent Prolog [34], PARLOG
[5], Guarded Horn Clauses (GHC) [37]{38], Flat Concurrent
Prolog [35] and Oc [L8]. A survey and a genealogy of these
languages can be found in [36] and [31], respectively.

Here, we intraduce GHC without guard goals as & process
description language. This subset of GHC is essentialiy
equivalent to Oc, which is the simplest of the concurrent
legic languages.

A program is a set of guarded clauses of the fellowing form:

k:-1 B

where k is an atom{ic formula) calicd a head and B is &
multiset of atoms called goals. Each clanse represents a
rewrite rule of  goal. The commitment aperator '1” divides
a clause into a guard (left-hand side} and a body {right-hand
side). The guard specifies the condition for rewritiag, and R
in particular specifies the template of a goal to be rewritten.
The body specifies the multiset of geals that replaces the
ofd goal.

The execution of a program begins with the initial multiset
of goals specified by a geal clause of the following form:

i= B

Goals in B rewrite themselves in parallel. Let g be a goal in
£, Then
{1} if there are a clause h :- | B’ and a substitution & such

that ¢ = h# (that is, g and A are unifiable without in-
stantiating g}, then g is replaced by B'8, and

{2 if g is of the form £ =ty and 1, and #; arc npifiable with
a most general unifier (mgu) #, then g is deleted and &
is applied to the rest of the goals.

Unlike the original process interpretation in [12], we no
longer have any notion of sequential execution, A process is
just an entity that observes and generates substitutions. A
substitution, which is & finite set of bindings between vari-
ables and their values, models a piece of information trans-
ferred between processes. A process is realized by a multiset
of goals which reduce themselves into other goals repeatedly
using goarded clauses. Interprocess communication is done
by unification. Unification executed in a body is for gener-
ating a substitution, and unification executed in a guasd is
for nhserving a substitution. A process is an abstract eatity
for our understanding of a computation; what multiset of
goals should be regarded as a process depends entirely on
cur interpretation of the computation.

To transfer information, its sender and its receivec(s) must
share a variable. Synchronization accompanying commumi-
cation is mealized by Tule (1), which allows a goal to rewrite
itself paly after it ls sufficiently instantiated. Rule (1) con-
truls the direction of injormation Aow and fs the enly means
of ronteol in the language. The application of an mgu in
Hule (%) need not be done 2 an alomic acticon. The in-
formalion represented by the mgu need only be published
evenlually [33].

Ciontrol in a concurrent logic langmage is not like contre] in
an ordinary logic language. While contiol in an ordinary
logic language is for efficiency and is independent of logic,
contral in a concurrent logic lanpuage determines the direc-
tion of eommunication and hence is a far more essential con-
struct of the language. Hemembering Kowalski’s equation
Alporithm = Logic + Control [22], we see that concurrent
logic languages are for deseribing concurrent algerithms.

Unifieation enables guite flaxible interprocess communica-
tion: this iz a unique feature of eoncurrent logic languages,
It can he uzed both for ene-directional eommunication such
as pipelining and for two-ditectional communication such as
messages that require replies, Another feature of concur-
rent logic languages is that, unlike concutrent procedural
languages, communication channels (streams) are not part
of the language constructs but are represented and operated
as ordinary lists. This contributes much to the simplicity
of the languages. The following is a program implementing
stack objects:

stack( [push(X)15].,D 1 = | stack(3,[X[D]).
stack([pop(X) 151, 1710100 &= |

%sY, =atack(s,Di}.
astack{[], o

To use a stack, we first penerate a process stack(5, [} and
instantiate S to a list of requests, For example, if the goals
g=[push(5) 1511, Si=[push(6) |52], 52=[pop(X) [22] and
53=[pop(¥}154] are executed {in any order), X and ¥ will
be instantiated to & and 5, respectively.

3 o= ] true.

Mote that Rule (1) expresses don't-care nondeterminism in
the choice of a rewrite role, due to which concurrent logic
programming languages are not complets when viewad as a
theorem prover of Horn-clause logic.

2.9 The Frameworks of Ordinary and Concurrent
Logic Langunges

This section compares the frameworks of ordinary logic lan-



guages with the ability to generate multiple answer substi-
tutions (don't-know nondelerminism) and concurcent I,n.gic
languages with don’t-care nondeterminism. Some concur-
tent logic languages feature don't-know nondeterminism also
[26][22]. Those languages are considered more similar to o
dinary logic langwages than o cther concurrent logic ian-
gaages from the viewpoinl given helow,

The fundamental difference between the frameworks of or
dinary and concurrent logic languages lies in the way in
which Lhe result of computation is observed and the ma-
terial for eomputation is provided. Whether explicitly by
input fortpul primitives or implicitly by the svstem, transfer
of infermation to and from the ontside world must be dona
in any computational system. Transfor of information will
ultimately be done by some operativn:] means; the question
is how it should be models] in declarative languages.

In & word, the difference is that a concurrent logic program-
ming system iz an open system while an ardinary logic pro
gramming system is a closed system. In concurrent logic pro-
Eramroing, input foutput is formulated as interprocess com-
munication. The advantages of this formulation are that no
speeial operations need be introduced and that a program
has full eontrol over input/output. The outside world (mare
specifically, each peripheral deviee) is modueled as a system.
defined procwss thal nhserves and generates substitutions.
This process is assunwad la run in parallel with user-defined
procesges. A concurrenl Jogie programming svstem should
provide a means to establish communication channals les
tween system and user provesses, Inosam, the ovtside world
participates ia the execution ('proof’ in logic programming
terms) of & program which procesls wilh real time. ‘This is
wly a concurrent logic programming systemn can be called
an npen systerm,

Lo contrast, the framewnrk of ordinary logic programming is
that of theorem provers. The outside world observes prools
at the meta-level, the level of the syslem that searches for
praoafs. This ebservation is considur] to be done using some
special machanism inaccessible from within o program. We
often wish to observe difforent answor sulstitntions of a goal
clause obtained from diferent, independent proafs, but this
is enabled anly by simolating den’t-know nondeterminizm.
Dian't-care nondeterminism can be directly implemented on
an actual computer, but don't-know nondeterminism musk
ba eimulated.

Why do concurreat logic langunages lack the ability to gener-
ate multiple answer substitutions? Tt is oflen claimed that
this is to mvoid complex mechanisms such as distrilinted
backbracking between communicating processes, Howmver,
the more fundamental reason is the incompatibility of the
ability to generate multiple answer substitutions asd the
ability to communicate with the outside world. If we allowed
multiple proofs beginning with & multiset of goals, that
many processes corresponding to the outside world wounld
have to be created, If we were roasoning about the interace
tion of processes with the outside world, we could consider
multiple passible outside worlds. Howover, the purpose of
concusrent logic languages is to describe the actual inter
actinn of processes with the real outside world, The real
outside world can participate in only one of the proofs, the
one that aclnally happens.

To sum up, concurrent logic languages and ordinary logic
languages have quite different purposes, Concurrent logic
lanpuages aim at the description of efficient concurront sys-
tems, and ordinary lopic languages alm at the high-lovel
description of problem soiving, Which of the frameworks
should be used depends on whether the interaction with the
outside world is important or not in the problem to be pro-
grammed.

Finally, we note that althougl concurrent legie langmages
are penerally suilalde for describing systems of processes,
not all of them are switable as they am for systems pro-
gramming such 22 the writing of operating svstems. An
operating system must be able to safely execute user pro-
grams that may not be cooperative with the eperating sys-
tem, whether inadvertently or deliberately. Concurrent logic
languages proposed so far teok differen: approaches to this
requirement, Flat Concusrent Prolop enabled systems pro-
gramming by adoepting larger atomic operations, That is,
it made indivizsible the two aspects of resolution, rewrit-
ing and unification, while PARLOG and GHC separated
them. Instead, PARLOG featured 2n additional construct
called *metacall’. KL1 [1], the kernel language for the Multi-
ISl machine based on GHC, took an approach similar io
PARTLOGs to write an operating system PIMOS [1].

2.4 The Semanties of Ordinary and Coneurrent
Logic Programs

Let us compare erdinary and concurrent logic programs in
terms of their semantics. First we examine the Lypical view
of an ordinary logic program:

Goal —| Logic proer . Angwer substitutions,
clauwse &l p__:l_: o Tailure

The question iz what is the result of the computation, or
whal is the votput of the system? Each computed answer
substitution could be called a resull of dim'l-know nonde-
terministic computation, but this view is valid only within
the simulated world of dont-knew nondeterminism.

Lt ws suppose that the result is the set of al! computed an-
swer sulstitnlions. What we would like to consider next iz
the way to pass thal result 1o the suhsequent computation,
because withuut this Farility, we cannot write a program
that collects and provessss (compares, for example) the so-
lutions of some goal despite the smarch capahility of logic
programining. One possibility is to reprasenl wach suhslibn-
tion implicitly a8 the value of a variable or & term of interest
and to represent the st of substitutions as a list of such
valucs. Another possibility is te explicitly represent cach
substitution as a first-class object, namely an association
list.

Whatever representation may be used, putting answer suli-
stitutions together jnto a single data structure requires
mita-level operations, operations at the level implementing
exhaustive search. For this meason, most Frolog systems
provide all-solutions predicates sueh as szeref of DEC-10
Prolog, all of which adopt implicit representation,

The semantics of existing all-solutions predicates is, hew-
ever, by no means clear, as Naizh [28] pointed out. For exam-
ple, they can be used for defining the extralogieal predicate



var. The major source of this and viher problems seems to
be the improper treatment of variables in the goal (for which
exhanstive search is performed) and the result. First, it 15
conzidered problematic to allow an uninstantiated variable
not appearing free in the all-sclutions goal (called a local
vasriable) to appear in the resuit [28][30], because whal a
lacal variable represents is quite muodel-dependent. The re-
sult with Jncal variables capnot provide a model-independent
notion of (he aumber of solutions. Furthermore, with lucal
variahles, the universal closure of & successiul all-soiutions
goal (with the computed result list) can be logically wrong
f22].

Mon-local variables, namely variables appearing free in the
all-solutions goal, are less problematic if we disallow them
ta be instantiated during the exhaustive search. For exam.
pla, the DEC-10 Frolog goal sesof (X perm([4,8,00,%),8)
for generating permutations will relurn the binding 5 =
[[4,B,0],04,¢,8],...,[C,B,41). Although a goal pern(
[4,B.C],%) may subsame infinitely many alements of the
least Herbrand model gencrated from the definition of perm,
it hus ooly six results (zay =y,...,28) for which the univer-
sl closures Yper=([A,B,C],x:}) are logical consequences
of the definition of perm A problem still remains when we
want the tesult tn be a set rather than a bag, because in
this ease, the valnes of nen-local variables given from cut-
side may affect the number of different solntions. Nowever,
this problem can be easily avoided by disting vishing betweon
non-local varialles which will not be instantiaied aad those
which will b instantiated, and by indicating the cccurrences
of the forner by constant symbols. Tf the result can bea hag,
fion-loeal variables can always be Ioft as they are.

Maow our zoal in the implicil representation approach is to
restrict the use of all-solutions predicates to safe cases where
loeal variables do not scear in the result and non-logal ones
are not instantiated. One possible approach is static check-
ing. Ueda [39] proposes a compilation technique from an
exhaustive search program into a deferministic program.
The technique is based on dataflow analysis, and a program
amenable to compilation is safe in the above sense. The
technique was developed for a class of programs manipulat-
ing ground data, but it will allow generalization. A problem
is that the dataflow of Prolog programs that make use of
logical varialles as blackbeards does not allow simple static
analysis. How to analyze and compile such programs has
yet to he studied.

Another solution to Lhw treatment of variables in exhaustive
search might be tn represent both the goal and the resalt by
ground terms, nsing constant symbols to indicate the occur
rences of variahles. In this scheme, the result can be rep-
resented either implicitly (by values) or explicitly by sub-
stitutions). However, the grou nd reprosentation may be ton
powerful in that it tells not enly what variables are hennd
bt what variables are not bound; euch information is ather-
wise accessible only using extralogical predicates. Moreover,
the change of representation does not selve all the eoncep-
tua! problems of the all-solutions predicates. The explicit
manipulation of substitutions may cause inefficiency also.

Mext, lot us consider the semantics of concurrent logie lan-
guages. Most of the propesed formal semantics of concur-
rent logic languages [32][23)[25]{18]i27](41] try to capture Lhe

possible behavior of a process. Let us take the semantics of
GHOC in [41] a5 an example.

The purpose of the semantics in [41] is to capture the ab-
gtract hehavior of a process or a multiset of goals by paying
attention to external communication,

Communication with 2 process B is modeled as a finite se-
quence {ag, By, F) o {onsa) of transoctions. A (nor-
mal) transaction, dencted (&, A}, is the act of providing 2
process with possibly empty inpul substitution o and ab-
taining an abservable cutput substitation A. The fiest input
substitution o is given through the variables in var(B ) (the
set of vasiables pecurring In B, which we call the interface of
H. The corresponding output subslitution & is considered a
responsc Lo @y, and hence must be such that Bey§y ¥ B
An outpul substitution is lso called a partial answer aub-
stitution. The size of a transaclion depends on when Lhe
autside world observes an outpul substitution. The suheti-
tutien J, need ot represent atomic information, nor need it
represent masimal informaiion return ed in response to a;.

After the firet transaction, B will be instantiated to Boyfh,
and the second transaction {ag,fz) will be made through
the interface var{ Ry ). Qur view of 2 process can be
illustrated as follows:

[__ O tside werld —I
iy

L S |

LTm= 1 %8

]
Multiset of goals

The point ie that the eutside world may determine oz de-
pending on f;. What characteries an interactive program
is that the jnput to the program may depend on the out-
put from the program, and we must be able to mode] the
causality among communicated data.

The semantics of a multiset B of goals running under a pro-
gram P, denoted [A]p, is modeled as the set of all possible
finite sequences of Lrangactions with 8. Besides the model-
ing af behavior, our semaxtics is different from the semantics
of ordinary logic programs In twn points. Firet, a meaningful
semantics can be given to a program that does not terminate
bt is etill useful. Each element of [B]p represents a possi-
ble finite sequence of transaclivns with the process B which
itself may be non-terminaling. Second, our gemantics deals
with the anomalous hehavior of a process such as the fail-
ure of unification and no response 1o an input substitution.
This is necessary because we want to distinguish between a
process that will always return an output substitution 85 in
respomse 10 @, and a process that somelimes does 8o and
semetimes fails or returns nothing. Two kinds of ansmalons
behavinr are modeled. First, providing a process with o,
may cause the faflure of eome unification goal, and this is
denoted as (a,, T). Second, given a,, & Process may become
inactive without generating any observable output snbatite-
tion. The inactivity may be caused in three ways: by reduc-
tion to an emply multiser of goals, by reduction to a mul-
tiset of goals that does not allew farther reduction, and by
falling into an infinite computation that does not yleld any
ohservable output substitution. These cases are dencted as
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tively, or simply as {oy, 1} when the distinction is unneces-
sary, Note that the above semantics is & starting peint of
our semantics research, s properties and relationship with
other semantic models proposed in the context of dataflow
languages, CCS, and CSP should be studied in detail.

Although the ahove semantics models the bebavioral or op-
cralional aspects of & GHC program, it is still related to
the original framework of logic programming. That is, if
fer, B ez, Ba) oo (ivny L puceess) € [Blp, then the universal
closure V{ Heg Byegffy . og) is a logical consequence of the
declarative reading of P, Thus the operational semantics
of GHC is sound as & theorem prover, and the declarative
reading of & program provides us with the static properties
of & process.

2.5 Other Aspects

‘I'his section discusees Lhe imphcations of ordinary and coo-
current logic languages with regard to modufarity and pro-
gramming. Another important aspect, performance, will be
discussed in detail in Section 3.

Modularity: It is eracial for a large program to be compos-
able from small building blocks or medules. In this respect,
concurrent logic langonages support process-oriented modo-
larization with no extra eost. A process can be used as o
building block of a larger process, and the cutput of a pro-
gram can he easily directed to another process rumning in
parallel. A problem with ordinary logic languages is that
pure versions of those languages are inadequate for writing
large programs. A large program may have some fragments
in which a pure ordinary logic language enables elegant de-
seription, but its overall structure cannot dispense with ap-
erational notions, Pure ordinary logic languages, with the
aid of negation-as-failure or modal logic, may be usaful for
building large databases or knowledge-bases using hierar-
chical and other modoalarization schemes. However, such
datahases shoold still be managed by & language with con-
trol.

Frogramming: Meta-lavel constructs such as all-solution
]:lrl'.l:lil'.'n.l.q'h', var, assart and retract in ordinary 1ugil:: fan-
guages will certainly make programming in the mundane
sense easier. Without them, we would have to lower the
level of propramming by programming exhaustive search,
by simulating unification using, say, association lists, and by
maintaining databases explicitly. However, the uze of mata-
level constructs complicates the semantics. The situation is
even worse when paralle] execution is taken into account,
becauze many of the meta-level predicates are sensitive to
how programe are executed, while parallel execution does
net guarantes the total order of primitive operations. For
this reason, GHC did not inherit any cxiralopical features
in Prolog (except for commitment, a cleaner version of cat).
This decision proved to be very useful for discouraging the
use of extralogical notions and encouraging better program-
ming from the logic programming point of view.

2.8 Alternative to Concurrent Logic Languages

A problem with concurrent logic languages perceived by
many researchers is that its control constructs, although se-
mantically fundamental, have nothing to do with logic.

Then can we represent control in logie? If we are reascning
about the behavior of & concurrent system, we can doscribe
the whole system as an ordinary logic program, and ils ex-
ecution will infer what behavior can happen. There might
be varlous ways to represent the result, incleding 2 serial-
ized trace and a program in an appropriate comeurrent lan-
guage, However, the control constructs of concurrent logie
languages are for controlling the actual execution of pro-
grams. They could still be specified in logic If we could
define an appropriate meta-level at which non-first-class ob-
jects (like substitutions and events) can be reified (that is,
made first-class).

2.7 Summary

We have seen that ordinary and concurrent logic languages
are designed for different purposes. We could argue that
concurrent logic languages are at a lower level than ordinary
fogic languages because control is essential. Heowewver, the
centrol of concurrent logic languages s for correctness and
not for efficlency; it is for guiding computation in the correct
direction. The presence or absence of control in this sense
is more a matier of formalism than & matter of the bevel
of abstraction. Control for efficiency must be copsidered
separately, as is the case with ordinary logic programming.

Which family of languages iz more snitable depends an what
should be elegantly deseribed. Ordinary logic languages
will be appropriate for describing [rapments of a program
in whieh eommunication is not made or pend not be spec-
ified. Concurrent logic langoages will be appropriate for
describing communication.

3. PARALLELISM FOR PERFORMANCE

This section discusses another aspect of parallelism, paral-
lelisin for the faster execution of a program.

3.1 Parallelism in Programming and Parallelism in
Implementation

First, we nole that paralielism in programming {concur-
rency)} and parallelism in implementation and execution
are independent notions. Parallelism may well be uncov-
ered from a program not written in 2 concurrent language.
Couversely, & concurrent language may well be used for writ-
ing a program to be fun on a sequential cemputer if it allows
natural description.

The granalarity (of parallelism) of & language and the gran-
ularity of an implementation are also independent. For in-
stance, GHC is an inherently parallel lanpuage; it is de-
signed so that programmers cannot eXpress UNLecessary se-
guentiality. However, 2 GHC process need not always be
implemented as & process in the ordinary sense. It is very
important to exploil sequentiality from concurrent programs
and thus to eliminate the overhead of interprocess commu-
nication and process spawning. Ueda and Furukawa [41]
propose the use of program trangformation for fusing com-
municating processes. Absiract interpretation will be useful
for analyzing dataflow and compiling control.

Processes can be used for storage as well as computation,
because their behavior can be history sensitive. This means



they can be used as building blecks of mutable data strue-
tures and databases that allow concurrent access. We have
to develap quite different optimization techniques for pro-
cesses used for storage rather than computation,

3.2 Parallelism and Algorithms

There are in general two ways to obtain good performance:
parallel execution and the adoption of good algonthms.
Both approaches have been studied in crdinary logic pro
gramming. For parallelism, Disz et al. [11] reportnd that
(O R-parallel execution can attain snbstantial speedop, For
alporithms, the study started with the coreutining execution
of genecate-and-test programs, in which each constraint is
checked passively when all its arguments have been deter-
mined. Van Hentenryck and Tinchas [17] proposed active
constraint checking (called forward checking), in which eon-
ptrainls are usnd for reducizg the number of possible values
of uninstantiated vaziables. The effect of forward checking
they demonstrated reminded us that we should consider al-
gorithms before resorting to parallelism.

Then, is parallelism unnecessary for solving search prob-
lems? The answer is no. In general, a better algorithm de-
signed for sequential execution tends to have less parallelism,
hecause to reduce compaiation ofien requires access Lo non-
lesead infoemation. Howevee, in search proliems, a pood alge-
rithm iy still mse backtracking. In that evenl, we can eas-
ily attadn parallel speedup by exploiting OR-parallelism, and
this is actually the case ir van Heptenryck's and Dinchas's
method,

Oae way to sxploic the Ol-parallelizm of ordinary logic pro-
grame ig to write an (JR-parallel implementation in a bow-
level concurrent language. Anocther way is to compile search
programs inio & high-lavel concurrenl language like cononr-
rent legic languages, as we discussed in Section 2.4. The
advantages of the former approach are that better efficiency
will be attained with sophisticated implementation and that
any ordinary logic program can be processed. The advan-
tages of the latter approach iz that implementation is much
easier and that the result of search can gracafully be passed
to the subsequent stage written in the same language as the
target Ianguage of the search programs.

Tl viability of the latter approsch depends on whether ex-
haustive search wsing good algorithms can be compiled into
efficient concurrent logic programs. Onr ficst slep wis Lo
show Lhat the ANID-eequential execotion of a class of or-
dinary logic programs can be compiled [38], and the second
step was to show that coroutining execution can be analyzed
and compiled as well [40]. Both technigues compile the ORt-
parallelism of pure Prolog into the AND-parallelism of con-
current logic languages, and the sequential or coroutining
execution of conjunctive goals into eontinuation processing.
The essence of the technigues i3 to analyze and delay out-
put unification so that multiple binding environments need
not he ereated. ‘The AND-.parallelism in object programs
iz independent AND-parallelism, which can be most casily
cxploited,

Recently, we proposed a compilation technique of logic pro=

grams with finite domains that realizes forward checking
[47]. The technique uses a source language similar to the

one in [17]. The domain (srt of possible values) of a van-
able, represented as a hil vector, is redoced by the active
evaluation of constraints. The main task of the compilation
is the derivation of » domain reducer from the eonstraints
in a source program. First, the ‘test’ predicates describing
consiraints are partially evaluated to obtain 2 conjunction
of primitive constraint goals. Second, primitive constraints
zuch az equality and inequality are compiled into predicates
for reducing the domain of o varishle, Then, a predicate is
constructed whose call reduces the demaias of (some of the)
variables upon determination of the valoe of some variahle.
The domain redncer cbiained from Lhe above procedure is
called from the problem-indepondent main program in which
it is checked whether the domain of any variable is reduced
to an emply =et or Lo a singleton, and whether there is a
variable whose value iz yet to he determined.

We have ascertained that the object program of the n-queens
problem, if optimized, outperforms the ohjecl programs us-
ing our previous technigques and even the noqueens program
rsing layered-streams [29]. The speedup fully reflected the
reduetion af the serch tree, Aq‘]\'ﬂ.ﬂl’.ﬁgtﬂi af our tl‘!".hﬂil'.ﬂP
are Lhat ::-hjeci programs ohtained use no special primitives
anid that ey have independent AND-paratielisoe.

WVarious Lypes of constrainis appear in gearch problems, For
example, the n-gueens problem has a lot of weak constraints
(ineguality} that make up a regular structure. The cryp-
toarithmetic problem has a rather small number of streng
constraints (equality). We observed that the effect of for
ward checking can be drastic when constraints are strong but
sy not be so drastic whes constraiats are weak, For exam-
ple, generalized forward checking [17] reduced the size of the
search trees to TUE (¥ queens) and to 58% (12-queens} com-
parcd with the troes formed with passive constraint cheek-
ing. Thiz means that paralleliem is still important for this
problem.

A disadvantage of our technique i that, belng based on
static analysis, it is mot wery fexdble. Howewvar, it will be
passible to move past of the analysis to run time without
significant loss of efficiency. The use of a high-level target
language makes this kind of experiment easy.

Ordinary logic programming enables concise description of
OR-parallel search for feasible solations, However, search
problems of another kind look [or the Best (or approsimately
best) solutions instead of feasible solutions. In this case, the
paths of 2 search tree should eommunicate so that computa.
tien iz concentrated nn promising paths. Processes exploc-
ing dilferent paths must evaluate their current werk occa-
sipnally and communicate the results to knew if they are
exploring promising paths. If they evaluate themselves and
communicate too infrequently, they may explore unimpor.
tant paths for along time, If they evaluate and communicate
taa [requently, they can avold wnnecessary computation but
will spend ‘oo much time for evaluation and communication.
This means that in parallel search with communication, the
optimal frequency of communication depends on the prop-
erties of the underlving hardware.

3.3 Programming versus Uncevering Parallelism

‘There are two alternative ways to improve performance us-
ing parallelism: ene is to program parallelism and the other



is to uncover parallelizm.

Tt is true that parallelism can be uncovered. For example, it
is quite easy to uncover the OR-parallelism of search prob-
lems wriltem in onbimary logic languages. If paralielism is
not a difficult isswe and can be fully exploited by linguage
implementors only, ordinary programmers need not be hoth-
ered with parallelism.

Systems under this hypothesis may work well on small- or
middle-zcale parallel computers. However, we conjecturs
that programming parallelism is more important in the long
run. Parallelism, we feel, iz too difficult to be considered by
& small number of people working on specific areas of com-
puter science, There are so many things to be considered
and many people should be involved, The current practice
of sequential computation owes much to many fruitful re-
gults on sequential algerithms, It seems unlikelv that wa
can make effective use of paralle]l computers without aceu-
mulating good parallel algorithms for a variely of problems.
A najve parallel algorithm may well be inferior Lo a pond
sequential algorithm. Forlthermore, good spguendial alzo-
rithms may well be hard to parallelize, because the cost of
eommunication will not have hesn considersd in designing
Lhenn.

Conearrent logic programming systems iry to let people pro-
gram parallelism as essilv as possible hy providing them
with & simple and abstract framewark of parallel compu-
tation. We found that writing programs osing processes is
rather easy. Writing officient paralicl programs is not easy,
but this ie partly because we are inexperioaced in taking
the cost and the lecality of communication into account.
Communication is the mest important aspect in designing
parallel algorithms and is worth much more study. Realistic
parallel computation models with which to evaluate parallel
algorithms are badly needed.

4. COMNCLUSIOMSE

Two allernalives for a parallel ogic programming syslom,
one uweing an crdinary logic language and the other using
a concurrent logic language, have been compared from the
somantics and performance points of view, There are sev-
eral proposals for unifying these two families of Janguages;
Clark and Gregory [6] propose a hybrid language approach
and Haridt and Brand [13] propose a unified language called
Andorra. However, we believe that the combination of these
languages should be made very carclully and only when a
well-defined and semantically clear interface can be defined
between them. The viewpoints discussed in Section 2.4 will
help gracefn]l combination.

Current research on the parallel implementation of these
families of languages seems to have different scopes, ICOT
intends & concurrent logic language ICLL to be the kernel lan-
guapge of large-scale, non-chared memory parallel computars
in the future, and takes the approach of exposing the locality
of computation and parallelism. The Gigalips project plans
to implement Andorra Prolog on virtwal shared-memory
multipracessors [44]; this seems to be based on the principle
that locality as well as parallelizm should he considered only
at a very low leval,

=]

These approaches are nut necessarily incompatible; individ-
nal technicalilies developed could be combined in the future,
The semantic gap between hardware and applications seems
to be widening in pursuit of performance and functional-
ity, making the eonnection of these two ends lese straight-
forward. 1'his means that tayvers of abstraction should be
provided between these two ends, becavse a method or a
technique should generally be considered and put into prac-
tice at the highest possible layer for the sake of simplicity
and generality, Ordinary logic lanpuages will serve as one
of the high-level layers for applications in which parallelism
cas be hidden, and concarrent !uglc ]mg:uage: will serve as
a lowar-lovel layer.
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