ICOT Technical Report: TR-492

TR-492

EUODHILOS: A General Approach
to Computer Aided Deductive Reasoning

by
T. Minami & H. Sawamura (Fujitsu)

July, 1959
1989, 1COT
Mita Kokusai Bldg. 21F {03} 456-3191—~5
“ :D | 4-28 Mita 1-Chome Telex [COT J32964
Minato=ku Tokyo 108 Japan

Institute for New Generation Computer Technology

EUODHILOS: A General Approach to Computer Aidec Deductive Reasoning
Toshiro MINAMI and Hejime SAWAMURA
Igternational Institute for Advanced Study of Social Information Science(IIAS-SIS),
FUJITSTU LIMITED, 140 Miyamoto, Numazu, Shizuoka 410-03, JAPAN

1. Introduction

This paper presents & new approach to knowledge representation and manipulation ex-
pressed in logical forms.

EUODHILOS(“Every universe of discourse has iis logical struciure,”[12)) is a general-
purpose reasoning assistant sysiem which is used for representing and ireating various knowl-
edge represented in logical forms. It is general-purpose, or logic-independent, in the sense
that the logics dealt with in the system are defined and given by users. Users can reason, in
other words to make proofs for theorems, under the logics which they define.

In these davs, a lot of knowledge are written in logical forms in many fields, such as
mathematics, computer science, artificial intelligence, and so on. In these fields, verious
logics such as first-order, higher-order, equational, temporal, modal, intuitionistic, and type
theoretic logics are used. The importance of assisting these reasoning activities by computers
is increasing day by day.

EUODHILOS takes a new approach to this purpose. It aims at increasing the efficiency
and the accuracy of the human reasoning process of representing and manipulating knowledge.
It regards the reasoning processes as those consisting of the following three phases:

(1) Making mental images about the objects and concepts.
(2) Making logical models which describe the mental images.
(3) Examining the models to meke sure that they are sufficient.

The first phase begins when one becomes aware that some mental images of objects
and concepts have some structures and wants o clarify them formally. To clarify the mental
images, one has to describe them. A formal framework for the description is called a “logic” in
this paper, and a logical description of knowledge about the object is called a “logical model,”
and its manipulation is called & “reasoning.” In the second phase, one makes logical models.
At first, one has to determine the syntax of the logical expressions. The logical structure

can be described by axioms and derivation rules such as inference and rewriting rules, In the

1

third phase, one investigates the logical model, and proves its formal properties. At the same
time, one examines the correctness of the model. The model is insufficient if some properties
which are expected to hold by the image of the objects fail to prove in it. In this case, one
has o modify part or all of the logical expressions about the objects. Sometimes one has to
modify not only the logical expressions, but also the definition of the language used for the
modeling.

Two major subjects have to be pursued to realize such 2 system. The first one is the
“generality” of the system. As 3. K. Langer said, we recognize that “Every universe of
discourse has its logical structure.” Thatisa thought that for each object which we mention,
there must be & logic best suited for expressing the knowledge and discussing about it. In
order to assist human reasoning for various objects, the system must have the ability to assist
the users jor describing a variety of logical structures and for manipulating the expressions
in these logics. The system EUQDHILOS is named as an acronym of the phrase by Langer
to emphasize the importance of the generality of the system.

The other subject is the investigation of “reasoning-oriented human-computer interface.”
The fundamental recognition in this subject is that the (mathematical) reasoning proceeds
through “Proofs and Refutations™ (by Lakatos/?!l). In order to make the system helpful for
one to conceive ideas in reasoming, it must have a good interface for reasoning so that one

can easily reason by trial and eror.

2. EUODHILOS
EUODEHILOS is a prototype of the general-purpose reasoning assistant system. We
intend to clarify the concept of the ideal system image through developing and using it. It is
designed by considering the following issues:
(i) Realization methodology of a general-purpose reasoning assistant system, based on the
philosophy of Langerl13.
(ii) Provision of environment for experimenting logical model construction based on the
philosophy of Lakatos[t].
Figure 2.1 is an illustration of how the reasoning assistant system EUODHILOS is used.
In the upper half of the figure which corresponds to the feature (i) above, the user specifies
constituents of a logic, such as symbols, syntax of expressions including formulas, deduction

2

rules. In the lower half, which corresponds to (ii),
the user tries to construct proofs of theorems under

the logic defined in the previous step. In EUODHI-

LOS, partially constructed proois, which are called

proof fragments, appear scattedngly on a sheet of
thought. The user edits these proof fragments by the

editing commands such as create, delete, derive, con-

pect, separate, and so forth. The sheet of thought

is the environment for creating theorems and their

proofs. The theorems on the sheet can be saved to

the library of theorems so that they can be reused

as a starting formula in the later proofs for other

Figure 2.1 Using EUODHILOS

theorems.

2.1 Language Description in EUODHILOS

In EUODHILOS, as noted above, knowledge about objects is represented as logical forms.
and the language system to be used is designed and defined by the user at the beginning.
The language system consists of the definitions of the syntax for the logical expressions. The
syntax of the expressions is given by using definite clause grammar (DCG)!® formalism in
the current version. DCG Is an extension of context free grammar formalism so that context
sensitive symtactic copstraint can be expressed. Therefore we get expressive power as well
as simplicity of expressions. From the description, a bottom-up parser based on BUP! is
automatically generated and used for parsing the inputs given in string forms.

The system automatically generates not only the parser, but aiso the unparser for the
defined language. The unparser translates from the internal expressions into external ones
which can be understood by the user. The parser and unparser are used in all the following
phases of symbol manipulations. Simce the parser and the unparser are generated automat-
ically from the single descriptions of syntax, the soundness of relationship between these
functions is guaranteed.

When an expression is entered, the parser is invoked to check its validation. At the same

time the internal structures of the expression in the language are constructed as well. Owing

3

to this function, one can omit the internal structures of expressions in the syntax definitions in
EUODHILOS. When derivation commands are given by the user, the internal expressions of
the formulas are manipulated and new internal expressions are generated. These expressions
are presented to the user after translating into the exiernal ones by the unparser.

Although EUODEILOS is developed for proving practical and sophisticated theorems,
we present here a very simple example in Figure 2.2 for brevity. The example is a description
of the logic for a puzzle of mocking bird by Smullvan!*”], which is an interpretation for com-
binatory logic. From the definition, expressions such as “]“:E-IHxvx“ and “(A4*E) sx=Ae(Bex)”
are formules of this logic. Meta symboeis are used in the definitions of axioms, inference rules,
and rewriting rules and also in a schematic proof on a sheei of thought.

Svntax description:
formula—term, "=", term
term—b.tern
term—b_term, "+, b_term
b_term—variable _symbol
b term—constarnt _symbol
bterm—"(", b.term, "*", b_term, ")"

b_term—" (", term, ")"

Symbol declaration:

variable_symbel: "A&"-"E"
variable_symbol: "s"-"z"
Cﬂnstut_.s?mbgl: II'I'II-_H‘I;'"

Meta symbol declaration:

forpula: "F"-"H"
tE_‘_._m_ lIYII_'_Ile
elementary_term: "IV

Figure 2.2 A description of a logic

2.2 Axiom and Derivation Rule Description in EUODHILOS

A derivation system in EUODHILOS consists of axioms and derivation rules. Denvation
rules consist of inference and rewriting rules. A finite set of formulas is given as the axdoms.
Inference rules are given in & natural deduciion like style presentation by the user. An
inference rule consists of three parts; the first one is the premises of a rule, each aof which
may have an assumption, the second is the conclusion of a rule, and finally the third is for

the restriction that is imposed on the derivations of the premises, such as variable occurrence

4

conditions (eigenvariable). Well-known typical styles of logic presentations such as Hilbert's
style, Gentzen’s style, equational style can be treated within this framework.

Scnematically, inference rles are given in the natural deduction style format as follows:

[Assumption;] [Assumptions] --- [Asswumptions)
Premise, Premise, e F I"E'-I:I.:IiEE-.-.
Conciusion

In this format, each of the assumption parts is optional. If a premise has its assumption,
it indicates that the premise is obtained under the assumption, and otherwise it is obtained
without condition. Arn inference rule may have a condition on the eigenvarable. An inference
rule is applied if all the premises are obtained m this manner, and the restrictive condition
is satisfled. Then, the conclusion is obtained by the application of the rule.

Figure 2.3 is the definitions of axioms and inference rules for the logic of mocking bird.
In the definitions of inference rules, the expressions ‘[X]’ and ‘[¥]’ indicate the occurrences
of the expressions ‘X’ and ‘Y’ respectively.

Axdoms:

Mex=xex Existence of the mocking bird.
(A*B)ex=A+(Bexz) Composition.

Inference rules:
F[X]
FlY]

FLY] Y=Z
F(Z]

(substitution) (equality)

Figure 2.3 Axioms and inference rules for the logic of mocking bird

Considering the fact that mathematicians use rewtiting rules so much as inference rules,
we decided to add rewriting rules as a kind of derivations. Rewriting rules are presented in

the following scheme:
Pre Expressicn
Post_Expression

A rewriting rule indicates that it is applied to an expression when it has a subexpres-
sion which matches to the pre_expression part of the rule. The resultant expression is ob-
tained by replacing the subexpression with the appropriate expression corresponding to the
post_expression part of the rule. HRewriting rules have no condition of application in the

current version.

Iterating the applications of the derivation rules, one can obtain a derivation tree.

2.3 Constructing Proofs

In EUODHILOS an environment called the “sheet of thought” provides the assistance
to find proofs of theorems by trial and error. This originates from & metaphor of work or
calculation sheet and is analogous to the concept of sheet of assertion due to C. S. Peircel?4],
It allows one 1o draft a proof, to compose proof fragments, detach a proof, to reason by using
lemmas, and s0 on.

On a sbeet of thought, proof fragments (or partially constructed proofs) are the ele-
mentary units for manipulation. Proof Iragments are newly created as assumptions, axioms,
or theorems of the theory. An assumption is embraced by square brackets. Proof fragments
composed, separated, and deleted according to the operations given by the user. Applicaticns
of inference and rewriting rules are expressed visually as those represented on the paper. This
naturally induces that the appearance of a derivation tree on the sheet is also the same as
that on the paper. In this way, proois are expressed visually and recognized naturally.

It is desirable that reasoning during proof construction can be done zlong the natural
way of thinking of human reasoners. Therefore EUODHILOS supports the typical method
for reasoning, that is, forward (or top-down) reasoning, backward (or bottom-up) reasoning,
interpolation {i.e. filling the gap between proof fragments) and reasoning ir. & mixture of them.
They are accomplished interactively by manipulating the fragments on & sheet of thought.
It is planned to incorporate not only such a proving methodology but also methodology of
science (e.g., Lakatos’ mathematical philosophy of sciencel!ll | Kitagawa’s relativistic logic of
mutual specification1¥, ete).

As an example of deduction process on a sheet, we will take a very simple one to illustrate
how one can proceed daduction. The example proof is done under the logic of mocking bird
cited before. The problem to be solved is the statement: ‘Any bird is fond of some bird.’
That is, for any bird ‘A" there exists & bird *X’ such that “A«X=X" holds. At first, one may enter
two axioms “Msx=xex" and “(A*B)ex=h=(B+x)" on a sheet. To deduce some formula, he may
deduce “MeA=A«A" from the axiom “Mex=2+x" by substituting ‘4’ to the variable ‘x." He cannot
proceed any more in this case, so he tries other substitution. Next, he may substitute ‘A*+B’

to ‘x’. In this case, he gets “Me(A*E)=(A=B)-(A*B)" and “(A=B)+(A=B)=A«(E«(A*EB))." After

6

"
TETH

Epiifataged

Equuuu F:++h—r__!1-!_r_rrrrrr r—H' it "

FONT Termuls ==> Term saual,
50F T ¥EYBODARD squel == "=%§
SYNTAY Term == b_TeTE.
NERENCE_RULE TeTE == B_TeTE. abRPIlY. B_Teftm:
| RERTTINGRAE || fPEiT TR T
= - _Ttfm ——> CBRETERT
| DERIVEDRULE E_TéTm ——> vaTlmblie:
| A1 OM Ay R TS SR YTy
| SMEET_OF_THOUGHT |=m
’ Mexmxax
<5z B |
(ARE) sxmAs (Bex) MeAmAsh |G23
k3
(AZEY =xmhs [Beix) Wey=yex .
tsbst 02 (3b3T O} CIE- 10WFFRENCE RULE 5 ~emclonel
(AxBE)Y » (AxB) mp- (B~ (AXB}) e (AEE) = (AZE} - (AXE) - l.ﬂ;‘li':
fzbzt 1) ———— bt O} | ; oA i =El
(AEAMD = (AELD =&« (M- (A®LD) i CAmul) = (AR - A WL % t
{wg Q3 ™ [f: W
CARMY = (AWMY =A« [(AZM) © (AKMD) =2 1
{_HEn
F Y] T=Z - :
(AED) A (Bex) ﬁ i:
XE) - x=As (Br . i
fshrt 07 |E% ______ i F IZ} -;-;:
ChxMD) =x=h+ (Li-x) Mex=x=x {1t . = i
(BT 0) —m0 — _(zBET O i
CARMD » (Amblt =&« Qe (AxkD) M (AL = (AxMD « (8 xRD]EH Hew—werx
(003 jerft (AZB) -x~A- @B-x)
CAXM) - (AXM =A- ¢ AW - (AXMD) t e

Figure 2.4 An Example of Proof Construction on the Sheet of Thought

looking these, he makes aware that by substituting ‘M’ to ‘B’ he can get the desired formula
“(p=M) e (A*M)=Ae{ (A*M)«(A=M))." This indicates that a bird ‘A’ is fond of the bird denoted
by the expression ‘(A*M)e(4%M)." If he re-reads his proof carefully, he may become aware that
the proof is redundant, and he can get the final proof of the theorem; By substituting ‘A*M’
to 'z’ and ‘¥ to ‘B’, and by the inference rule of eguality, one can get the desired formula.
Proofs on the sheet of thought proceed like this. Figure 2.4 is the actual screen image of sheet

of thoughts for this example. More practical and sophisticated example will be presented in

the {full paper.

3. Related Systems
Aside from the reasoning assistant system (RAS for short), we consider the following
three types of the systems which can be used for assisting human reasoning:
(1) automated theorem prover,
(2) proof checker,

and

(3) proof constructor.

As the most significant features of RAS, we can state (i) that it is logic free, and (ii)

that it supports the interactive and visual proof constructions.

An (automated) theorem prover is a system which searches a proof of a formula given
by the user. In a FAS, proofs are searched and found through the interactions between the

system and the user. This is the major difference between a theorem prover and a RAS.

A proof checker is a system which checks the correctness of a proof described by the
user. In a proof checker, the user has a putative proof of a theorem from the beginming.
A humen proof may contain some careless mistakes including small gape in a proof. The
checker provides a language for describing human proofs. By using this language, the user
describes the proof and gives it to the checker. The system begins to check the correctness
of the proof. If the checker finds errors in the proof, it shows them to the user. When a user
bas a proof and wants to verify its correctness, a proof checker is one of the best tools for
him. But when one begins to find & prooi for some formula, the system such as RAS which

assists to construet a proof is more suited than the proof checker,

Many proof checkers have been developed up to now. AUTOMATH! is a proof checker
in which the user can specify how the proofs are constructed. PL/CV2/? is used for proving
the correctness of PL/I like programs. CAP-LA®! deals with the proofs on linear algebra.

A proof constructor(e.g. LCFI®, FOLI8 IPE!I®] EKL!¥] and Nupril®l) is a system which
supports a user to construct proofs as well as theorems through the interaction between the
user and the system. The proof construction is, in other words, a “proof editing.” Users edit
proofs, precisely proof fragments, by inputting, deleiing, and combining the procis. From
this point of .view, a prool constructor is a proof editor.

EUQDHILOS is a kind of proof constructors. The most significant difference of it from
other proof constructors is that in EUQDHILOS underlying logic can be defined in the system,
while in others, eventhough some of them have the function of extending its syntax, the logic
is basically fixed. There are merits and demerits for fixing the underlying logic. As a mernt it
is easy to introduce some specific procedures suited to the logic. As a demenit, if the system is
applied for general cases of human reasoning, the fixation of logic may restrict the reasoning
about some objects under consideration. In such a case, a general framework treating a

variety of logics is required, and EUODHILQS is the best choice.

E

4. Concluding Remarks
The first version of EUODHILOS is now available and the next version is under design

by reflecting the experience of using the current one. So far, we have dealt with logies, such

.5 firsi-order logic (NK), propositional modal logic (T), intensional logic (IL), combinatory

logic, and Martin-L5f's type theory. Many logics can be treated in the current version. We

a]so had much proof experiments and experience on these logics. Some logic such as tableau
method seems impossible to be treated in ibe current framework. We plaa to extend the
framework so that logics given in other formulations can be treated in the system.

The cumrent state is the first step towards the realization of an ideal reasoning assistant
system. To put the step forward, we have to investigate various subjects including the
followings:

» Treatment of relationships between meta and object theories,

s Maintaining dependency relations among various theones,

» Opening up various new application fields of reasoning, and

» Improvement and refinement of human-computer interface for the reasoning system.

From the experiments so far in EUODHILOS, we are convinced of the followings:

(i) Describing the syntax of logical expressions is difficult at first. But, after defining several
logics, we can define a new logic in & few hours. If the system keeps descriptions for
typical logics as a Library, the description of a new logic would be an easy task even for
beginners.

(i) On asheet of thought, users are free from deduction errors. On the paper, they may make
mistakes in deriving a new formula when deduction rules are applied. The difference 15
important, becanse the users have to pay attentions only to the decision how to proceed
the proof on the sheet of thought.

(iii) The reasoning assistant system can be used as a tool for CAL In the system, users can
deal with a varety of logics.

By using the general-purpose reasoning assistant system EUQDHILOS, we can treat var-
jous kinds of knowledge represented in logical forms in a uniform way, and we can invesiigate
the relationships between them. This will develop 2 new research field of reasoning assistance

as well as knowledge manipulation Dy computers.

9

References

[1] N.G.de Bruijo: The Mathematical Language AUTOMATE, its Usage, and some of its Ex=
tensions, In M. Laudet et al. (eds.), Sympoosium on Automated Demonstration, Springer-
Verlag, pp.28-61, 1870.

2] R.L.Constable et al.: An Introduction to the PL/CV2 Programming Logics, LNCS 135,
Springer-Verlag, 1082.

(3) R.L.Constable et al: Implementing Mathematies with the Nuprl Proof Development
System, FPrentice-Hall, 1986.

4] 3.4 .Goguen & R M.Burstall: Introducing Institutions, LN CS 164, Springer-Verlag, 1983.

[5] M.J .Gordon et al.: Edinburgh LCF,LNCS 78, Springer-Verlag, pp.221-270, 1978,

i6] T-G Grifin: An Environment for Formal Systems, ECS-LFCS-87-34, Univ. of Edinburgh,
1987.

[7] R-Harper et al.: A Framework for Defining Logics, ECS-LFC5-87-23, Univ. of Edinburgh,
1987.

8] ICOT: The CAP Project (1)~(6), Proc. 32nd Annual Conv. IPS Jazpan, 1986. (in
Japanese)

(8] J.Ketonen & J.5.Weening: EKL—An Interactive Proof Checker, User’s Relerence Manual,
Dept. of Computer Science, Stanford Univ., 1984.

[10) T.Kitagawa: The Relativistic Logic of Mutual Specification in Statistics, Mem. Fac. Sal.
Kyushu Univ., Ser. A, 17, 1, 1963.

[11] 1.Lakatos: Proofs and Refutations — The Logic of Mathematical Discovery—, J. Worrall
& B.Zabar (eds.), Cambridge Univ. Press, 1976.

[12] S.K.Langer: A Set of Postulates for the Logical Structure of Music, Monist 39, pp.561-
570, 1925.

[13] Y.Matsumoto et al.: BUP:A Bottom-Up Parser Embedded m Prolog, New Generation
Computing 1, pp.145-158, 1983.

[14] C.S.Peirce: Collected Papers of C.S.Peirce, Ch.Hartshorne et al. (eds.}, Harvard Univ.
Press, 1974.

[15] F.C.N.Pereira et al: Definite Clause Grammars for Language Analysis—A Survey of
the Formalism and a Comparison with Augmented Transition Networks, Al Journal 13,
pp.231-278, 1980.

[16] B. Ritchie & P. Taylor The Interactive Proof Editor An Experiment in Interactive
Theorem, ECS5-LFC5-88-61, Univ. of Edinburgh, 1988.

[17) R.Smullyan: To Mock 2 Mockingbird, Alfred A. Knopf Inc., 1985.

[18] R.W.Weyhrauch: Prolegomena to a Theory of Mechanized Formal Reasoning, Al Journal
13, pp.133-179, 1980.

10

