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Abstract

As part of the fifth generation project at ICOT, we have been developing
an object-oriented logic programming and operating system, SIMI*05, for
the personal sequential inference machines: PSI and PSI-II. Currently, about
three hundred PSI machines and some other machines have been connected in
a local area network and in global area network, and two different protocols:
I'SI-NET and TCP-IP are supported over the network.

For a distributed system to be built network-transparent most simply and
compactly, it should be network-transparent at the base, that is at the method
call level for an object-oriented system.

This paper describes the principles and implementation of the Hemote
Object Aecess Mechanism (ROAM), which is a general mechanizsm embedded
in SIMPOS to invoke methods to objects on remote PSI machines as well as
to objects on the local PSI machine.

ROAM has been implemented as a set of classes, Network-transparent
objects can be defined easily only by inheriting a ROAM interface class and
customizing some of the inherited methods. ROAM is currently in operation
for both of the above two protocols, Using ROAM, a variety of application
software has been developed for practical use, one of which, a global file
systemmn, is shown as an example.
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1 Introduction

The object-oriented paradigm is powcrful and natural for designing and developing
large-scale and complex systems. The notion of an object has been introduced into
different kinds of languages, including procedural, functional and logic ones, and
many object-oricnted systems have been developed and used.

As part of the filth generation computer systems project at ICOT, we have been
developing an object-oriented logic programming and operating system, SIMPOS,
for the personal sequential inference machines, P51 and PSI-IT (2, 3, 4. The entire
system of SIMPOS, including the kernel such as device handlers, are wrillen in an
object-oriented and logic programming language ESP [1]. Most of the characteristic
properties of SIMPOS are those inherent in ESP.

As a system grows, a network environment becomes necessary to build up a more
cooperative environment, so that the users can share their resources and communi-
cate with each other tlrough network. At present, we have connected about three
hundred PSI machines and some other kinds of machines, such as VAX, Sun and
Symimetry, in a local area network of 10 Mbps and a global network of DDX. Two
different protocols: PSI-NET and T'CP-IF are supported over the network. Hoth
protocol are avaible for PSI-to-PS! and PSI-to-VAX communications; only TCP-1P
is available for the rest.

T is not enough just to provide a network environment. If the user has to use
different tools depending on which machine to access, the system will hardly he
used. We need a system that scems to be identical no matter where the user logs in
or accesses: a network-transparent syster.

We sought the possibility of making SIMPOS a network-transparent distributed
object-oriented system. As a result, we have embedded in SIMPOS a general mecha-
nist, called the Remate Object Access Mechanism (ROAM), which enables to invoke
methods to objects on remote PSI machines as well as to those on the local P51 ma-
chine.

Network-transparent objects can be defined only by inheriting 2 ROAM interface
class and customizing some of the inherited methods. ROAM is now in operation
for buth of the above protocols. The PSI-NET version has been running since June
1987, and the TCP-IP version since June 1984.

This paper describes the principles of ROAM and its implementation in SIMPOS.
Before going into detail, the background and requirements behind ROAM are stated
in Seclion 2. T'he principles and implementation issues are described in Section 3
and Seclion 4 respectively. The performance of WOAM is presented in Section 3. A
variety of practical applications has been developed, of which, a global file system
is showrn as an example in Section 6.

2 Why is ROAM needed?

We clarify the background and requitements which led up to ROAM in this section.



2.1 Network-transparency at the base

One way to make a network-transparent system may be to provide a remote access
function at the application level (in each application program). However, this ap-
proach will enlarge (double at worst) the size of the system. In general, a computer
system can be regarded as a sphere, the hardware as its core, system software sur-
rounding it, and application software as the outermost layer. An ouler layer has
a larger surface area, so the amount of softwarc increases accordingly. To make a
system simple and compact as much as possible, the system should be network-
transparent at the basc, at the level of machine architecture.

In those systems based on procedure calls, several protocols for remaote procedure
calls {RPCs), which enables the invocation of procedural calls on remote machines,
have been proposed or implemented [5, 10, 17, 21]. Some operating systems em-
bedded an RPC mechanism at the base, and some system description languages
absorbed an RPC function in it [6, 7, 9, 11, 16, 18, 19, 20).

We would like to cxplore this direction in an object-oriented system. I'or an
object-oriented system, computation consists of method calls to objects. Network-
transparent access means that methods can be invoked to objects in the same way,
independent of whether they are on the local machine or on remote machines. Dis-
tributed object-oriented architectures shonld be able to recognize remote ohjects
and local objects in their data representations and issue either a remote method call
or a local method call for an identical method call instruction.

Some experimental systems and languages have been designed to be network-
transparent from the machine (or virtual machine) level [8, 14], but no practical
system has been developed yet.

Qur target machines, PSI and PSI-II, were originally designed to be independent
local machines. Possibly the best way to realize network-transparency simply and
compactly is to embed a mechanism for it into the kernel of the operaling system.

2.2 Problems related to PSI and SIMPQOS

The PST machine provides a logic programming language called KL0 as its machine
language. Its programming and operating system, SIMPOS, is entirely written in a
high level language, ESP. ESP introduces the notion of an object as a modularization
mechanism into KL0. Like ESP, SIMPOS is characterized to he object-oriented and
logic-based. The object-oriented and logic-based features of EST and SIMPOS bring
to the user a powerful programming environment, but require us to solve several
problems in building a distributed svstem.

First, ISP is object-oriented. The execution of an ESP program is carried out
by calling a method from one object to another. An ESP ohject is a capsule of
slots (states) and methods (operations), which is defined in a class. ESP supports
multiple class inheritance and demon method combination. ESP is not only a system
description language but also a user’s application language. STMPOS iz an apen
system without any boundary between the system and the user. The user can
define any complicated class easily by inheriting system-defined and user-defined
classes and by customizing that class.



Object-oriented systems are more dynamic in their execution control than other
kinds of systems. The program code for each method call is determined by the des-
tination object which is bound at execution time. Also, any method may be invoked
to conceptually small objects as well as to physically large objects. In building a
distributed system, this uniformity would make communication granularity smaller
than that in other kinds of systems; remote method ealls might be issued to such
conceptually small objects.

Second, ESP is logic-based. A method is defined by a set of predicates defined in
all inherited classes. Each predicate is defined by a sct of horn clauses with the same
functor and arity. Fach clanse consists of a head and a body which conlains zero or
more predicate goals. Variables included in predicates are logical variables. Given
a method goal, a corresponding method code is scarched from the method table
defined by the destination object which is bound to the first parameter of the goal.
Il the head is successfully unified with the given goal, then the hody i executed
scquentially. If all goals of the body succeed, the method comes to succeed. When
one clause fails, all the parameters are unbound, and an alternative clause is tried,
if there is.

This feature amplifies the dynamicity of execution control. Fach paramecter
may be bidirectionally bound; it might already be instantiated when the method is
nvoked or will be after the method is executed. In building a distributed system,
this means that parameters must be transmitted hidirectionally, both when sending
a method call request and when returning its result.

Summarizing these problems, the basic mechanism for network-transparent ac-
cess should satisfy the following propertics:

General: ESP programs are very dynamic in their execution control. The mech-
anism should be general enough to be applied to any user-defined classes that
contain no information on parameter binding direction.

Customizable: If the binding direction of a parameter is already known when a
class is defined, it should be utilized to minimize the cominunication overhead.
The mechanism should be customizable so that it shounld work efficiently in
such predetermined cases

Robust: The mechanism should be robust enough. Even if a target method fails,
the mechanism must always succeed without leaving any alternative clauses.

In addition, the following requirements must be satisfied:

Compact, efficient and easy-to-use: The mechanism should be simple and com-
pact for easy development and maintenance, and be efficient in performance.
It should also provide a simple interface to the user.



3 Design of Remote Object Access Mechanism

3.1 Principle — Object and Process Reflection —

Assuming the most dynamic cases, the first thing that must be done is Lo sel up
a pseudo environment on the local machine, which will reflect the situation on the
remote machine where the target object resides.

In SIMPPOS, the notion of an object is separated from that of a process. General
objects only encapsulate their internal data representation and operations on it.
Execution environments are held by process objects.

When accessing an object on a remote machine, the relationship between an
object and its owner process must be reflected both on the remote machine and the
local machine. This is the principle of ROAM, called object and process reflection,
and is illustrated in Figure 1.

Original object and proxy object:  Suppose thal a process tries to access an
object on a remote machine. The object on the remote machine is called the original
object. In contrast, an ohject, called a prozy object, which works as an agenl of the
original object, is created on the local machine.

When a method is invoked to a proxy object, the proxy object sends a mnethod
call request to its original object and accepts its reply. Basically, the internal states
required for the original functions are held and maintained by the original object.
The proxy object holds only thosze required for the transmission.

Both the original object and its proxy ohjects represent some identical entity,
called a global object. The user need not worry about whether an object is the
original or a proxy. Tt 15 the role of ROAM to distinguish objects and issue either a
remotle method call to a proxy object or a local method eall to the original abject.

Client process and server process:  An process which tries to access an object
is called a client process. U the object is remote, the client process is returned a
proxy object. On the remote machine, a process, called a server process, is created,
which worlks as a substitute for the client process and owns the original object. For
one client process, one server process is created on each remote machine which the
client process accesses,

(n each machine, there is onc process, called the contreller process, which con
trols the relationship between a client process and a server process. When a client
process tries to access a remote machine for the first time, it sends an initiation
request to the controller process on that remote machine. For every iniliation re-
quest, the controller process spawns a server process, and then lets it communicate
with the client process. During communication between the client and a server,
there might occur an crror that would block up any further communication. When
a clicat process is killed, it sends a tcrmination message to its rclated controller
processes rather than directly to its scrver processes. When recciving a termination
message, the controller process terminates an appropriate server process.



Remote method call: A remote method call (RMC) is performed based on
synchronous communication between an original object and each of its proxy objects
according to the following procedure, as depicled in Figure 2:

1. When a method is invoked to a proxy object, the proxy object packs the
method information into a request message, and then tries to send the message
to its original object in a server process. After sending, the proxy object waits
for the reply message.

2. When the server process receives a request message, it unpacks the destination
object information, and tries to retrieve an original object from the export
table according to the information. Then the message is passed to the original
object.

3. The original object unpacks the request message into a method and calls the
method to itself. After the method is executed, its execution status and pa-
rameters are packed into a reply messzage and sent back to the proxy object.

4. When receiving the reply message, the proxy object unpacks it into a methed,
which is then unified to the invocation method.

3.2 User Interface — Inherit and Overwrite —

In other distributed languages and systems such as Argus [18] and Eden [6], different
abstractions are used for local (or original) and remote (or proxy) objects because
of cfficient execution.

Our goal is to realize a uniform object model with reasonable performance.
ROAM is offered as a set of classes to the user. An original object and its proxy
objects belong to the same class and have no difference visible by the user. Any
global object class can be defined simply by inheriting a ROAM interface class. This
is enough for naive usage. For those who care about performance, customization
is available without loss of generality of the function. The following two kinds of
customization are possible.

Distinguishing complete objeets from incomplete objects:  Needless to
say, RMCs are more expensive than local method calls (LMCs). Looking at what
kinds of methods arc invoked, most are small ones like slot access methods. If RMCs
are often issued to such small methods, it is hard to expect good performance. If it
is already known which slots will be referred to or updated during the execution of
the method, they should be put in the request or reply message, so that the number
of RMCs will decreasc.

Several distributed procedural systems, such as Argus, allow parameters to be
passed only by values, not by references. In case of object-oriented systems, however,
an object is a reference, so parameters may be references. As a compromise, Emerald
‘8] supports two kinds of parameter passing: call-by-object-reference and call-by-
move. The former exports ouly the object reference, the latter transmits the internal
states of the object,



We think of mobility as a property of the object itself rather than as how the
object is used as a parameter. ROAM introduces the notions of a complete object
and an incomplete object. Those proxy objects which have full ability of transmis-
sion are called complele objects, while those without transmission ability are called
incomplete objects. An incomplete object is only transmitted as a parameter of an
RMC but does not make any RMC (o its original object by itself.

Among the internal states of an incomplele object, only those required for ex-
ecuting the original function arc transmitted between the original object and the
proxy object. The user can overwrite interface methods to freeze and melt these
internal states.

Handling the extra field:  Customization 1s also available at the level of message
packing /unpacking. Each request message and reply message is provided with a uscr-
definable field at the end, called the ertra field The user can overwrite interface
methods to handle this field, so that some additional information, including the
internal states of incomplete abjects, can be transmitted.

"I'he user interface of ROAM is summarized as follows:

1. Inherit a ROAM interface class, which is cither remote_object or
as_remote_object The former is for defining complete global objects, while
the latter is for defining incomplete global objects. See Figure 8.

2. Define external and local methods. For each method, an external method
which calls a global method, :g_call, should be defined as an entry, and a
local method, :1_call, as its hody. The global method :g_call is a dispatcher
to call either a remote method :r_call or a local method :1_call according
to whether the object is proxy or original.

3. If necessary, overwrite user-redefinable methods of the lollowing kinds:

s a method to create a proxy object,
¢ methods to freeze and melt the internal states of incomplete objects, and

¢ methods to handle the extra field of request and reply messages.

A sample program is shown in Figure 9.

4 Implementation Issues

This section describes the implementation of ROAM in detail. The ROAM function
is categorized into object management, message managernent, line management and
error handling. The first two, object management and message management, are
deseribed helow.
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4.1 Object Management

When an object is referred to from another machine, the object is said to be exported
from the local machine and imported to the remote machine.

In ESP, there are two kinds of objects: class objects and instance objects. ROAM
manages these objects as follows:

4.1.1 Identification of Classes and Instances

Class complete name:  There is no notion of a meta class in ESP. Instead, the
library subsystem in SIMPOS manages all of the class objects. The notion of a
package is introduced on top of classes, to realize a multiple class name space. A
package is a set of classes. Any class is uniquely identified by a pair of a package
name and a class name, which is called a complefe class name. When a class is
exported, its complete class name is sent out as class information.

ROAM identifies a class object only by its complete class name. FEach machine
has an independent library, so a different class might be chosen for the same complete
class name. Setting up the related libraries is the user’s responsibility.

Global ebject identifier:  In the PST and PSI-II machines, instance objects are
not given any identifier at creation. To maintain communication between a proxy
object and its original object, both of the objects need to know they are identical,
ROAM manages identification of instance objects.

When an instance object is exported, it is assigned a global object identifier
(GOID). The GOID and the complete class name of the instance’s class is sent
out asg instance information. Each GOID consists of the resident machine name,
exporting time and process number so that it can be uniquely identified throughout
the network.

4.1.2 Export and Import Table Management and Global GC:

Export and import table:  To retrieve objects from their GOIDs, a pair of an
export table and an import table are prepared for cach process. When an original
instance object is exported for the first time, a GOID is generated and the object is
put with the GOID in the export table of its own process. When instance informa-
tion containing an unknown GOID is imporled, a proxy instance object 15 created
according to the given complete class name, and is put with the GOID in the import
table.

One of the major problems with the export/import table management is the
garbage collection (GC) of the tables, which is what to prepare export and import
tables for and when to telease their entries. Suppose that we prepare a pair of
export and import tables for each machine and support global GC of the tables. A
table entry can be released when there is no reference to the object in the entire
distributed system. The weighted reference counting scheme has been proposed for
parallel computer architectures to collect garbage in real time [23, 24]. This scheme



requires the sending of extra messages to maintain the reference count of each table
entry. Even with this scheme, global GC must be supported to take care of cyclic
chains made over the network, which must stop all the machines at once.

Each machine in our enviroment works independently and adopts the mark and
sweep scheme for local GC. In addition, most of the object references exist within
the same process conlext. 5o we decided to adopt the following strategy:

No global GC: ROAM does not support global GC on the export and import
tables. No extra message is transmitted for the purpose of releasing object

entries in the export and import tables.

One pair per process: A pair of export and import tables is created for each
pracess rather than for each machine, so that they can be maintained locally
within the process and released when the process terminates.

4.1.3 Object Propagation

If an RMC fupctions in the same way as an LMC does, objects may How out to
a process olher than the client process or ils server processes, for instance, as a
parameter of apother RMC.

ROAM supports object propagaiion. As an object flow out from one machine to
another, one proxy object is created on cach remote machine. All of these proxy
objects share the same global object identifier (GOID ) that is assigned to the original
object. Figure 3 illustrates how object propagation is performed. Note that in object
propagation while the obhject body does not move but its references are propagated,
in object migration the object body does move. ROAM does not support object
migration,

Limitation on object propagation: The “one pair per process without global
GO strategy we adopted for the export/import table management limits the ability
of object propagation. At the time when an RMC is invoked to the secondary or
later proxy objects, which are created hy object propagation, the server process
holding the original object must be alive.

As mentioned before, ROAM is based on synchronous communication. Under
the normal condition, the server processes terminate after the client process does.
In the case where a proxy chject is propagated as a parameter of another RMC to
another object, there iz no problem because the client process is supposed to wait
for its reply. The problem is when a proxy object is passed to another process by
slot setting or stream communication. The exporter process must terminate after
waiting for the acknowledgement from the importer process.

In Figure 3, an object, L21, is propagated from one machine to another. First, a
proxy object, R11, is created at node N1, corresponding to the original object, L21,
at node N1. They share a GOLD, N2T1P21. Then another RMC is issued to some
object at node N3 and proxy object R11 is exported to node N3 as a parameter of
the RMC. At this time, the sccondary proxy object, R31, is created at node N3.
During the execution of the RMC, another RMC is issued to the secondary proxy

9



object, R31, at node N3. This means the RMC is invoked to the original objeet,
L21. Another server process P22 is created at node N2 and the original object 1s
searched from the GOID, N2T1P21. If the original process, P21, is alive at this time,
the search succeeds and the method call is successfully issued to the original object,
L21. If it 1s not alive, the search fails and the method call fails. Therefore, the first
client process, P11, should be kept alive at this time.

Let us compare our strategy with those taken in other related works.

¢ Flamingo [13] iz an RMC interface over an RPC interface; it is specially de-
signed for a window swystem. Local objects and remote objects are distin-
guished from each other. Neither global GC nor object propagation is sup-
ported. Deleting global objects is the user's responsibility. Each object main-
tains a one-to-ane relationship with its owner process; more than two processes
cannot share one object; an object cannot be propagated from one process to
another.

o Distributed Object Manager[14] is a kernel mechanism built into a Smalltalk-80
system [13] for the purpose of extending it to be a distributed object-oriented
system. To access a remote object, it creates a prory object and returns it to the
user as ROAM does. This system is designed to support object migration. One
object table, corresponding te a pair of an export and import table in ROAM,
is created for each node and global GC is supported. Global GC is based on
reference counting and consists of two levels: local GC and remote GC, Each
object is supplemented with a remote reference count which holds Lthe number
of its exports besides the local reference count. This syslem is an experimental
system, in which object access and migration have been simulated between just
two virtual nodes in & physical machine.

o Emerald [8] is a language designed for describing distributed object-oriented
systems and applications. Its prototype system is being implemented. One
object table is given per node, but global GC on the table is not supported.

ROAM has a limitation on its object propagation ahility: client processes must he
synchronous. Fven with that limitation, we think the support of ohject propagation
is valuable, since it 12 useful for such a problem like intermediary copier that initiates
the copying of a file an a remote nade into another remote node. In terms of efficient
and practical implementation, the imitation 1s no hindrance,

4.2 Message Management

Message management is the function of packing and unpacking method information.

4.2.1 Message Representation

Request and reply:  There are two kinds of messages: request messages for
making method calls and reply messages lor reburning their results, as shown in
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Figure 4. Fach message is of variable length and free format and consists of three
fields: the control field for message control information, the standard field for method
information, and the extra field which is provided as a user-definable field for cus-
tomization.

Message and packet: Each message is a logical entity. It is internally repre-
sented as a set of unit packets and seems to be a sequence of packets without any
houndary, as shown in Figure 5.

Tagged data representation:  Each data element in the standard field and
the cxtra field is encoded by a tageed data representation, as shown in Figure 6.
Structured data can be represented and can be nested recursively.

4.2.2 Nested-call Control

Computation of an ESP program is a chain of methed calls. This implies that the
calling sequence may also be nested in RMCs. During execution of an RMC, another
RMC might be issued to some of the parameters contained in the first RMC. Thus,
after sending a request message to a server process, the client process might receive
another RMC request message before receiving the reply message corresponding to
the first request.

To control this nested call sequence, the client process and its server process
must maintain a symmetrical relationship to each other in receiving reply messages,
as shown in Figure 7.

Global message identification:  To maintain the correspondence between a
request and its reply, each request message is assigned a global message identifier
(GMID), which is transferred to the reply message.

Reply receiving control:  After sending a request message, the client process
waits for its reply message. If the client process receives a request message before
the reply message, it performs a service for the coming request message in the same
way as server processes do. After completing this service, the client process resumes
waiting for the first reply message.

5 Evaluation

ROAM has becen implemented on fop of the session layer of the network hicrarchy.
The session layer is provided as a virtual line object. The virtual line object is avail-
able for two different protocols: the PSI-NET protocol and the TCP-IP protocol.
ROAM has been implemented for both protocals. The PSI-NET version and the
TCP-IP version are almost the same except for thier message management, because
of the difference in the size and format of their physical packets.
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Network penalty:  For the transport layer and below, a special hardware con-
troller for each protocol is installed between the machine and the Ethernet cable. A
network handler process and a network wanager process are between the hardware
controller and the user process. The round-trip time of transmitting a null packet at
the user process level is measured in Table 1. This is called the network penalty [16]
that and is the pure cost of the underlying network system. The network penalty is
about 170 ms for PSl-net and 450 ms for TCP-1P, both for a 1024-byle packet. The
PSI-net protocol handles up to 4200 byte as a single physical packet. Since ROAM
was originally designed for PSI-net protacol, the unit packet size was set to 4200
byte. TCP-IP protocol, whose packet size is fixed to 1624 byte, was made available
later. We took a measurement for two packet sizes: 1024-byte packet and 4200-byte
packet for each protocol.

ROAM overhead: ROAM is compact. It consists of 16 classes written in about
22K lines of ESP code. Table 2 shows the performance of ROAM measured for
the sample program shown in Figure 9. ROAM is available for both PSI and PSI-
Il machines. This measurement was taken between PSI-II machines whose CPU
performance is reported to be about 10 ps for each predicate inference [4]. In
the table. the figures without parentheses show the total elapsed time, and those
in parentheses show the CPU time spent in the clicnt user process. l'he ROAM
overhead is expressed as follows:

(ROAM vverhead) = (RMC elapsed time) - (network penalty) - (LMC elapsed time}

For method :do(#test, Node), the ROAM overhead iz 40 ms for PST-1024 (PST-net
protocol with 1024-byte packet), 45 ms for P51-4200, and 50 ms for TCP-1024 and
TCP-4200. The performance of Flamingo 1s reported to be 90 RMUCs/s, which is
aboul 11 s per RMC. Comparing our 211 ms for PSI-1024 TTMC with this figure,
the current ROAM is rather slow, mainly because of the heavy network penalty.
Further improvement should be made also to ROAM itself.

Packet size: Tables 10 and 11 show how the clapsed time and the CPU time
change as the message sizc grows, where method :read(#test, FileName, String,
Node) is tested with various sizes of String, which is the file size. This test investi-
gates how the packet size influences the performance. These graphs show that the
shorter packet is better for short messages, but the longer packet is better for long
messages. The unit cost, including process switching and packel sequence check-
ing, is more expensive for the shorter packet, than that for the longer packet. The
crossover point for PS1-1024 and PSI-4200 is around 8 Kbyte message size, and
around 35-Khyte message size for TCP-1024 and TCP-4200. The crossover points
are determined by the ratio of the ROAM overhead versus the network penalty.
Since TCP’s network penalty is more expensive, the crossover point appears at such
a larger size.

Interface of the session layer:  The interface between the underlying network
system and ROAM is a buffer rather than a message. Buffers are copied to the
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handler’s buffer area. As a message is divided into small pieces of packets (or buffers),
process switching belween the user process and the network manager will increase.
Minimizing the amount of process switching and message copying is essential to
improving the performance. We are planning to redesign the interface of the network
system, so that a whole message is accepted and passed directly to the handler.

Library cache:  Most of the time of message interpretation is spent for retrieving
class objects from the library and converting symbols to and from their names.
Improvement can also be expected by introducing a library cache which would keep
a working set of classes.

6 Applications

Using ROAM, a variety of software has been developed for practical use. From
them, we take up the implementation of a global file system (GFS) as an example.

The GFS was developed by extending an existing local file system (LT'S). LTS
manages a hierarchical structure of directories and files both of which are dynami-
cally expandable, and supports sharing control on resources regarding processes as
being cooperative as in [22]. For GFS, the directory name space was expanded to be
a global directory trec. Each resource is given a globhal name that is the concatenation
of the machine node name and its local path name.

The global files and directories are defined as complete global objects. Those
related objects which are passed as parameters of the method calls on the resources,
such as buffers and position markers, are defined as incomplete global objects.

Modification required for GFS is very small. Only 2.7K lines of ESP code,
about 10% of the entire LFS code of 25.5K lines, were added. Such compact im-
plementation is due to the stmple ROAM interface by class inheritance and method
overwriting. GFS is currently in operation and its performance is acceplable for
practical use,

In terms of file and directory access, the higher level applications such as editors
are also made global without any modification. The user can access any files and
dircctories from editors and other applications in exactly the same way.

7 Conclusions

This paper presented the principles and implementation of the Remofe Object Ae-
cessing Mechanism (ROAM) in SIMPOS. ROAM enables method calls to remote
objects in exactly the same way as to local objects. Although the network penalty
due to the network hardware is rather heavy, the overhead of ROAM itself was found
to be low enough for practical use.

Through the development of application software using ROAM, we have learncd
that ROAM is very useful for building distributed object-oriented systems. We werc
able to extend an existing local file system to a global file system with a very little
modification. Together with the global file system, higher level applications were

13



made network-transparent in file/directory access without requiring any modifica-
tion. Both the simple interface and the reasonable performance are due to class
inheritance and method overwriting. We would like to improve ROAM further, to
make it beneficial for a wide range of applications.
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tag

undefined variable l-‘){‘;F:l

integer X'0010jinteger

atom X'0030jatom name (string)
string X'0"0# length| elements

(short = X'000#, long = X'OF0#)

heap vector X'0"60|length] elements
(short = X'0060, long = X'0F60)

list X'0070] car | cdr ]

stack vector X'0*80] N _[elementt |. .. [ elemeniN]
(short = X'0080, long = X'0OF80)

class object X'FF10|class name (string)

exported instance object X'FF20|class name (string) | GOID

imported instance object |X'FF30|class name (string)| GOID

Figure fi: Data representation
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I . o o o o o O

class test has
nature remote_object ; % inherit a ROAM kernel class
% external class methods
:do(Class, Node) :=-
:g-call(Class, do, Node, Node) ;
:make(Class, Instance, Node) :-
:g-call{Class, make, Instance, Node, Noda) ;
:read(Class, FileName, String, Hede) :-
:gcall{Class, read, FileName, String, Node, Node) ;
% local class methods
:1.call(Class, do, Noda) :- 1:
:1 call(Class, make, Instance, Noda) :- 1,
:new(Class, Instance) ;
:1call(Class, read, FileName, String, Node) :- !,
:open(#binary file, File, FilelName),
:size(File, S5iza),
:new buffer(File, Size/2, 186),
:read(File},
:get_data(File, String, .),
:close(File) ;
instance
% external instance methods
rde(Instance) :-
:g-call(Instance, do, ) ;
% local instance methods
:1.call(Instance, do, ) :- !;

Figure 9: Sample program
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- Table 1: Performance of the session layer (ms)

P5I-net protocol

TCP/IP protocel

physical packet size (byte]

1400

1024

interface buffer size (byte)

1024 (1 pkt) | 4200 (3 pkt)

1024 (1 pkt)

4200 (5 pkt)

round-trip time

171

(31)

428

(36)

B0 (82)

1165  (284)

initialization

505 (144)

1140 (190]

Table 2: Performance of ROAM (ms)

Method RMC on PS[-net RMO on TOP/AP LMC
. 1024 4200 1024 4200
[ :do{ #test, N) 211 (40) | 475 (1) | 803 (101) | 1214 (311) | 2 (D.17)
:make{#test, I, N} 220 (46) | 484 (57)| 512 (107) [ 1220 (313) | 2 (1.8§)
wdo(1) 207 (38) | am (49) | 495 (99)|1211 (307) | 1 (0.06)
-road | #test, FN, §, N)
[le size = 600 byte | 342 (43) | 608  (54) | 620 (105) | 1347 (312) | 128 (44)
fle size — 1200 byte | 460  (60) | 611  (55) | 775  {(167) | 1351  (313) | 130 (44)
fle size = 2400 byte | 507 (77) | 617 (36) | 922  (228) | 1357  (314) | 134 (45)
file size = 4800 Lyte | 857 (112)| 886  (84] | 1206 (350) | 1883  (558) | 140 (46)
fle size = 9600 byte | 1500 (108) | 1164 (116) | 1983  (657) | 2423  (806) | 153 {46)
flo size — 19200 byte | 2667 (357) | 1728 (182) | 3323 (1221) | 3500 (1303) | 179 (48)
file size = 28800 byte | 3967 (531) | 2544 (271) | 4925 (1866) | 5060 (2042} | 206  (50)
file size = 38400 byte | 5160 (687) | 3122 (337) | 6225 (2420} § 6106 {2544} | 231 {51) |
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