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Abstract

Semilinear sets play an important role in parallel computation models such as natrix gram-
mars, commutative grammars, and Petri nets. In this paper, we consider the problem of
learning semilinear sets, that is, the problem of finding a description of a semilincar set. We

shall show that

¢ the family of semilinear sets is not learnable from positive examples, while the family of
linear sets is learnable [rom positive examples, althongh the problem of learning linear

sets from given positive examples seems to be computationally intractable,

e given any teacher who answers queries whether @ € Q" and queries whether Q' C  lor
any unknown semilinear set @ and any guessed semilinear set @', there exists a learning

algorithm which identifies any semilinear scts and halts, although the algorithm is time-

consuming,

e given any teacher who answers queries whether @ C Q' for any unknown linear set ¢}
and any semilinear set @', there exists a learning algorithm which identifies any linear

sets in polynomiel time and halts.

These results may provide partial solutions to the problem of learning parallel computation

models.



1 Introduction

One of major subjects in recent computer science is to formalize and analvze parallel compu-
tation of concurrent systems and. for this purpose. several formal models have heen proposed.
Petri nets [10], commutative grammars (3], and matrix grammars [11] seem to he most suc-
cessful models, for which substantial theories and analysis techniques have heen developed
enongh to apply them to many practical concurrent systems organization. Although decision
problems have been well investigated for these models, there have been few studies up to
now from the learning point of view, which may be one of advanced and important subjects
in computer science. In this paper, we shed light on the problem of learning these parallel
computation models.

A concept which plays an important role in these models is a semilinear set: a subset of
lattice points is said to be linear if and only if it is a coset of finitely generated sub-semigroups
ol the set of all latiice points with nonnegative coordinates, and a [inite union of lincar sets
is said to be semilincar. For examples, [or any equal matrix language [12] and simple matrix
language [7]. an image set on Parikh mapping is semilinear. Also, a reachability set of any
weakly persistent Petri net [13] is semilinear. The semilinearity provides effective solutions
for some decision problems on these models.

In this paper, we shall consider semilinear sets from the learning point of view. We
consider the problem of learning semilinear sets, that is. the problem of finding a description

of an unknown semilinear set. We shall show that

# the family of semilinear sets is not learnable from positive examples, while the family of
linear sets is learnable from positive examples, although the problem of learning linear

sets from given positive examples scems to be computationally intractable,

¢ given any teacher who answers queries whether ) € ' and queries whether Q' C @) for
any unknown semilinear set () and any guessed semilinear set (', there exists a learning
algorithm which identifies any semilinear sets and halts, although the algorithm is time-

consuming,

s given any leacher who answers querics whether @ € @' for any unknown linear set Q
and any semilincar set (), there exists a learning algorithm which identifies any linear

sets in polynomial fime and halts,

These results may provide partial solutions to the problem of learning parallel computation

models,



In Section 2, the family of linear sets and the [amily of semilinear sets are formally defined.
In Section 3, we note some basic properties of semilinear sets. The [amily of semilinear
sets is closed under Boolean operations and the equivalence problem is cffectively solvable.
Furthermore, il is shown that the membership problem is NV P-complete. These propertics
shall play important roles in the problem of learning semilinear sets. In Section 4, we show
learnabilities from positive examples for the family of lincar sets and the family of semilinear
sets. It is proved that the family of linear sets is learnable from positive examples, while the
family of semilinear scts is not learnable from positive examples. In Section 5, we present
a simple learning method for linear sets from posilive examples. It seems that the problem
of learning linear sets from given examples is computationally intractable. In Section 6,
we assume that there exists a teacher who answers queries whether @ © Q' and queries
whether ' € @ for any unknown semilinear set @ aud any guessed semilinear set Q' We
present a learning algorithm for semilinear sets with such queries. Although the algorithm
is time-consumning for the problem of learning semilinear sels, il is efficient for the problem
of learning linear sets. Furthermore, we show exponential lower bounds on the number of
queries for various types of queries.

Finally, in Section 7, we apply our results to the problem of learning some parallel com-
putation models and a simple picture recognition model. It is shown that for some matrix
languages, commutative languages, and Petri nets, there are subfamilies learnable from pos-
itive examples and they are efficiently learnable with queries on inclusions, Also, with an
appropriate coding, the results suggest that for each single concept of polygons some recog-
nition device is learnable from positive examples while it is not learnable from positive
examples for mixed concepts, and that recognition devices are learnable with queries on

inclusions. This matches with our intuition on picture recognitions.

2 Preliminaries

Let N denote the nonnegative integers. For each integer & = 1, let NE = Nx-oox N
(k times) and for each n € N, n* = (n,...,n). We regard N* as a subset of the vector
space of all k-tuples of rational numbers over the rational numbers. Thus for elements
u = (uy,...,u) and v = (v1,...,v) in N¥ and n in N, u+ v = (uy 4+ vy, i + ),
u—v=(u —ty,... .0 — ), and nu = (nuy,...,nu). We may also speak of the linear
dependence and the linear independence of elements of Nk,

Let < be the relation on N* defined by u < v for elements u = (uy,...,1) and v =
(vy,...,v) if and only if u; < v; for each <. In particular, we shall writeu < v ifu < v and

u # v. The relation < is a partial order on N*. Thus we may speak of minimal elements
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in a subset of N*. "I'he condition for two elements (uy,...,ux) and (v,...,v%) in N* to be
incomparable is the existence of i and j such that u; < v and u; > v;.

We note a following result in [4] without a formal proof:

Proposition 2.1 For any subset [ of N¥, the set D of minimal elements of R 1s finite and

can be effectively found.

Given an clement ¢ and a subset P of N¥, let Q(c, P) denote the set
Qlc.P)={gq|lg=c+nmp +--+np,, n, €N, p; € P}

c is called the constant and each p; is called a period of Q(c, F).

A subsct Q@ of N¥ is said te be linear if and only if there exist an element e and a finite
subset P of N* such that Q@ = Q{e, P). Especially, @ = Q(¢, P) is said to be simple if and
only if the clements of P are linearly independent. A subsel @ of NF is said to he semilinear
if and only il Q is a finite union of linear subsets of N*. @ is said to be semt simple if and
only if @ is a finite disjoint union of simple sets.

For any linear set @, if @ = Q(e, P) then we call Q(c, P} a description of . Let
Q=0,U---UQ, be a semilinear set such that for each linear set Q; (1 <7 < n), Qlc;, 1)
is a description of ;. Then, we denote a deseription of Q by Qe Py) U - U Qe Fy).
We note that any linear set, and therefore, any semilinear set might have more than one
descriptions in terms of constants and periods. Therefore, we should distinguish between

semnilinear sets themselves and descriptions of them.

Definition For any positive integer n, a subset @ of N is said to be n-linear if and only
i O is a union of exactly n number of linear subsets of N* and there is no ¢ < n such that

} is a union of i number of linear subsets of NE

Clearly, any lincar set is 1-linear and any semilinear get is n-linear for some finite n.
We shall also consider computational complexities of learning. We use the definitions
of deterministic and nondeterministic polynomial time computability and reducibility, of

classes P and NP, and of N P-hardness and N P-completeness as described in [3].

3 Properties of Semilinear Sets

In this section, we note some basic properties of semilinear sets. These propertics shall play

important roles in the problem of learning semilinear sets,



Boolean operations and equivalence At first, we summarize the closure properties on
Boolean operations and the properties on the inclusion relation of semilinear sets. The reader

may find formal proofs of them in [6], for example.

Propesition 3.1 The family of semilinear subsets of N¥ is closed under union, infersection,

and complement.

Corollary 3.2 It is effectively solvable to determine for arbitrary semilinear sets ¢ and

Qe whedher (1) @ € @2, (2) ¢4 = Q.

Characteristic sets and canonical descriptions A finite subset E of a semilinear set
@ is said to be deseriptive for € if and only if there is a description Qe P4 )U---UQ e, 1%)
of @ such that £ includes the set GI {{e;} U{e;+p pe )

i=1

Definition Let € be a semilinear set. A characlerisiic sef of ( is a finite subset C{Q) of

) such that

1. (2] 1s descriptive for ¢, and

2. for any proper subset F of O{Q), F is not descriptive for .

Proposition 3.3 For any linear set @@, the characteristic sel C(Q) of Q is unique and can
be eflectively found from Q.

Preof.  Since ¢} is a linear set, there exists the unique minimal element ¢ of Q. Let Fy = §,
En={c}, and ¢ = 1. Repeat the following procedure: Let I} be a set of minimal elements of
Q@—Q(e, P,_y). D is finite and can be effectively found. Then, let I, = P,_ u{d—¢c|d € D}
and B, = E,, U D If @ = Qic, F;) then let C{Q) = E; and halt. Otherwise, continue the
step ¢ + 1. We note that the equivalence problem of semilinear sets is effectively solvable.

Sinece 15 a linear set, this procedure halts and outputs a finite set C'((}). The construction
of this procedure ensures that O} is descriptive for ().

Clearly, any description of ¢} has as a constant the unique minimal element ¢ of ¢J. On
each step ¢ (¢t = 1), for any element d € D), d — ¢ must be a period of any description of
Q. Otherwise, there are some finite subset 2 = {ry,....r,} of E; such that r; < d for any
r, € Rand d = ny(r; — ¢} + -+ + n,(r, — ¢} for positive integers ny, ..., n,. However,
the construction of the procedure ensures that & C e, Fi_;), so d € D, contradiction.
Therelore, for any element q € C(Q) — {c}, g — ¢ must be a period of any description of Q.
Hence, any descriptive subset E for ¢ must contain all elements of C'(@). This completes
the proof. [



Definition A description Qley, P} U--- U Q(e,. ) of a semilincar set ¢ is said to be
canonical if and only if the set CI ({e;}U{ci+plp € P}) is the characteristic set of Q.
=1

Tn particular, for any linear sct, we have the following propesition:

Proposition 3.4 For any linear set Q, a deseription Q(c, F) of Q is canonical if and only

if each period is not linear sum of the other periods.

Proof. Let Q(c, P) be a description of a linear set ¢ and let ()} be the set {e} U{e+
plp € P}. Then, since the constant ¢ is the uniyue minimum element of @ and P is a finite
subset of N, the set C({Q) is the characleristic set of ¢ if and only if each period is not

linear sum of the other periods. [

From Propositious 3.3 and 3.4, for any linear sel (), a canonical description Qc, P) is
unique and is effectively found from any deseription of Q. However, there exists a semilin-
ear set such thal a characteristic set is not unique, therefore, a canonical description is not
unique. For example, consider two semilinear subsets @ and @, of N* whose descriptions
are Q((0,0),0)UQ((1,0).{(1,0),(0,1)}) and Q((0,0), {{1,0)})UQ((1,1),{(1,0),(0, 1)}), re-
spectively. It is easy to verify that @, = @ and sets C(Q1) = {(0,0},(1,0),(2,0),(1.1 i
and C(Qz) = {(0,0),(1,0),(1,1),{2,1),(1,2)} are characleristic sets. Therefore, these de-
scriptions are canonical.

We alse note that given the characteristic set C(Q) of a linear set ¢}, the canonical
description of @ is effectively found. That is, the constant ¢ is the unique minimum element
of C(Q) and then the set of periods is {p;|q; — €, q; € C(Q) — {c}}.

Time complexity of the membership problem Finally, we show the time complexity
of the membership problem for semilinear sets. As we will show later, this plays an important
role in the problem of learning them.

The problem is effcctively solvable. However, we show that it is computationally in-

tractahle,

Theorem 3.5 For any fired posilive integer k, given a canonical description Q(c, P) of a
linear subset of N* and an element q in N, the problem of deciding whether g € Q(e, P) is
N P-complete.

Proof. We denote the membership problem for linear sets in the following way:



LINEAR SET MEMBERSHIP (LM)
INSTANCE: A canonical description Q(e, P) of a linear subset of N* and an ele-

ment q of N
QUESTION: Is q an element in Q(c, F)?

Note that k is a fired posilive integer.
Consider the foliowing procedure: Given Qfe, PP) and q,

slep O let qp=q—c,i=1,
step i choose a period p in P, nondeterministically, and let g, =gy — p.
if q, = 0%, then output TRI/E and halt,

else go Lo slep o4 1

Clearly, there exisls a nondeterministic Turing machine which executes the procedure in
polynomial time of the size of inputs, and it outputs TRUE and halts il and only if q €

e, ).
To see that the problemn LM is N P hard, consider the following problem:

EXACT COVER (XC)
INSTANCE: A zet X and a collection C ol subsets of X.
QUESTION: Does € contain an cxact cover for X, e, a subcollection €' C

such that every element of X occurs in exactly one member of C7

This problem is known as an N P-complete problem (see [8]). We exhibit a polynomial time
reduction to LM of XC.

Let X = {ry,...,2.} be a set and C' = {c1,...,cm} be a collection of subsets of X.
Without loss of generality, we assume that X and C arc ordered sets. Given X and ', we
constructs a canonical description @(0, P) of a linear subset of N and show that C contains
an exact cover for X if and only if q € Q(0, P), where

q = i2n+m:ﬁ—1;|+j | Z“:Tm['_”'
=1 i=1

For each x; € X and each ¢; € C, define

. 1 If I, ECJ'
glxi,c5) = 0 if oz ﬁg ¢

For each ¢; € (', define

p, = 2n+1ﬂ{ﬂ--—ﬂ+i + iyl:zhcﬂzﬂ'mﬂ—ﬂ_

=1



Also, we define

2n+ mi{n—=1}+1

P‘m+1
Then, define
P o= {pjl1£j<m+1}

Clearly, the indicated construction of P from X and € is carried out in polynomial time of
the numnbers of elements of X and .

We first show that a description @(0, P) is canonical. Obviously, Py is not a lincar sum
of the other periods. Assume that a period p; is a linear sum of the ather periods. Lel x, be
an element in ¢;. 1 there exist i, ..., 1} such that 27*™(—1) = n{25tmH -1 .. cpnj2irmin=1)
every m},...,n} are positive integers, and every 1), .. ., it are less than 1, then nj +---+n; =
gl g 9mmInTHG o (] 4. 4 mf)27P ] contradiction. Thus, for any ¢; € ) py
must not be a linear sum of the other periods. Therefore, from Propuosition 3.4, {0, ) is
ﬂﬂIlUIllCﬂ.I.

Supposc that (7" is an exact cover for X. Then we deline the cocflicients of periads as
follows: For vach j = 1,...,m, if ¢; € " then the coefficient n; of p; is 1, while if ¢; ¢ '
then n; = 0. Also, we define the coefficient ny.y of the period pay by

Nm+1 = E Ejl_]

e €G-

1'he construction of Q(0, P) and q ensurcs that g € Q(U, P).

Conversely, suppose that q € Q(0, P). As we have shown, for any i {1 = 1 = n),
2itmii=1) £ I}:% n 21 for any ny, ..., 7y less than 2™11 Therefore, for any 7, there exists
exactly one I;nu‘a-r:'mn:i p; such that p; is constructed from ¢; which has z; and the coefficient of
p; is 1. Let (" be a set which has ¢; such that the coefficient of p; is 1. It is easy to verify
that €' 1s an exact cover for X.

Thus, even if k = 1, the problem LM is N P-hard. This completes the prool. T

Note that if a description Q@(e,, P)U. .. UQ ¢y, P} of a semilinear set is canonical, then
cach description @(¢;, P;) of a linear sel is also canonical. Therefore, we have the following

straightforward corollary of Theorem 3.5;

Corollary 3.6 For any fired posilive infeger k, given a canonical deseription of a semilincar
subset Q@ of N* and an element q in N¥, the problem of deciding whether q € Q is NP-

complete.



Remark 1 Given a description @(c, P) of a simple subsct of N and an element g in N*, the
problem of deciding whether g € (e, P) is solvable in polynomial time by the famous elim-
ination method. Therefore, for semi-simple sets, the problem is also solvable n polynomial

time.

4 Learnabilities from Positive Examples

In this section. we consider learnabilities of familics of semilinear sets fromn positive examples.

On learning of formal languages, Angluin [1] presented a necessary and sufficient condition
for langnages to be learnable from positive examples. Note that the Angluin's results require
only the recursiveness of languages. Hence, all of them are applicable Lo the problem of
learning recursive scis, straightforwardly. In the sequel, we apply them to the problem of
learning semilinear sets,

Let k be a fixed positive integer and R be a nonempty recursive subsets of N¥. We
mav assume that each nonempty recursive sets has a finite description such as recursive
membership functions. Let “+", “—" be special symbols. A posifive ezample of R is a pair
(+,p) such that p € It and a negative ezample of K 1s a pair (—, q) such that g € MNE—R.A
presentation of K is an infinite sequence o = $, 52,85, ., of positive and negative examples
such that any element of N* appears in o at least one time. A positive presentation of R
is an infinile sequence o = sy.83, 83,..., of positive examples such that any element of A
appears in ¢ al least one time.

A learner is defined to be an effective procedure whose input is a (positive) presentation
of a recursive subset R of N* and output is a finite or infinite sequence Wy, Wy, Wy, ... of
finite descriptions of recursive subsets. Each element W, in an output sequence of M is called
a conjecture of M.

Let & he a (positive) presentation of a recursive subset R of NF and M be a learner. M
is said to identify R from (positive) ezamples if and only if for every (positive) presentation
o of R there exists a positive integer n such that W, is a description of H, and M outputs
W, and halts, or outputs Wy, Woy1, Woya, ..., such that Wy, = Wiy = Wiz, forever.
In particular, we call the latter identification criterion an identification in the limit.

A recursively enumerable family R of nonempty recursive subsets of N¥ is learnable from
(positive] examples if and only il there exists a learner which identifies R from (positive)

examples for every R € R.

Condition 1 A recursively enumerable family R of nonempty recursive subsets of N* satis-

fies Condition 1if and only if there exists an effective procedure which on any input £ € R



enumerates a set T such that
1. T is finite,
2. TCTR, and

3. for all B ¢ R, if ' C It then RB'is not a proper subsct of £.

The next lemma shows that Condition 1 i= a necessary and sullicicnt condition for a
recursively enumerable family of nonempty recursive subsets of N to be learnable from

positive examples.

Lemma 4.1 (Angluin) A recursively enumerable family of nonemply recursive subsets of

N¥ is learnable from positive cramples if and only if it satisfies Condition 1.

The following condition is simply Condition 1 with the requirement of effective enumer-

ability of T' dropped.

Condition 2 We say a recursively enumerable family R ol noncmpty recursive subsets of
N* satisfies Condition 2 provided that, for every B € R, there exists a finite set T C R such
that for every ' € R, il T C R’ then R’ is not a proper subsel of K.

Lemma 4.2 (Angluin) [f R is a recursively enumerable family of nonemply recursive sub-

sets of N¥ that is learnable from positive examples, then it satisfies Condition 2.

This lemma may be used to show that a family of semilinear sels is nol learnable from
pusitive examples,

In the rest of this section, we shall show learnabilities of families ol semilinear sets based

on Angluin's results,

Lemma 4.3 et (@ be a linear subsct afhl" and C(QQ) be the characteristic set of Q. Then,
for any hinear subset G of NE if C{Q) C Q' then @ C Q'

Proof.  Let Q(c, P) be the canonical deseription of Q. Supposc that @' is a linear subset
of N¥ such that C(Q) € Q" and Q(c', {p}....,p.}) is the canonical descriplion of Q. Since
() € @', for each g, ol C(Q), q; = ¢/ +nj,p} + -+ n,,p;. Therelore, for cach period p;
of Q(e, P), pi = q, — ¢ = (ni, —ng )Py + -+ (i, — 0., )p;. Hence, for cach g € @, there
exist my, ..., m, € N such that g = ¢’ + mypj 4+ -+ m.p,. O

Theorem 4.4 For any positive inleger k, the famaly of linear subseis of MK iz learnable from

positive eramples.



Proof. Let Q{ey, P}, Qleg, Py),Q(es, Pa). ..., be an effective enumeration of the canonical
descriptions of all linear subsets of N*. [t is obvious that there exists an effective procedure
which on any input ¢ = 1 enumerates a characteristic set 7; of a linear set (}(c,, ;). By
definition of characteristic sets of linear sets, €; is finite and ; C QJ{c;, ;). Moreover, by
Lemma 4.3, forall 7 = 1,1l C; C Q(e,, P;) then Qle,, P,) is not a proper subset of Q{c;, F;).
Therefore, the family satisfies Condition | and by Lemma 4.1 the prool is completed. [

Corollary 4.5 For any positive integer k, the family of simple subsels of N* is learnable

from posilive cxamples.

Thus, the family of linear sets is learnable [rom positive examples, On the other hand,
for & = 2 and n > 2, the family of n-linear subsets of N¥ is not learnable from positive

examples, as shown in the followings:

Lemma 4.6 For any positive integer k = 2, the family of 2-linear subsets of N is not

learnable from posifive eramples.

Proof. At first, we show the case b = 2. Consider the 2-lincar set @ = @y U @y, where
Q1 = Q((0,0).0) and Q2 = Q((1,1), {(1,0),{0,1)}). Q is a 2-linear subset of N* (see [4], for
cxample).

Let T = {qy,.... G} be any nonempty finile subset of Q. Consider the 2-linear set

Q7 = Q;‘r L:-Q'; {ef. Figure 1), where

Ql = QUL {ai-(1,1)|a, = (1,s) €T}

Q7 = QUO.0){ajla; = (g1.q) €1, q #1}).
Canonical descriptions of Qf and @ are eflfectively found from the above descriptions.
Clearly, T C QT and it is easy to verify that Q7 € Q. For cach q; € T let q; = (gi,, gi,).
Let gay, be the maximum integer of gy, ... gp,- Then, gar = (gag, + 1, 1) is in @ but not in
QT, so QT is a proper subset of Q. Thus Condition 2 fails. The cases k > 2 are proved by

the similar arguments. [
The following theorem is proved by the trivial extension of the proof of Lemma 4.6.

Theorem 4.7 For any k > 2 and any n = 2, the family of n-linear subsets of N® is not

learnable from positive examples.

FProof. Let n be an integer greater than 2. Consider the n-linearset Q = Q, U---UQ, of
N* whereforé (1 <i<n—1),Q;,=Q((1 —=1,0),8) and Q. = Q({n — 1,1}, {(1,0),(0,1)}).

Tt is easy to verify that @ is an n-linear subset of N°.

10



Qf =Q((1,1)4pu 1)

. . . . Q% — QE{G‘DJ' {[12511]2;5?"2\3}:'
‘ ‘ ' . Pz
(1,2) ) . . My
Pz: P2,
(1,1) (2.1) "
(00} (0,0] .
0 v

Figure 1: Construction of Q7

Let 7' = {qu....,Gm} be any nonempty finite subset of Q. Consider the n-linear set

o =@fu---u QT where

QF Q((i = 1,00,0) forl<i<n—2

Qi Q(n —1,1),{q; = (n=1.1)|q; = (n—1,5) € T})
Q" = Qln—20{q—(n=2.0)q,=(g.¢) T, qu#n-1}

Then, a canonical description of each QT is effectively found from the above corresponding
description. From the proof of Lemuma 4.6, it is easy to verily that T° € QT and Q% s a
proper subset of Q. Thus Condition 2 fails. [

Corollary 4.8 For any integer k > 2, the family of semilinear subsets of W¥ is nol learnable

from positive examples.

The questions whether the family of semilinear subsets of N is learnable from positive
exatnples and whether the family of semi-simple subsets of N* is learnable [rom positive

examples are open.

5 A Simple Learning Method for Linear Sets

In this section, we present a lcarner which identifies any linear set in the limit from positive
cxamples.
Let k be a fixed positive integer and @ be an unknown linear subset of N*. As described

in Section 3, if the characteristic set of @ is found, then the canonical description of Q is

11



Procedure [DI

Input: A positive presentation sy, sg. 83,..., of a linear set Q.

Output: A sequence (Qy. Q2 (a.. .., of descriptions.
Ey =0
FPo:=10:

¢ = 0%

For cach: 21 do

Begin
Itead (+, q;):
Ei:= EioyU{q};

If e, Pi_q) is consistent with £,

then [:=F,_, ontput (He, 1), and go to 1 41 step;

If found the unique minimum element q of E,

then c¢:=q;
else ¢ := 0%

While Q{c, F,) is not consistent with £, do
Begin

find a minimal element q of E;, — Q{e, F);

P,:=FU {l‘.‘[—ﬂ}:
End;
Output a description @{e, P;);
go to i+ 1 step;
End;

Figure 2: The learner ID]

effectively found. Therefore, the learner IDI, illustrated in Figure 2, tries to find the char-
acteristic set from the given examples. ID1 never changes a conjecture while it is consistent

with the given examples, that is, it contains the given examples. When a conjecture iz not

consistent with the examples, IDI constructs a new conjecture.

Lemma 5.1 Let @ be a linear subsel of N, Given a finite subset R(Q) of @ which includes

the characteristic set of Q, the learner ID1 constructs the canonical description of Q.

Since R{Q) includes the characteristic set of @@, ID1 finds the unique minimum

element of it, which is precisely the constant ¢ of the canonical description of @. Also,
Proposition 3.3 and the construction of ID1 ensure that ID] finds each period p; of the

12



canonical description of Q. U

Since for any positive presentation o = 5,82, 83,..., there exists a posilive integer i
such that the set of given examples in s, 82...., 8 includes the characteristic sct of @, by

Lemma 5.1, we have the following theorem:

Theorem 5.2 The learner IDI identifies any linear subset of N in the limil from positive

eramples.

Remark 2 A learner is said to make an overgeneral conjecture provided that in the process
it outputs a description of a proper supersct of the linear set which should be identified. Tt is
casy to verify that ID1 never makes overgeneral conjectures, However, {01 does not always
output descriptions of subsets of the correct linear set. [f INT canuot find a constant, then
0% is assumed to be a constant. Then, the conjecture constructed by ID1 contains elements

not in the correct lincar set.

Unfortunately, [D1 uses membership of examples, which is an N P-complete problem as
wo have shown, so [D] is time-consuming. If there is a polynomial-fime algorithm to solve
the problem of finding the canonical description of a lincar set consistent with the given
examples, then we could have a learner which makes a conjecture in polynomial time for
each time and identifies any linear set in the limit. Tlowever, we give some partial evidence

for the difficulty of the case.

Theorem 5.3 If P # NP, then there is no polynomial-time algorithm to solve the following
mroblem: given a finite subset £ of N find the canonical description Qe, P of a linear

subsct of N*¥ which contains all elements of E.

Proof.  Suppose that there exists an algorithm AF that runs in polvnomial time and is
such that for any subset £ of N, AF on input £ ontputs the canonical deseription @{c. F)
of a lincar subset of N¥ which contains all elements of £. We shall use AF to construct a
polynomial-time algorithm to decide whether q € Q(c, P) for an arbitrary element q € N*
and the canonical description @(c, P). Since thie latter problem is NF -complete shown in
Theorem 3.5, this will imply P = NP, proving the theorem.

Let q be an element in N* and Q(c, I’) be the canonical description of a linear subset of
N, We may construct the characteristic set € of Q(c, P) in polynomial time. Run AF on
input C' U {q} and denote the output by Q{e', P'). Since the canonical description is unique
for any linear set, if ¢’ = c and P = P' then q € Q(e, P), otherwise, q ¢ Q(c, P). We may

test whether ¢ = ¢’ and P = I’ in polynomial time, we complete the proof. T[]
p
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Remark 3 All processes of IDI other than membership are done in polynomial time of the
size of inputs.

Let @ bhe an unknown linear subset of N*. For cach time i > 1. let (+.aqn), -y (=, q;)
be a finite subsequence of a positive presentalion and F = {eh,...,q:}. Also, let m be the
maximum integer appearing in the elements of F. Then, since £ has at most ¢ elements,
a unique minimum element of E, if there exists, is found in polynomial time of ¢, k, and
m. On the other hand, While loop is execnted at most i — 1 times. In each loop, for
each q € E — Q(e, P,), a period is computable in polynomial time of ¢ and k. Therefore, a
description of a linear set @} is constructed in polynomial time of 4, &, and m. Hence. all

processes other than membership are done in polynomial time of i, & and .

Consider the family of simple subsets of N*. This family is also learnable from positive
examples by Corollary 4.5. As we have noted above, the membership problem for simple sets
15 solvable in polynomial time, and from Remark 3, all processes of 1] other than mem-
bership are done in polynomial time of the size of inputs. Therefore, in this case, ID1 might
construct a description in polynomial time for cach time i. If the correct constaul s gFiven,
DI constructs a deseription of a simple set. so ID1 decides membership of cach examples
correctly. However, if the correct constant is not given, then the constructed description
might not represent a simple set and might decide membership incorrectly. Therefore, if
a new minimutn element is found, a learner should reconstruct a conjecture, =0 [D1 must
check the minimum element before checking cousistency, Then, it is easy to verily that ID1

identifies any simple sets in the limit from positive examples. Hence, we have the following:

Theorem 5.4 For the family of simple subsels of N¥, there erists a learner which, for each
time t (i 2 1), constructs a canonical deseription in polynomial time of 1, k and m, where

m is the marimum integer appearing in the given ezamples.

6 Learning Semilinear Sets with Queries

In this section, we consider the problem of learning semilinear sets with queries. In previous
sections, we had no assumption on presentations of examples. In this time, we assume that
there exists a teacher who can answer questions of a learner and the learner get informations
from the teacher.

We consider the following types of learners’ queries: Let Q be an unknown semilinear

subset of N* and ; be a conjecture of a learner.

¢ Membership. A learner asks whether q € @ for any q € N* and a teacher answers yEs
ifqe @ and noif q ¢ (.

14



o Eguivalence. A learner asks whether @ = Q; for any conjecture ; and a teacher
answers yes if @ = ¢ and no il @ # Q. If the answer is no, the tcacher also gives the

learner an element q € (Q — @)U (Qi — Q).

e Subset. A learner asks whether @, € Q for any conjecturc (}; and a teacher answers

yes if Qi € @ and no otherwise. If the answer is no, the teacher also gives the learner

an element q € @ — Q.

e Superset, A learncr asks whether @ C (J; for any conjecture ¢ and a lcacher answers
yes if @ € @, and no otherwise. If the answer is no, Lthe teacher also gives the learner

au element q € ) — &+

For the queries other than membership, the returned clement is called a countererample. We
shall also consider restricted versions of equivalence, subset, and superset queries, for which

the answers are just yes and no, with no counterexample provided.

A learner with restricted subset and restricted superset queries We first show
ihat if restricled subset and restricted superset quernics are available, there exists a learner
which identifics any semilinear subset of N* and halts.

Let Q be a semilinear set. For cach ¢ {0 < 1), deline D; recursively:
1 D=0,
2. D, = {q|q is a minimal element of ¢ — :_E_J:Jlij}.
Then, cach D, is finite and for each distinct and j, D, and I}, are disjoint.

Definition A representative set of a semilinear set @ is a fnite subset R(@) = l:J 0, of
=0
@ such that
1. R(Q) is descriptive for @, and

Ll
9. for any nonnegative integer s such that s <t, U D; is not descriptive for ¢
=0

Proposition 6.1 For any semilinear set Q), the representative set R(Q) of @ is unique and

can be effectively found.

Proof. Let W =0, En=0,and i = 1. Repeal the following procedure: Let [ be a set of
minimal elements of @ — E;_; and let E; = E._,w D. From Proposition 2.1, [ is finite and
can he effectively found. For cach g € 1),
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1. for each Q(c;, P;) in W, ifc < qand Q(c, P;u{q—c}) € @, then add Q{c;, P;U{g—c})
to W,

2. add Q{q.¥) to W.

Let W be a set of descriptions of lincar sets obtained with the above maodifications. If

LJ Qlc;, Py} is a description of @, then let R(Q) = E; and balt. Otherwise, continue
Qe 1y eW
the step 7 + 1.

We note that the inclusion problem is effectively solvable for semilinear sets.

On cach step i, the construction of the procedure ensures thal [or any lincar subset Qp
of Q for which E; is descriptive, W has a description of Q.. Therelore, there exists some
t such that @, is a descriptive for (), so the procedure outputs £ = E; and halts. Then,

obviously, for any = such that s < t, F, is not descriptive for @. O

We note that a description constructed by the procedure in the proof of Propesition 6.1
might have descriptions Q(c;, P} and ¢eg. /%) of linear sets such that 4 C ;. Then,
Q(ey, P ) is redundant. We can effectively eliminate such redundant descriptions of linear
sels,

The learner for semilinear sets, described in the following, identifies a semilinear set based
on the procedure deseribed in the proofl of Proposition 6.1,

Let ¢ be an unknown semilinear subsel of N*, We denote by eli] an element of N* which
has 1 as the value of ith coordinate and 0 as the values of the olther coordinates, and denole
by P, the sel {eli]|1 <1< k}.

Let @' be anv proper semilinear subset of . On input @, the algorithm FP, illustrated
in Figure 3, finds a sel of the minimal clanents of @ — Q7

The algorithm FP begins queries whether Q@ C (EUU U Q(q -+ e[1], F.)) with U = § and
q = 0% (¢[. Figure 4 (a)). For cachi (1 £ ¢ < k), FP continues queries until ith value of g
is equal to the minimum fth value in the minimal clements which have not been found yet
(cf. Figure 4 (b), where ¢ = 1). Then, FP adds Q(q + eft], P} to U and continues queries
for ¢ + 1 courdinate (cf. Figure 4 (c), where ¢ = 1). This U/ guarantees that any minimal
clement whose value of ith coordinate is greater than the one of q is contained in U/, In this

way, F'P finds the minimal elements.

Lemma 6.2 Let Q be a semilinear subsct of N* and Q' be a proper semilincar subset of Q.
On input @', the algorithm FP makes at most nk(m + 1) queries and outputs a finile set D
of minimal elements of Q@ — Q', where m is the marimum integer appearing in the elements

of I} and n is the cardinality of D.

16



Algorithm FP

Input: A description of a semilinear subsct Q’ of N¥.
Output: A finite subset D of N*.

Query: Restricted supersel queries.

n:.=0
E:=0Q"%
Do
Begin
=1,
q:= 0%
L= Eﬂ;
While : < I do
Begin
Ask the teacher whether @ C (EU U U Qg+ elt], Fe)):
If the answer is no
then U :=UUQ(q+ el )
=14 1;
clse q:=q+elif;
End;
D= DU {q};
E:=EuQiq, L)
End;

Until the tcacher answers yes to the query @ C F;

Output D and halt;

Figure 3: The algorithm FP
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q = (2,4) .
"q: = (4,2) °
q=(0,0] q=1{2,0) q=1(2,4)
- U= U = {Q((3.0).P.))
(a) (b) (c)
Figure 4: How FP linds minimal elements
Proaf. et = be the relation on N* defined as follows: Let u = (uy, ..., up) and v =
(y,...,1) be elements of N*. Suppose that ¢ is the minimum index such that u; = v; for

any j less than 1. Then, u < v if and only il u; < v;. The relation < s a lexicographical
order on N¥,

Assume that D) = {d;,...,d,,} is a totally ordered set with respect to <. We shall show
that Algorithm FP finds all elements of D from d; to d,,.

Suppose that d = (dy,...,dx) be a minimum element of ) which is not found yet. At
first, we show that in the While loop, for each ¢ (1 <1 < k), the teacher answers no to the
query Q C{EUU U Qid,, F)) il and only if d; = (d,,....diy,d; + 1,0,....0).

Let g = (1.....6:,0,...,0) be any element of N* such that g; < d; foreach j (1 < j <1).

Furthermore, let r = {ry,..., 7} be any element of @ — E. There are following three cases

of r which we should consider:

l.gq>r,

2. g=r,and

3. q and r are incomparable.
Since d is a minimum element of @ — E, there is no element v of {J — F such that q = r. If
g <r, thenre Qiq,P.). If g and r are incomparable, then there is some ¢ (1 < £ < i) such
that r, < q; and ¢, < r, for any s (s < t) (We note that any minimal element d” such that

d’ < d is already found). Then, from the construction of FP, I should already include a
linear set Q({ci,...,¢-1,0,...,0), F.) such that ¢; < r; for each j < t, so r € I/. Therefore,
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for any @ = (us-- -+ ¢ 0y .., 0) such that g; = d, for cach j (1 < = i), the teacher must
answer yes for a query @ € (EUUUQ(q, F))-

From the assumption, @' does not contain d and, from the construction of FF, any
linear set added to [/ by I'I[" only contains clements which is incomparable to d. Therefore,
for each i, the teacher must answer no o the query @ C (E'U I'u@d;, ) if and only if
d; = (dy,....diy.d;+1,0,...,0), so the algorithm FP7 finds d. Since Q'U{Q(d, F.)|d € D}
contains all elerments of (), when all elements of L) are found, the teacher must answer yes,
so F'P outputs [ and halts.

For each # (1 < ¢ < k), FP makes gueries at most m + | limes, so for each element of
D, FP makes querics at most k{m + 1) times. In the sequel, FP makes at most nk(m + 1]

queries. This completes the proof. [

The learning algorithm [DWQ, illustrated in Figure 5, runs Algorithm P repeatedly,
finds minimal elements which have not been found yet, and constricts a description in the

same way described in the proof of Proposition 6.1.

Theorem 6.3 (Given any {vacher who answers resiricled subset and restrieted superset queries
for any semilinear subset of N*. then the algorithm IDWQ outputs a description of an un-

known semilinear set @@ and hulls.

Proof.  Let R(Q) = U D be the represcntative set of an unknown semilinear set @. By
running Algorithm I” P rf-pe'a,tedl}, with Lemma 6.2, IDWQ finds each D; and in the sequel,
finds R(Q). L'hen, hy Proposition 6.1, IDWQ constructs a description of 2, so the teacher

must answer yes for the query whether @ C U @(e, ). This completes the proof.
O Qic, MW

We note that a constructed description may have redundant descriptions of linear sets.
lowever, such descriptions can he removed in the obvious way with restricled subset gueries.

Thus, the learner IDWQ identifics any semilinear subset of N* and halts with restricted
subset and restricted superset querics. However, IDWQ is time-consuming. Let n he the
cardinality of the representative set R(@) of . Then, IDWQ makes 712" ' number of
conjectures in the worst case. Therefure, the tatal running time of IDWQ is bounded by an
exponential of k, m and n, where m Is the maximum integer appearing in [¢{Q).

In the case of learning linear sets, subset queries may not be needed, Let @ he an
anknown lincar set. At first, on input the empty set, FP outputs a constant ¢ of §). Given
a description of a linear subset Q' of @ instead of a finite set of elements of @, 'l outputs

a finite subsel D of minimal elements in @ — @'. It is easy to verify that d — ¢ must be a
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Algorithm IDWQ
Output: A descriplicn of an unknown semilinear subset ¢ of NE.
Query: Restricted subsct and restricted superset queries.

W=
R(Q) =1
While the teacher replics no to a query whether (¢ C I Qe P do
Qe Few
Begin

Run Algorithm FP on input A{Q) and get an output [);
R(Q) = R(Q) U D:
While 7 is not empty do
Begin
let d be an element in LY
For each Q(e;, F;) of W such that ¢; < d do

Begin
Ask the teacher whether e, Fiu{d — e;}) C €
If the answer is yes
then W :=WU{Q(e;, PU{d o))}
End;
W=WuQ(d,0);

End:
End;

Qutput W and halt;

Figure 5: The algorithm IDWQ
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period of @ for each d € 1) and, in the sequel, IDWQ finds a description of @. Then, the
st of all elements found by FP is the characteristic set of Q, so the found description 18

canonical. Thercfore, we have the following:

Corollary 6.4 Let @@ be an unknown linear subset of NF. Given any teacher who answers
restricted superset queries Q@ C Q' for any semilincar subset Q' of N*, then the algorithm
INWQ oulputs a canonical description of an unknown linear set Q and halts. The total
running time of IDWQ is bounded by a polynomial in k, i, and n, where m is the marimum

integer appearing in the characteristic sel C{QY of @ and n is the cardinelity of C1Q).

Lower bounds for queries In (2], Angluin has presented lower hound techniques for
queries. Basod on her technigues, we show exponent ial lower bounds on the number of queries
needed for learning semilinear sels using equivalence, membership. and subset queries.

Let € be a finite set of all elements in N® such that a valne of cach coordinate is 0 or 1. Let
§ = {Q(c.®) e € C} be a subfamily of lincar subsets of N¥. Then, clearly, |€] = |S| = 2F

and each linear set in § is disjoint.

Theorem 6.5 Any algorithm that identifies any semilinear subset of N* and halts with mem-
bership, restricted equivalence, and subset querics must make at least 25 — 1 queries in the

worst case.

Proof ~ Consider the following teacher: For a restricted equivalence query with the con-
jecture ,, the answer is ne, and the {(at most one) ¢; such that @, = @@, is removed from
S. For a membership query with the element g, the answer is no. and the (at most one) @;
such that q € Q; is removed from S, For a subset query with the conjeciure @;, if @; =@
then the answer is yes. Otherwise, the answer is no and any element q in N¥ is selected as
the counterexample. The (at most one} element @; such that q € Q; is removed from 5.
At any point, for each @; € 8, @, is compatible with the answers Lo the queries sa far.
An algorithm which identifies 2 semilincar sets and halts must reduce the cardinality of &
at most one. Each query removes at most one element from the sct S, s0 28 — 1 queries are

required in the worst case. [

Since the empty set is not a linear set, with a minor modification of the proof of Theo-

rem 6.5, we have the following:

Theorem 6.6 Any algorithm that identifies any linear subset of N* and haits with member-

ship, equivalence, and subset queries must make al least 28 — 1 queries in the worst case.
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Froof.  The proof of Theorem 6.5 may be modified as follows: The answers to queries
are the same, except that a counterexample must be provided when an equivalence query is
answered no. Let (); be a conjecture. Since @ is not a linear set, @, # @. The counterexample

is any element q in ¢};. The (at most cne} element Q, is removed from &, O

7 Applications to Parallel Computation Models

Scuiilinear sels are closely related to some parallel computation models via Parikh mappings.
For examples, lmage sets on Parikh mappings of equal matrix languages [12], simple malrix
languages {7], and weakly persistent Petri nets [13] are semilincar sets. In this section, we

consider the problem of learning these models based on our methods deseribed in the above.

Strictly bounded equal matrix languages Let © be an alphabet, i.e., a finite set of
symbols and 7 be the set of all strings over £ containing the null string \. For a string w,
w" = A and w' = w'"w for each integer 1 2 1, and w* = {w'|i > 0}.

A language I over ¥ 15 a subset of £=.

Definition A language L over an alphabet ¥ is said to be strictly bounded if and only if

LCa®---a;” where & = {a;,...,a;}.

In general, a language L over £ is said to be bounded if and only if there exist words

wy; ..., Wy € XF such that L C w) - - wj,

Definition  An equal matriz grammar (abbreviated EMG) of order k is a 4-tuple 7 =
(N, 5,11, 5), where
1. 5 is the initial symbol.

2. N is a finite nonempty set consisting of k-tuples (A;, Ay,..., A;), called a nonterminal,
such that for any pair (A;, Az...., 4;) and (By, Bs.... yBi) of N, {41, A, ... AN
{By,B;,..., B} = 0.

3. ITis a finite nonempty set consisting of the following types of mairiz rules:
(a) [S = w Ay Ay wpdy],
(b)  [Ay = un By, Ay — wyBy, ... Ay, — wi By,
(e} [Ay = wun, Ay — wy, .., Ay — ],

where wy, wy, ..., wi € I, S is the initial symbol, and (4;, A;, ..., 4;), (B, B, ..., By)

are nonterminals,



An equal matriz grammar is an EMG of any finite order k.

We denote T U N U {5} by V.
Let G = (N,E.11.5) be an EMG of order k. We define the relation =2 between strings

in V=, For any x,y € V*, z = y if and only if
1. 7 is the initial symbol § and the initial matrix rule [$ — y] is in I, or

2. there exist strings uy, ... tg, My, U OVOT ¥ such that # = wyAyv - wpe g, ¥ =

Wy 21y UpZevg, and the matrix rule [Ay —+ 2, ..., A = 2} in IL

For any z,y € V*, we write ¢ =% y il cither = = y or there exist xo,....Tn € V'* such that
= Tg Y = &, and 1; = x4 for cach 7. The sequence Iy, ....&n is called a derivalion

{from zg to a,,) and is denoted by
T == 00 == T,.
The language generated by G, denoled L{G), is the set
LiG)={we |5 = w}.

Definition A language L is said Lo be an equal matrir language (abbreviated EML) if
and only if there exists an EMG @ such that [ = L{(7) holds.

The family of EMLs contains some context-sensitive languages. For example, the context-
sensitive language {a"F"c*|n > 1} is an EML. Also, there exists a context-free language
which is not an EML (Ibarra [7]). For example, consider the language L = |J {a™b* |n = 1}
I is a context-free langnage but it is not an EML. =

We shall consider the learning problem for a strictly bounded equal matriz language (ab-
breviated SBEML). Again, the family of SBEMLs contains some context-sensitive languages
and there exists a context-free Janguage not in the family.

The Parikh mapping defined as follows connects EMLs with semilinear subsets of N¥.

Definition Let © = {a;....,ax} be an alphabet. The Parikh mapping ta, o or
W when (a1,....a;) is understood, is the function from X into NF defined by tp(w) =

(#a, (w),. .., Fafw)), where #, (w) is the number of ocenrrences of a; in w.

Thus $(A) = 0% and p(wy - w,) = i w(w;) for each w; € E*. Wecall (L) = {v(w)|we
==l
L} the Parikh set of an EML L.

The following theorem is due to Siromoney [12]:
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Theorem 7.1 (Siromoney) Let & = {ay....,a;} be an alphabet. For any strongly bounded
language L over &, L is generaled by an EMG G of order k if and only if the Parikh set of L
is a semilinear subset Q of N*. Moreover, an EMG (7 is effectively found from ¢ deseription

of O and vice versa.

For any semilinear set @, an EM( (7 which generates an SBEML is effectively constructed
from a description of @ in the following manner: Tt is enough to show the casc that € is a
linear set. Let Qc, {p1,...,p,}) be a description of the linear set ¢}, Also, let ¢ = (¢y,. .., e)
and p, = (p!,...,pF). Then G = (N, E,11,5) where © = {ar, . e}, N = {{A;,..., A0}
and II consisls of the following matrix rules:

(S = al' Ay a A
(A — AL, A = )
[A; — aT}Ah cony Ay — r.ti'k.-'lx_-] for eachi (1 <¢ < r),

From Theorem 7.1, we may regard the learning problem for SBEMLs as the learning
prablem for semilinear sets.

From these. we can consider meaningful subfamilies of SBEMTI.s:

Definition  For cach positive integer n. an SBEML L is said to be n-SBEML if and only

if o(L) is an n-linear set.

Thus, a 1-SBEML is an SBEML whose Parikh set is a linear set and an n-SBEML is an
SBEMIL whose Parikh set is an n-linear set.

Consider the problem of learning SBEMLs. In this case, a learner shonld find an EMG
which is consistent with the given strings. As described above, via a Parikh mapping, an
element of N* can be constructed from a given string and an EMG can also be constructed

from a description of semilinear subset of N¥. Thercfore, for the Parikh mapping ¥,
P Qlen, A v Q(es, Ba)) v (Qles, i), .,

is an indexed family of 1-linear SBEMLs. Then, from Theorems 7.1 and 4.4, the family
of 1-SBEMLs is learnable from positive examples. On the other hand, from Theorem 4.7
and 7.1, for each positive integer n such that n > 1, the family of n-SBEMLs is not learnable
from positive examples.

Also, from Theorem 6.3, given any teacher who answers restricted subset and restricted
superset queries for any n-SBEML, then there exists an algorithm which identifies any n-
SBEML and halts. Furthermore, from Corollary 6.4, given any teacher who answers re-
stricted superset queries for any n-SBEML, then there exists an algorithm which identifies
any 1-SBEML in polynomial time and halts.
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Small classes of commutative grammars and Petri nets Commutative gramimars
are closely related to Petri nets and also to malrix grammars [3].

Let ¥ be an alphabet. Then, lct v denote the free commutative monoid generated
by ¥ with the unit element A. Each element in B9 is called a commutative word. If
% = {a1,..., @i}, then a comumutative word w € X% will be written in the formw = ay -—-af:
where 17,..., 0 © M.

A commutative grammar (abbreviated CG) is a 4-tuple G¢ = (N, E, 117, 5}, where
1. N is a finite nonempty set of nonlerminals,

2 T is a finite nonempty set of productions of the lorm a — {7, wherc a € N® —{}} and

ge (NuUX)?, and
3. § is a special nonterminal called the start s ymbol.

We denote by V' the set N UL

Let G = (N, 0.1, 5) be a CG. We define the relation = hetween elements in V&, For
any aj o € V®, 0y = o if and only if oy = §%, ag = F8, and v — ¢ is a production in
[T for some 3 € V&, %} denotes the reflexive and transitive closure of =. The language

generated by G, denoted by L{G.), is the set
L{G) = {we E¥|S = w}
A commutative language (abbreviated CL) is a langnage gencrated by a CG.

Definition A t-bounded CG is a CG G. = (N, %, I, §) such that each production in I1;

is of the form

1. §— aA Az A, where A, Ay, A, €N — {Sl,oc ¥ and s < ¢, or

2. § — ay, where o € £%, gy € (N = {S})®, | <18 = .

A t-bounded €@ may be regarded as a model of the interaction of ¢ numbers of sequential
machines. Also, Crespi-Reghizzi and Mandrioli [3] have shown that t-bounded CG may
represent a synchronization process in a modular CG, which may be regarded as a model of
modular Petri nets.

The Parikh mapping of ¢-bounded CLs is defined in the same way as for EMLs. Let
© = {ay,...,ax} be an alphabet. The Parikh mapping ¥ is the function from ¥ into NE
defined by ¢.(w) = (i1,...,4) wherew = ay -- -ai". Note that ¢, is a one-to-one mapping.

The following is due to Crespi-Reghizzi and Mandrioli [3]:
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Proposition 7.2 For any (-bounded CL L., .(L.) s a semilinear set.
Also, we have the converse:

Proposition 7.3 Given a positive integer ¢, an alphabet ¥, and a description Qcy, P U
o UQ(ep, P)} of a semilinear subset Q@ of N, a t-bounded CG G. such that ¥ (L(G.)) = @
15 effectively found.

FProof. 1t is enough to show the case that € is a linear set. Let ¥ = {a;,...,a;} be an
alphabet and Qe {pi,....p,}} be a description of (. Then define &, = (N, E, 11, 5) as

follows:

1N = {85 Ap,.... A,

13

fore=lep...,00), § —aft--afA; - A is in 11,
3. foreach p; = (#;,.....0) € P, A4;-- 4, — a ~~-ﬂi,“.-—'1] ceedyisin I, and

4. foreach A; (1 <1<14), A; = Aisin Tl

It 15 easy to verify that . (L{()) =@, O

It is easy to verify that given an alphabet and a description of a semilinear set, we can
construct a 1-bounded CG.

We consider the learning problem of t-bounded CLs. In this case. a learner should find
a t-bounded CG which is consistent with the given commutative words. By the similar
arguments in the case of EMLs, the family of t-bounded CLs whose Parikh sets are linear
is learnable from positive examples while families of t-bounded CLs whose Parikh sets are
n-lincar (n > 1) are not learnable from positive examples. Furthermore, given any teacher
who answers restricted subset and restricted superset queries, then there exists an algorithm
which identifies any t-bounded CL and halts. In particular, for the family of -bounded CLs
whose Parikh sets are linear, given any teacher who answers restricted superset queries for
any t-bounded CLs, then there exists an algorithm which identifies any f-bounded CL whose
Parikh set is linear in polynomial time and halts.

Given a commutative grammar, we can eflectively construct a Petri net as described
in {3]. We simply illustrate in Figure 6 a Petri net corresponding to a 2-bounded CG
G. = (N,E 11, S}, where N = {5, 4;,A;}, £ = {a,b}, and I, = {§ — ad;4;, 4,4, —
abbA Az, A; = A Ay — A} Then, ¥ (L{(G.)) = @((1,0),{(1,2)}).
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Figure 6: Petri net corresponding to tbounded commutative graminar

Simple picture recognitions Some simple pictures could be recognized by grammars
with an appropriate coding. Consider the problem of describing polygons, illustrated in
Figure 7, in string languages. One of the most simple answers for the problem is to describe
them in sequences of symhols which represent unit lines, as illustrated in Figure 8 Then,
these strings have the same form u - --ugr, where each symbol 1; denotes a unit line. Tor
example, a set of squares is described as the language Lg = {ulululul|n = 1}, so it Is an
SLIEMT,

Iignre 7: Polygons

On pictures described in sirings over the symbols, which denote unit lines from the Carte-
sian plane considered as a square grid, Maurer et al. have studied various properties in [9].
We have shown that the family of SBEMLs is not learnable from positive examples, while

the family of 1-SBEMLs is learnable from positive examples. These results suggest that

each concept of polygons described in SBEMILs is learnable from positive examples,

27



i3

T3 bty

g

Uy (5]

T . 3 : 2,22, 22,2

R T P

Figure 8: Polygons described in string languages

while mixed concepts of thern are not so.

For example, cousider the concept “square™ is the language L£s = {ujufuiul[n = 1}
The Parikl set of Ls s a lincar set ¥y wmwawn(ds) = {{L L L1} +n(1,1,1,1)|n € N}
Therefore, Lg is a 1-SBEML and learnable [rom positive examples. On the other hand,
“rectangular in which vertical lines are two or three times longer than horizontal lines” is
the language Los = {vfui™uiui”|n = 1} U {ului"ului" |n = 1}. The Parikh set of L,,
is a semilinear set ¥y wyuau(Laa) = {(1,2,1,2) + n(1,2.1,2) {n € N} U {{1,3,1,3) +
n(1.3,1.3)|n € N}, so it is not learnable from positive examples. This matches with our
intuition.

Also, our results suggest that these concepts are learnable with a teacher who can answer
restricted subset and restricted superset queries. In particular, there exists a learner which
identifies any single concept with a teacher who can answer restriclted superset queries for
any mixed concepts.

T'hese concepts are also described in {-bounded CLs. In this case, a model of recognition

devices can be described in Petri nets and then it stresses a side of parallel computation.

8 Concluding Remarks

We have shown that the family of semilinear subsets of N* is not Jearnable from positive
examples, while the family of linear subsets is learnable from positive examples. Also, we
have presented a learning method for semilinear sets with restricted subset and restricted
superset queries. In the case of linear sets, this method is efficient.

For parallel computation models such as commutative grammars and Petri nets, the
semilinearity is a property on “semantics” of them. If there is an effective method to con-

struct representations of models from descriptions of semilinear sets and vice versa, then our
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learning methods for semilinear sets provide the learning methods [or them (any parallel
coruputation models dealt with here is onc of such cases). Ilowever, to solve the problem
of constricting representations from semantic descriptions, we may need to study from a
different point of view. For example, reachability sets of weakly persistent Petri nets are
semilinear, but it seems difficult to reconstruci a representation of a given weakly persistent
Peliri net from a description of ils semilinear reachability set. This is one of further research

problems.
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