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Abstract

The completion of the parallel K11 implementation on the Multi-PSI, a
pilot parallel inference machine, marks the beginning of experimental parallel
programming research at ICOT. This paper reports on the experience we have
had with our first experimental parallel programs running on the Multi-PSI,
and discusses the preliminary results of their performance analyses. It also
emphasizes the need to fill the gap hetween concurrent logic program ming
and the parallel inference machine, i.e. mapping from absiract/logical paral-
lelism onto plivsical parallelism. We have found KL1 to be an excellent tool
for experiments i Lhis field because of the productivity and flexibility it pro-
vides. The completion of it parallel implementation on the Multi-PS] Eives

an opportunily for Lesting vartous ideas.

1 Introduction

The fifth generation project is an attempt to build a large-scale knowledge infor
malion processing system on a highly parallel compmter. lts working hypothesis is
that logic programming fills the gap between the high level lknowledge information
processing and the low level paraliel processing. The concurrent logic langnage!
GHC[2T] is a major result of the research at ICOT. It allows most concepts in
concurrent programming to be naturally expressed in the framework of logic pro-

ErAINming.

'Concurrent logic langunge, conunitted choice language, and slrean: AND-parallel language all
refer to Lhe same concept, but with emphasis placed on different aspects. The term concurrent
logic language implies the expressive power for concurrently running communicaliog processes. The
termn comumitted choice langunge emphasizes don’t care nondeterminisin and that the language is
sound but incomplete as a logic programmung language. The term stream AND-parallel language
says what kind of parallelisiny iz there {although, full GHC hae OR-parallelizm as well}).,



The utility of GHC for writing parallel algorithms has been sufficiently proven.
Stream communication realizes process communication, the short circuit is an easy
distributed termination detection technique. The lack of completeness property of
a committed choice logic language is compensaled for by the two all-solution search
techniques: the layered stream method[20] and the technique for transforming a
Prolog program into a GHC program [28, 249].

The claim that a concurrent logic language 1s suited for writing an open system
a system interacting with the outside world - has been proven by operating systems
written in such languages(8, 22]. At ICOT, the parallel inference machine operating
system PTMOS[5] was developed in a relatively short time on the PIMOS Develop-
ment Suppert System (PDSS), a sequential implementation in a Unix environment,
and was transported to the Multi-PSI with ease. KL1[5], the language in which the
PIMOS is written, is based on Flat GHC. It is angmented by melaprogramming
capabilitics, but they do not destroy the clean semantics of the base language as the
cut and the predicate war do in Prolog [16].

The remaining task in the fifth generation project should be to write knowledge
information tasks in GHC, and to build a powerful parallel implementation of the
language. The fiest part is as easy (or rather diffienlt!] with GHC as with any
symbolic processing language. The simplicity and clear scmantics of GHC helps
programming and debugging and makes program transformation feasible(9, 31]. The
second part is partially realized by the parallel KL1 implementation on the Multi-
PSI/V2, and is expected to be more fully rcalized when the large-scale Parallel
Inference Machine (PIM] is completed.

However, we found out it was not as simple as that, as we wrote programs to
run on the Multi-PSI — it became clear that some programs ran efficiently on the
machine, and others did not?. We do not always get an optimal speedup for a given
number of processors. In fact, near-linear speedup was rarely possible.

In a way, it was expected that a concurrent logic language would serve as an
interface between logic programming and the parallel machine, just as a machine
language did for a conventional machine, or Lisp did for a Lisp machine. But
the fact was that parallel software and the parallel machine do not meet at the
concurrent language plane. Rather, there is a layer between the language and the
machine, the layer of program mapping. A program written in a concurrent logic
language defines data dependency and possible parallelism, but says notling about
how the logical concurrency is embodied as physical parallelism, which determines
the program performance.

This gap between concurrent logic programs and the parallel machines must be

0n the shared memory mnltiprocessor, Evan Tick|26] did measurements of variows types of
benchmark programs in Flat GHC and OR-parallel Prolog.
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filled to achieve real speedup. In our case, we are interested in scalable® speedups
on scalable? architectures like those of the Multi-PSI and the PIM,

We take an experimental approach in the parallel logic programming research.
That is, given a problem, we find a parallel algorithm, write it down in KL1, decides
on some mapping strategy. Then we run the program on the Multi-PS1, measure the

performance, and analvze results, and trv new algorithms or new mapping strategies.

2 KL1

The concurrent logic language KL1{3] is based en Flat GHC, and has metaprogram:
ming capabilities and pragmas, The metaprogramming capability of KL1 is realized
by the shoen (pronounced ‘sho-en’) facilitv. While goals executed tail-recursively
(processes) define small-grain threads of control, a shoen defines a larger-grain com-
putativnal unit. A shoen has an in-coming control stream and an out-going report
stream. The computation under a shoen can be stopped, re-started, and aborted by
control stream messages, and the termination of computation, exceptional events,
etc. are reporled on the report stream.

The nser can control the scheduling and load distribution by attaching praginas
to body goals. Goals are given execution priovities, By default, a child goal inherits
the priority of the parent goal and is executed on the same processor as the par-
ent goal, but they can be changed hy a prierity pragma (Geal@priority(Prio))
and a load distribution pragma (Geal@iprocessor( Proc)). Pragmas do not change
the semantics of the program. The separation of program semanties and program
mapping 15 one of the merits of using KL1 in parallel programming research.

As cotupared to procedural parallel programming, in which the programmer has
to he very careful about synehronization and data consistency, 1t is {ar easier to
program in KT.1. This increase in productivite is paid for by extra overheads on
the part of the implementation. Perhaps. WL in parallel programming is like Lisp
in Al programming: at early slages of rescarcl and development, productivity and

modifiability are more important than the raw speed of the programs.

3  The Multi-PSI

The Multi-PST s & multiprocessor running the concuirent logic langnage KL1[25].
The main purpese of its development was to provide a network connected, scalable

Fhomething being seafable menns st it con be parameterized by the size index N, and some
importart propertics renain true as & becomes very large, For example, Lhe shared-bus architee-
ture is not scalable {under the current technoelogy ). becanse as the number of processors increases,
memory access latency booomes Dae Bronn constant short time due to bus contention.



machine for testing and evaluating parallel KL1 implementation techniques and for
developing parallel software. The first version of the Multi-PSI was developed during
1986 and 1987. IL consisted of six personal sequential inference machines (PSls)
connected by a 2 x 3 mesh network. The KL1 implementation|[13] was written in
ESP, a Prolog like system description language. It was a uscful tool for testing
the implementation and for running a few KI.1 programs, but it was slow (roughly
1K append LIPS per processor). Measurements of this early implementation are
given in [24]. As the next step, the Multi-F'SI version 2 was developed and became
operational in the late 1988. The processing element is the CPU of the PSI-II, the
faster and smaller version of the PSI machine. It connects up to fi4 processors by
an 8 % 8 mesh network. The parallel implementation was much improved [18], and
was written in the microcode. Tt attains 130K append LIPS per processor. The raw
speed of KL1 can still increase by global analysis by the compiler, sheer hacking,
etc.

The Multiple Reference Bit {MRB) schemel[d] is adopted in the parallel KL1
implementation on the Mulii-PSI. For a vector known by the MRB information
to be single-referenced, a destructive update of an element may be done without
violating the logical semantics. This enables the cost of vector element updale to
be kept to a low constanl independent of the vector size, This is very important,
because we do not want the computational complexity of a concurrent logic program
to be of worse asymptotic order than a program written in a procedural language.

For performance measurerncnts, the operating system PIMOS has a timer device,
and the number of reductions made under a shoen can be reporied. Lhe implemen-
tation docs not support load distribution profiling, but a special program called
the performance meter was written in KL1 to display a rough image of processor
utilization rate real-time for all processors. It consists ol a master process in one
processor and slave processes with the lowest system priority in all the processors
(one slave process per one processor). The number of reductions made by a slave
process is proportional to the idle time in the processor. The slave processcs arc
asked by the master process Lo give the numbers of redictions every two seconds,
and the processor ulilization rates are displayed in the performance meter window

using a color scale.

4 Experimental Programs on the Multi-PSI

We have written IKL1 programs to solve four problems, The prograns have various
types of algorithms, and their run time characteristics are also very different. They

are as follows:

“The rather long interval of two seconds is determined by the display throughput of the window
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Figure 1: Pentomino

Packing Piece Puzzle (Pentomino)
A rectangular hox and a collection of pieces with various shapes are given (Fig.
1}. The goal is to find all possible ways to pack the pieces into the box. The
puzzle is also known as the Pentomino puzzle, when the pieces are all made up
of & squares. The program dues a top-down OR-parallel all solution search.

Shortest Path Problem
Given a graph. where cach edge has an associated nonnegative cost, and a
start node in the graph. the problem is lo find a shortest path to every node
it the graph from the start node {Fig. 2}, The program performs a distributed

grapl algorithm.

Natural Language Parser
The problem is to construct all possible parse trees for an English sentence.
Lhe program called PAX does a bottom-up chart parsing. 1t is a communica-

Llon mtensive prograit.

Tsumego Solver
A Tanmego problemn is to the game of Go what the checkmate problem is to the
game of chess, 'The black stones surrounding the white stones trv to caplure
the latter by suffocating them, while the white iries to survive (Fig. 3). The
problens is 1o find out the result assuming the black and the white do their
best. The result is one of (1] the white doomed, (2} the white surviving, or

{3} the ko sitnation” reached. The program does a parallel alpha-heta search.

PThe Ko s n speetad rule 11 Go to aveid infinite repetition of two alternating states. Iy the case
of Feurmego. the ke sitintion means that the survival is decided by tradeoff witi paing or losses

in other pact of the Board.



« End Point

Start Point

Figure 2: Shortest Path Problem

- N W ke O

A B CDEFAG

Figure 3: Tsumego



We used those four programs for the Multi-PSI demonstration at FGCS'8S. Since
that time, some of the programs have been re-written and the performance improved

5 to more Lhan 20 times.

4.1 Packing Piece Puzzle (Pentomino)

The program starts with the empty box, and finds all possible placements of a piece
io cover the sguare at the top left corner, then, for each of those placement, [inds all
possible placements of a piece {out of the remaining pieces) Lo cover the uncovered
square which is Lhe topmost leftmost, and so on until the box is completely filled.
Fach partly filled box defines an OR-node, where the possible placements of a piece
to cover the uncovered topmost leftmost square define alternalive branches.

The program does a top-down exhaustive search of this OR-trec. A search pro-
cess forks at an OR-node to spawn child processes corresponding to the OR-branches.

The solutions are collected through a merge tree.

We mapped this logical process structure onto the Multi-PS1 in the following way.
The program starts on a master processor (say FEy). It does the searching up to a
certain predefined level, and after that level is reached the child processes are evenly
distributed to all processors (including itself), which do the rest of the searching. If
(1) the top part of the search tree taken care of by the master processor is only a
small portion of the entire search tree, (2) there are sufficient number of tasks to be
distributed over the processors, and (3) the average size of the task is significantly
larger than the distribution overhead (including communication, solution callecting),

then we can expect a speedup close to the number of the processor.

In our case with the 8 x 5 puzzle, the predefined search level was 2 (P Ey finds all
possible placements of first twe pieces to cover the top left corner), resulting in about
170 tasks to be distributed. When the subtrees were distributed to the processors
as they are created, the performance meter showed some processors became idle
early and some late. The adoption of on-demand load balancing made load (not the
number of subtrees} more evenly distributed, and resulted in shorter computational
times. On-demand load balancing was rcalized by placing a lowest priority idling
soal in each processor. When a processor finishes a given task (with higher priority)
or goes into suspension, the idling goal is scheduled, and it asks for more work from
the master processor. We list the performance figures in Table 1. The plateau of
speedup at about 32 processors in the on-demand load distribution performance
ceems to come [rom the bottleneck al the master process of providing work. This

may be alleviated by creating sub-master processes in a few processors.



Table 1: Performance Figures for Pentomino (in seconds)

Number of processors 1 4 16 32 4
Semi-Static Load Distribution | 270 85 24 18 | 9.4
(Speedup} (1.07 | (3.2) | (11} | (15) | (28)
On-Demand Load Distribution | 27 - 19 11 13
(Speedup) (1.0) - (14) | (25) | {21)

4.2 Shortest Path Problem

The first version of the program used a completely distributed algorithm. The
nodes in the graph are represeoted by KLL processes. Each of the node process
retains [7, a shortest known path from the start node and ') the cost of that path,
and cxchange shortest path information with its neighboring nodes. When a node
receives a path information which is better than the one it retains, ie. a path
information ep{Cost, Path) such that Cest < O, it replaces ' and 7 by Cosf and
Fath, The node then sends to each of its neighboring nodes a path information
ep((Cost + O F,[Sel fIPath]), where O F is the cost of the edge between the sending
node and the receiving node, and Self 15 the identifier of the sending node. When
a node receves a path information which makes no improvement, it simply ignores
the information.

T the nitial state, all nodes suppose that the shortest paths are nnknown and
the costs are infinity. T'he computation is nitiated by throwing in a shortest path
information cp((.[]) to the start node, meaning the empty path is a shortest path
Teos tsetl swnd the cost 1% 2ero, The computation terminates when there remains no
unprocessed path information, Termination is guaranteed for a graph whose edge
costs are nonnegalive. The original program nsed the short ciremit technigue to
detect termination (path informations had circuit switches).

The original version of the program|23] was first compiled by a Flat GIIC com-
piler [30] to run on DEC-20. It was transported to the Multi-PSI after the KILI
implementation became available,

For the performance testing, we generated a 100 x 100 square graph with ran-
domly determined edge costs (1 ~ 99), To reduce inler-processor communication,
we did not take the nodes as anits of load distribntion, but clusters of nodes {called
blpeks). so thal inter-processor conmnunication arises only across the block bound-
aries (Fig. 4). Let us call this mapping s (2 dimensional simple). 'I'he problem
with this mapping was that the shortest path information tends to spread from the
start node in a wave front. This was observed in the performance meter window.

Smce at anv point of computation only the procezssors on the wave front were busy,

o
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Figure 4 Two Dimensional Simple

processor ntihzation ratio was low, Thus, we tried another mapping, where the
graph was divided into smaller blocks and a processor took care of multiple blocks
lving far apart (Fig. 3). Let us call this mapping ?m (2 dimensional multiple).
The increased processor utilization more than paid for Lhe inereased inler-processor
communication overhead. The peak perlorimance was attained by the 4 % 4 multiple
mapping for both 16 and 64 processors.

The completely distributed algorithm had & problem in computational complex-
ity. It can be very inefficient il path mlormation with large cost spreads first and is
updated by lower cost path information, which is again updated by still lower cost
path information. Actually, the worst case complexity 15 exponential in the number
of nodes!

The program was completely re-written so that path information with lower cost
may be given higher priority. This was done in the following way. A path information
is represented not by a stream message but by a process. A path process with lower
cost is given a higher execution priority than a path process with higher cost. When a
path process visits a node process, it sends the path information to the latter, which
checks it against the shortest path information it retains, and replies either fork
(the new path information is better) or kill (the new path information s not better,
and thusis ignored ). On receiving the reply, the path process either forks into path
processes to visit the neighboring nodes or it termmales. The node processes and

path information processes belong to different shoens, and the lermination detection

49
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Figure 5: T'wao Dimensional Multiple

Table 2: Performance Figures for Shortest Path Problem (in seconds)

(Two Dimenstonal Mapping )

Number of processors 1 4 16 G4
1'wo Dimensional Simple 111 | 65 | 4.5 2.0
(Speedup) (LO0) | (LT (3.1) | (5.6)
Two Dimcusional Multiple {4 x4) - 4.5 1.9 0.9
(Speedup) - (2.5) | (6.6) | (12.0)

is delegated to the builtin termination defection mechanism of the shoen{21]. In
one processor the programs runs exactly ke Dijkstra’s sequential shortest path
algorithm. The program has the same computational complexity when run on more
than one processor. The performance improved dramatically. The summary of
performance figures are given in Table 2.

We can estimate the speedup for the direct mapping under the following simn-
plifying assumptions: (1) the start node is located at the bottom left corner of the
square graph, (2} the number of nodes in one mapping block is large, (3) a shortest
path does not deviate [rom the straight line to a great extent (this is the case when
there is no non-local pattern in edge cost distribution), and (4) the communication
cost is negligible. Under these assumptions. the shortest path information advance
in a wave front at some uniform speed. Let there be p = ¢° processors. The graph is

10
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Figure 6: One Dimensional Simple

divided into g° blocks. Let 7' be the time it takes one processor to cover one block.
Since the time it takes one processor Lo compute the shortest paths is proportional
to the number of nodes, it will take a processor p » T time to solve the entire prob-
lem,. When the program is mapped on the p processors, it will take g » 1" time to
salve the entire problemn {there are g blocks on the diagonal, and it takes T time for
the wave [rout to cover one block]). Thus, the speedup is

pxI  q°
¢x T g

=q=.p

The measured performance figures actually show roughly two-fold speedup for 4-fold
increase in the number of processors,

It is more difficult to estimate the speedup for multiple mappings. Tn a real
computation, we could guess that the wave front is not a line bul a band with some
non zero width. If so, the smaller the block size the more blocks the wave front
covers, thus making more processors busy.

An interesting alternative for making the speedup ratio higher is to divide the
graph into p thin rectangles (Tig. 6). We call this mapping (1s) (1 dimensional
simple). Under the same simplifying assumptions, the speedup is expected to be

j_pp; . ,r_: {when p >> 1).
However, the problem with this mapping is higher communicalion overhead.

The commnunication overhead is expected Lo be proportional to the ratio between

11



Table 3: Performance Figures for Shortest Path Problem (in seconds)
{One Dimensional Mapping)

Number of processors | 1 | 4 | 16 | 64 |
One dimensional Simple | 11.1 | 56 | 2.7 | 1.2
(Speedup) (1.0) | 207 | (3.1 | (9.2)

the length of the block boundary and the area of the block. For mapping (2s), the
communication overhead co 15 estimated as
4(L/q) 440 ,
0 = = —= 4'?{-? t
(L/q)? L

where L 13 the length of the side of the square, and (' is a constant dependent of the

program and the implernentation, C' — /L. This is proportional the square root
ol the number of processors, For mapping (1s), the communication overhead co is

estimated as

2UC _C ., .,
o S
L*fp L 7

which 15 directly proportional to the number of processors. This 15 an inleresting
iradenfl hefween processor utilization and communication overhead. We give the
perlormance ligures for mapping (1s) in Table 3. The communication constant O
can be calculated from the real speedup: it is estimated to be 0.02,

4.3 Natural Language Parser

The program performs PAX algorithm[17], & parallel parsing scheme for natural
language analvsis. It is a left-corner parser[l], in which phrases are constructed from
bottom to top and from left to right. There is a very closc one-to-once correspondence
between the PAX algorithm and the bottom-up chart parsing15]. In the latter,
parse trees are constructed bottorm-up starting lrom Lhe words in the sentence, and
adjacent partial parse trees of sentence fragments are checked against each other and
a blgger parse tree is constructed according to the grammar rules. The partial parse
resulls are maintained o2 data structure called the chart, so that duplicate parsing
15 avoided. PAN algorithie can be Lhoughl of as an implementation of chart parsing
in a concorrent logic language, Partial parse resulls are represented by processes,
and the neighhor relation by streams.

Since the partial parse trees interact with each other, the program is commu
nication mlensive as was the shortest path program. But unlike the latter, PAX
has more random communication patterns. because as the bigrer parse trees are
constructed. the distance {in words) between two interacting parse trees becomes

larger,

12



Table 4: Performance Figures for PAX (in seconds)

Number of processors 1 16
Mapping d{1) 45 100
{(Speedup) (1.0) 1 (0.45)
Mapping p(1) - 19
(Speedup) (2.4)
Mapping p(7) 15
(Speedup) L - | (3.0)

We tried two different mapping strategies.

d(w) W consecutive wards are mapped on one processor. {When the sentence
length divided by w is larger than the number of processors, word blocks are
mapped onto the processors in a round robin.) All child processes remain in

the same processor as the parent process.

p(w) Same as above, except cach child process is thrown to Lhe processor where

the input stream is generated.

In mapping d(w), since the parsing is done [rom left to right, the process P
representing a parse tree for a sentence fragment will be created in the processor in
charge of the righlmost word in that fragment. Processes ¢, representing the parse
irees for sentence fragments to the right of and adjacent to that fragment will be lo-
cated in the processors al the end of those fragments. Processes ¢ reads the stream
seneraled by process P, resulting in one to many inter-processor communication.

In mapping plw), ; move to the processor where I” has been created. Though
process P is likelv to have moved to another processor, there is only one to one
inter-processor communication®. The clustering of processes in this mapping strat-
cey, however, conld ranse computational load to concenirate on a small number of
PrOCeSSOTS.

The measurement results given in Table 4 show that (1) parallel execution re-
sulted in longer computational time when mapping strategy d{1) was used, and
that (2) only 3-fold speedup was attainable by 16 processors using mapping strat-
egv p(1) and p(7). The reasons for this poor speedup (or speeddownl) are uneven
load distribution and high rate of inter-processor communication overhead.

The parameter w is intended to conirol the rate of inter-processor communication

in the following way. Al the early stage of the parsing when the average distance of

5 'he stream communication i still one process to many processes. But since the KL1 imple-
mentation has a hashing mechanism to prevent duplicate data copying between Lwo processors
[14]. the number of inler-provessor messages is the same as when the number of G} is one.

13



process cormununication is small compared Lo w, most stream communication is likely
to be between two processes in the same processor. It is rather surprising then that,
in this communication intensive program, making w bigger does not make parsing
time significantly shorter (p(7) vs. p(1)). The following observation, though not
confirmed, may explain this unexpected result. If the sentence is very redundant, a
great deal of stream communication is expected in the later part of parsing, when
inter-processor communication cannot be suppressed by even a large value of w.
The layered stream method[20] for all-solution search, closely related to the PAX
algorithm, also incurs intensive stream communication. Achieving good speedup in

this kind of programs is a challenge worth tackling.

4.4 Tsumego Solver

The alpha-beta search[32] iz a well-known technique for pruning search space m
two-playver game programs. When the best move s searched [irst, the alpha-beta
search can theoretically look ahead the moves twice the depth as exhaustive mini-
max search i a given lUme. Equivalently, the effective branching factor for the
alpha-beta search is the square root of that for the exhaustive mini-max scarch.
Since the result of a subtree search is used for pruning searches of other part of the
game tree, the aipha-beta scarch has a sequential bottleneck.

If the game trec search were done in purely parallel breadth first manner, there
would be no pruning of search space. No matter how many (V) processors there
are. there is a number D (D ~ logN) such Lhat a sequential alpha-beta search
is faster than a parallel breadth first exhaustive search. A parallel search that
has a pruning effect comparable to the sequential alpha-beta search is definitely
needed. In the I'entomino and Shortest Path programs, uneven load distribution
and communication overhead stood in the way of speedup. But in the Tsumego
program, parallelization itself was the problem.

In the parallel alpha-beta search in the Tsumego program, we tried two kinds
of scheduling, In both of themn, the game tree is expanded in one master processor
to a certain fixed depth and the subtrees rooted at that level are distributed to the
processers, just like the Pentomino program. The moves of the second player at a
given board situation are given the same priorities. In scheduling (a), the moves of
the first player are sequentially searched. In scheduling (b)), the searches of the first
player’'s moves are given priorities so that if some branch is to the left of another
branch in the search tree, the former always has a higher priority. A search subtrees
wilh a higher priority comes before a subtree with a lower priority in the waiting
task queue for load distribution.

The first scheduling is closer to the sequential alpha-beta search than the second

one. but has less parallelism. It is expected that for a problem instance where the

14



pruning effect in the scquential alpha-beta search is large, scheduling (a) will do
well, while scheduling (b) will have good specdup for a problem instance in which
the pruning effect of sequential alpha-beta is small. We list some performance figures
for several problem instances and diffcrent depths for subtree disiribution in Table
5.

The figures support our expectation, but it is rather annoying that the com-
putational time is sensitive to the depth of distribution as well as problems and
scheduling strategics. We have vet to analyze these data, and also fo try more
sophisticated parallel alpha-beta scarch algorithms such as those in [T, 6].

5 Discussion

The basic formnla for speedup 5 is

W W
*5:=W:JH|'I?[H:'_='W'F'
v W T

where W is the amount of work done by a single processor, N the number of pro-
cessors, [/ the average pracessor utilization, W” tlic total amount of work done by
a mulliprocessor, O the overheads peculiar to parallel processing, l.e. overheads of
scheduling, synclironization and communication, F (the effective processor utihza-
tion) = UW/(W' 4+ ). This formula says, to achieve good speedup, for a given

multiprocessor, we have to pay attention to the following items.

{1} To increase processor utilization (lo make {7 close to 1)

First, it is necessary to extract enough parallelism from the problem to match
the number of processors. Wc are confident that large-scale problems have
enongh parallelism to match a highly parallel multiprocessor. Tor gmaller

problems, we need nol use such a machine.

Second, il is necessary to distribnte the extracted parallelism over the proces-

sors to keep them busy. This is the problem of load balancing,

For a program with nniform parallelism during computation, the load distri-
bution may be decided statically. It was not the case with the shortest path

prograim, as shown in the low processor utilization of the mapping 2s.

If there are plenty of unrelated tasks to do, as in the Pentomino pregram,
fairly good load balancing can be realized by distributing ronghly the same
nuniber of such tasks. Bul even then, dynamic balancing paid off because the
task sizes vary.

The current load distribution pragma of KL1 may be too specific or too low-
level. In the futnre, we would like to offer the programmer more a abstract view

15



Table 5: Performance Figures for Tsumego

Problem 11

Sequential 1,696 moves
alpha-beta 15 sec
Depth Scheduling (a) Scheduling (b) |
1 1,696 moves | 13,481 moves
14 sec 15 sec
2 i 696 moves 18,262 moves
5.0 sec 13 sec
3 1696 moves 7,901 moves
3.1 sec fi.0 sec
1 1,696 moves | 11,656 moves
2.9 zec 8.3 sec
1 LG9 moves 7,300 moves
3.0 sec fi.6
Max Speedup 5.2 2.3,
Froblem 2
Sequential 21,257 moves
alpha-beta 210 sec
Depth | Scheduling (a) | Scheduling {b) |
I 21,257 moves | 20,715 moves
203 sec 23 sec
2 24,2581 moves | 26,077 moves
114 sec M zec
3 26,269 moves 48,979 moves
139 s 31 sec
4 20,269 moves | 68,425 moves
T sec 15 sec
A 30,349 moves | 67,323 moves
9 sec 49 sec
| Max Speedup 3.0 2.8

f The best move iz the lefimost branch.

{ The best move is a far right branch.

16



of the machine. The Processing Power Plane (PPP)[3] is one candidate. It is
an imaginary plane on which the programmer distributes the computational
load. It is mapped onto the physical processors, but the machine monitors
the computational load and moves the processor boundaries dynamically to
make computational load evenly distributed over the processors. We may
want Lo introduce some elasticity to the PPP to resist too much distortion
for load balance. Tf the programmer knows that certain processes have close
connections and communicate very frequently within themselves, hefshe may
cluster these processes and map to points in the PPP that are very close to
cach other. I there are many such clusters, the load balancing mechanism
tends to balance the load. but, by the elasticity, not too much so to tear a

single cluster into pieces to be mapped onto different processors.

To avoid doing work whose result may not be used afterwards (to keep W'/ W

close to 1]

The work whose result may not be used afterwards is oflen called speculative
work as compared with mandatory work, work that must be done[l1]. In the
alpha-heta search, searching non-leftmost moves is a speculative work. The
second version of shortest path program that used the priority mechanism did

much less speculative work than the first one.

An interesting phenomenon is the superlinear speedup, that is, speedup grealer
than the number of processors (S > NJ. The condition W' << W is necessary
for this to happen. In the case of the alpha-beta search, if the best move M is
a far right branch of the root, parallel search may find the good alpha value of
M carly and use it to prune (some subtrees under) the other branches. What
happens here is that, for a certain problem instance, the speculative work done
by the sequential algorithm can be larger than the speculative work done by
the parallel algorithm. If it were known in advance that the best move lies in
the right hand side, a (good] sequential algorithm should have searched that
part first. This means that a superlinear speedup is always an unexpected

outcome, and in the average case analysis it should not be possible.

On the other hand, another source of superlinear speedup could also come
from data locality when the data size is huge. Consider the following extreme
example. Suppose one processor can have local memory of 1K words and a
disk (for simplicity, no 1/O buflering is assumed), main memory access takes
. microseconds, and disk access takes M microseconds (M >> m). The
problem is summing 2K numbers. 1 would take one processor T = km + kM
microseconds 1o add up 2I8 numbers. If two of these processor-memory pair

were connecied b a channel, and the sending one word information takes ¢/



microseconds, it would take T' = Km 4+ € microseconds to determine the sum.
ITEKM > Km 420, T" < T2, speedup greater than the number of processors.
(The source of the extra speedup was data compaction). This argument may
be a little far fetched, but as we deal with bigger and bigger data set, data
access locality will be of greater concern. In this sense, a multiprocessor is a

step towards data parallelism”.

(3) To keep low the overlicads peculiar to parallel processing (1o keep C small)

There are overheads inherent in parallel processing. Process switchin g, schedul-
ing, synchronization, and communication are all such overhcads. Keeping
them at a low level should be of concern at all levels in a multiprocessor sys-
tem, from algorithm design to user controllable scheduling, to load balancing,
to compiler and implementation techniques and to architecture and hardware

technologics.

At programuning level, for example, process fusion is a program transformation

technique that removes certain kind of synchronization overhead,

At parallel logic language implementation level, tail recursion optimization
makes process switching less frequent. LIFO scheduling of executable moals by
goal stack in our KI.1 implementation and most other implementations helps
keep suspension rate lower. Reducing inter-processor communication was a

major design issue in the KL1 implementation.

Unfortunately, load balancing and communieation localization tend to conflict
with each other. If there were no penalty by commun ication, evenly distribui-
mg KL1 goals as they are spawned would result in a good load balance and
near lincar speedup. This is not the case, however, and seems to be one of the

essential aspects in highly parallel computing.

LThe above discussion was how to attain highest speedup, given a fixed number of
processors, that is, to make effective processor utilization cloge to 1. For a scalable
architecture like the Multi-PS), scalability of a program is also an important issue.
A program in which 50% of processor time is consuined by communication overhead
could still be useful il the averhead is independent of the number of processors and
an absolute speedup is of the ultimate goal®,

We concentrate our atiention on scalable MIMD multiprocessors. There has been
much theoretical work on time complexity of parallel algorithms on the P-RAM (par-

allel random-access machine} [10]. Typically, an efficient parallel algorithm employs

"Data access lecality is al cache level for a shared memaory ultiprocessor with snoopy cache,

and at local memory level for a network-connected multiprocessor
BFor this kind of argument, heavily loaded limit, asymptotic specdup for a large number of

processors as problem size incroases [21, 15 & pood conceptual tool,
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a polynomial (in problem size) number of processors to solve the problem of size n
in a polylogarithmic time, i.e. O(log* n) (such a problem is said to belong to class
NC'). There are characterizations of NC in logic programs [19]. But current hard-
ware technology does not allow a great number of processors to coneurrently read
and/or concurrently write the same memory location, as assumed in a P-RAM. Re-
alization of such machines being unthinkable for now, parallel programming practice
has to assume architectures in which memory contention exists and memory access
latency becomes larger as access distance becomes larger. For such realistic scalable
multiprocessors, research should naturally be focused on scalable parallel algorithms
that achieve maximal speedups for a given number of processors. More precisely, for
N number of processors, we look for a parallel algorithm that solves a problem with
sequential time complexity T, > O{N) in time T, such that speedup § = T,/T, 15

close to V. or for hard problems, VN, ete,

6 Conclusion

In summary, the paper reported on the experiental parallel logic programs on the
Multi-PS1, and analvzed the speedups obtained. We have come to realize the gap
between K11 programs and the parallel inference machine, Le. the mapping of the
abstract/logical parallelism in the parallel programs anto the physical parallelism
realized on the parallel machines, and have started to address it. The Juuuppiug prob-
leimn should be of importance not only for progratmers of concurrent logic languages
but for everyone who is engaged in multiprocessor programming for performance.
‘I'here is as vel no universal method of good mapping — we have to devize one
mapping strategy for one problem, and another one for another problem —, but, in
a sense, that means the richness of the mapping problem.

KL1 and the Multi PST turn out to be good tools [or paraliel program research.
The pragma facility in KL1 makes experimenting scheduling and load distribution
stralegies without affecting program semantics, The Multi- P51 has a scalable archi-
tecture and is powerful enongh to run large-scale programs. The issues that come
out in scalable programs do arisc in programs runnable on the Multi-PSI.

One important feature that is lacking in the current Multi-P51 exrvironment is
performance measurement tools. Currently, the execution time and the performance
meter pattern are the only clues for program performarce that are readily available
io programmers. Counting the numbers of various inter processor messages is a
painstaking task, possible only with the help of an implementor. We definitely
need better performance profiling tools — tools that show process history, processor

utilization graph, message handling rale, ete. ¥

The Mull system has a few such tools [1Y].
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