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Abstract

T paraliel inference machines are being developed in the Japanese FGOUS project to provide the
cotnpitatiomal power requived for comstructing high peclormance knowledge informal ion processing
svstems. Tu folly exploit the power of parallel inference machines, an aperating svstem tuned to
control highly parallel prograne offectively is inevitable, The parallel inference machine operating
swstenn, PIMOS is designed for this purpose. This paper describes an overview of the design of
Pl FIMIOS,

Tl deseriplion languug:‘ of the PIMOS. KLE is based on s councureent logie programining
|FI||.".lll5IH!'. Flar GGHC. Te abtain the ﬁme"rinnn.lit;l. n't'|ll'rl'|*1| fiar wenlang, i |'q_|-|:|_||:.]i_r'ulrld sv=leng such as
an opeeraling sysiene Ve KLU languages made numerons extensions to the original G110 language,
maiily for efliewens meta cont ol

Based on the fearures provided by the KLT langnage. rthe PIMOS & designed 1o e an ellicient,
rolsvst sl Nexible operating svstem tuned to the parallel inference systems, Through ils devel-
opnent, ieplenenting an operaling system in a concurrent logic progranming language has heen
proveal to be ot ouly feazible but also advantageous,



1 INTRODUCTION

1.1 Objective

The parallel inference wachines, PIM s (U], are heing developed e the Japanese FOOS projoet o
provide the cotmpiitational power required for bigh performance knowledge information processing
syslerns, A protodype paralle! mivrenes waehine. Mol PSEY) has also been developed to promote
parallel software research ad developiwent. These svarens consian of pudople {up o around 1)
processars for attaimng Ve reapured processing power,

Lo fully exploin the power of such paralie] infereaees machines. an operating system tunsd (o
rembrol bighly parallel progenos eferiively s imevitable. The system should also be user-friendly
ansd robmst enongl to be used praciically and extensively in parallel software research. The parallel
itferenee maclones operatimyg =v=temy, PEMOS, s 1|--:;Lp,||4.'f.| o Fulfill 1l pequirennsnt .

1.2 Helated Works

.I..I'l.':" J_w'n,'\-;]l'.i_lir_\ ;1_|;||,:_ .]l,l\ul_ﬂ ETLO of “'I‘i“ll,E: EY |'|,r||l|.-|\-'11' |:'|'|_‘.l!>|.'\.Ti||g F-:n'ﬁtu_‘l_'l_l i!l'l a concurrent IOH]’.' I.rf'r!"
sranming language are suguested by Shapire [19%54). Hased on tius prineiple but with mnch
Aproverents in various aspects, soveral experimental systems such as the Logix system [10] and
the Parlog Programing System (PPS) T are actualiy noplemented.

The PIMOS resembies PPS i many aspects, This reseinblance 1s partly due to the resemblance
of the implementation languawes (kL1 and Parlog) and partly due to itumate cooperation of iwo
reseaech groups.

A wtable differenee etween the PIMOS and other aleoveomentioned svetems is in the under|v-
g language mplemeatations. The PIMOS s desigued for hardware specaally devised for parallel
mlerenee svslens with vers bighe perfornes . whils otler systens are basaly M rnmmr‘rria“}'
available software and hasdware. This affects the cxeention officiency of varicus language prinatives
differently, changing desien trade-affe considerahly.

1.3 Characteristics of the Hardware Systems

The hardware sestes for which the PIMOS b5 desigoed have the Tollowmg characteristies o
COTNnE,

Stand-Alone Systems: The parallel nferenee maclines are designed Lo be stand-alone systeis;
not as hack-cud processors of establishied host systens,

Multiple Processors: The parallel wiferenee machines have many procvessors that can execute
different prograins (n parallel. All processors have the <ame functions: any processor can Lake
auy part ol Che systene Jed adlocatwon e lefi fo the sofoware

Loosely Conpled Processors: Bn the Multi-PS] svetenn all the processors are connected loosely
via a specially devised conmunication network. Inocortam PIM svsterns, several processors
are conpected tightly, sharmg & common bus and veemeory, forming o elwsfer. Clusters,
Biosvever, ave intereonineeted via a commumication network . As the inforence nechanism itself
= hitghly optimized. congaeation between processors {or clusters ) hrough the network is
relativels vostlv, and the software pmst take more care of keeping locality of computation,
Fapeeially, the Bighest costois o the fised per compameation overhead.

Changing Paramacters: W do oot have moch expetiens with highly parallel inference svstems
ver. Although all the parallel inference wipehines ane based on the same design principles,
varions paramelers of the syarems may differ depending on our knowledge on such systens
available at the time of thewr design. Also, even for one model, parameters may change in
i As the S¥ELEIN 15 KE:HIHHII__\' Lupecl up Thie s .'1||;||_'i!’-'R tor ke in1|3'|1="TI1F!I1|.'-I.1‘.'InI:I t-t‘fi'l]'.liql]r‘
af the KLI langnage. Such parameters may consilerably affect frade-offs i the software
design.

The PIMOS s designed keeping these characteristics of the hardware in mind.



1.4 Requirements

The following items are required for an operating systen for svstems Built upon the hardware with
the characieristics described above.

Robustness: As the PIMOS is a stand-alone system, the robustness of the systenn s more im-
portant than in systems hased and dependmg upon another established systen:.

Parallelism: The ultimate objective of the PIMOS 15, as stuted above, 1o provide features that
fully explaiis the power of parallel inference hardware, Various couputations required in such
an operating system should also be executed n parallel, OMherwise, the operating systein
will be the bottlensck af The whols systen.

Low Commuuication Fregueney: As the processors or clusiers are loosely connected, come
mitimieation betwesas them are much more cosily cornpared with commimication within one
processor. Thus, frequency of ronuumnication hetween processors shonld be kept as low as
possifile.

Flexibility: As the hardware parametees are expected to change. the systen should have cnough
flexibility to be tuncd o the given parameters. When Luning by changing parameters of the
aperating systemn hecomes msufficient, non-trivial re-design of the system may he required.
Thus. a systent is desirable on which improvement of the systen tsell is easy. Features
enabling construction of so-called virtual machme oporating systems are required from this
viewpoin

1.5 Orgaunization of the Paper

The rest of this paper is organmed as follows.

Section 2 describes the implementation language of the system, KELT. Many of the Eeatures of
the operating =ystein PIMOS i based upon the prisnitives of the KL langnage provided as its
metaslevel cantrol features. Thus the design of the KL language, especially extensions made to
115 base language GHC, should be ronsidered o e a part of the design of the PIMOS.

Section 3 deserihes how physical input and output devices are modeled 1w KL1, what kind of
logical interface is provided to the user, and how they are realized.

Sectiom 4 describes how exerutable progras of the KL1 language are <tored and used for
execution in the PIMOS

F"\r'c'“uu i.} dr‘ﬂl’lihﬂﬁ IKPW VATIOWUS FrSOlUfres are conteelled in ihe P]M[_}S

Seetion B describes how the user programs and the FIMOS can commuuicate 1o each other,
and how the communication is made in a fail-safe way to protect the PIMOS from acculental or
mtentional erpors of nser programs.

Seetion T describes the environment prepared for the development of the PIMOS and ather
parallel application software

Finally, in the last scction 8, a conclusion and plass for foture research and development
directions are 2tatad

2 THE KL1 LANGUAGE

The implementation language of the PIMOS is called KLL the common kernel language for parallel
inference svstews in the FGOS project, hased on the GHC language [20]. GHC is & coneurrent
logic programuung languags akin to Concurrent Prolog {15] or Parlog [6].

The merit of using a concurrent logie programming language 1= i its mmpheit concurrency and
synchronization feature. Without explicitly specifying in the program, concurrency of the program
is exploited and data-flow synchronization is made automatically in and under the language im-
plementation level. Fspecially advantageous is the implicit data-flow synelironization mechanism
which eliminates almost all the synchronization errors. In a procedural langange, required data-
flow synchronization must be comverted o cont rok-flow synchronization by the system progran,
which is one of the largest sources of programming errors in operating systeiis.



R LT s actwally based oo sobset of GHO called Plad GHOY o FUHU inshort . The differenees of
Mt version of GIU and 1= fell version = that only unification and calls to certain built-in predicates
are allowed o the goaed part of 1 elanse. This makes efficient maplementation consderably #asier,
without losing essential descriptive power of the language

Homwever, the GHO language itself does not have enongh power for efficient anplementation of
cherarmg sysiems or applicalion programs that require sophisticated control nechamsm. Thus.
several exlensinns are miade B bl Tanguage, ainly for enabling meda<dored execution control.
Tlos section descrthes why such extensions are required. what sort of sxtensions are wade. and
B Hien are suppoeed Lo e sl

2.1 Requirements

For deserihing large scale programs recp e connplieated sxecntion coentral s reasouable stroetaee
shioubd beoamroduecd 1o the program. One of the reazons of the pegpiireent of suels a slretore
it hevpoench evel ol the structuee small enough to be comprehewded casily s oa vae. Another
reason 15 tooanap the stractiure of the problea dieeerly tothe the struevure of the program. which
also belps casier cotnprebension.

Chipe wiy Lo inkeadiuee such a steneture Lo programs 15 by dividing the program into modules
statically. Development of the languages such as Yulcan (117 or A77°M 27 are b0 Inohd meadular
prograpuuing langnages based on the abject-onemed notion upon concurrent logie progranuming
langnages Tlis approach i known 1o be effective for solving many problems and rhe WL language
does provide a simple modular progran: structuee also. but unfortunatels 1 s nol enough by irself
Tor deseribing an operating systen

I oprrating systens, ood all el jecls are ereated raual. The operating svstem showld be able
oo control the execution of the apphcation programs. and the reverse should oot hold . The pro-
graen that controlz the execeution of a PrCETAL 18 called s tebi-progien: an n|n’~|‘.‘-ﬂing avatem
=i e Lasprogram of the applivndion programs. This merafobjeet strneture is not B strueture
strghivtorward ly expressed in modular programming languages.

The sinplest and probabiy the most elegant way to implenient e metasprogranmning featare
may he ].’:'I'l:.l'l."il.:I.ITlg_' an It11h—'l’|‘|l'¢="1 er ool TRy LTINS |.i-1|jg|_|;-|_&r* [I:’i]_ 1T 1l CperRing SyEtem sliould
interpret e application programs under its supervision. any kind of welacontrol conld have heen
pleented easily. Such an unplementation, however, lLus an olwions draw back in execution
etticiency.

Tl sanme sorr of weta-cont rol feature cequired in operating systems i also veguired for certain
kinds of application programs. For example. the command inderpreter shell st petasprogran of
programs run under v Prograis controlling several solvers with different algorobions for the sane
prreobalens s e moeba-program of he solvers, The operating system is uo mwre than an instanee of
prrogratns regquiring metafobject program struebnres,

Phous, the lavers of meta-coniral can be nested arbitrarily wany tiimes. 17 the esecution efeiency
should e veduced t0 /e by using the inlerpreter scheme, the efficiency of a program within o levels
of meta-conteal layers will be o" tines as slow as when it s excentod directly by the machine. The
paetial evaluaiion technigue can solve the problem partly, lowering the overhead of fterpretation
vonzilerabily. Newvertheless 0 can only lower the consrant factor ¢ and cannat {with currently
aviulichle techinology, ar least) riake 0 very close to 1 either when powerful meta conteol is reguired
T Thus, to encourage weta-level control. v neelinnisin allowing object-level and meta-level
programs tooean o the sane basis with the same cfficieney s required

The Erllowing features should be avalable mosucl s meta-programmung mehansin

Peeventing Propagation of Failoure: Tn PO all the goads in the svstem form ane large log-
wal rogunelwn, Thus, fatlure of one goal o the system means the faiiure of the whole
syabenn U ehe poeta-lesve] progeame and supervised abject-level programs are o be run this
way, fatlues tnoan object-level program will cause failure of the whole sy<tem including the
mwetaslevel prograny, which s pever acceptable. Thus, propagation of the failure should he
lmited somehow to the olgect-Tesel, toopresvent The Tuilwre of Ehe moela-level prograom.

Meta-Control: The mcta-level prograin shoold be able to conteol the exeention of the objectslevel
programs. For exanple. o user should be abde 1o stop his job from the commmand interpreter
shell, when aue of his jobs went into a meaningless infinite iweration.
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Monitoring: The meta-level program shonld he notified of exceptional events (arithmetical over-
flow, for example) raised o the object level and he able to determine what to do with such
events, In general the meta-level programn should be able to momter the exceution of the
object-level programs at any time. to be able to control object-level programs based an the
monitored information.

2.2 The “Shoen” Fealure

For imtroduring the meta-programmung feature, an appropriate program struclbure should Le in-
troduced to the FGHO language to distmguish the meta-level and the object level. The feature of
Shaen!, similar Lo the metacal]l primitive m Parlog [5), is introduced for this purpose s« a lnnguag:e
primitive.

The shéen wechanisn can be considersd 1o be an interpreter of the KL1 language. Although
it i not actually written i KT but s implemented by lower level primutives, its semantics s
designed so ax to preserve the nature of a meta-level interpreter.

2.2.1 Croation of Shoen

A shéen is created by the following primitive
execute(Goal, Centrol, Report)

This ran be considered 1o be a call of the top-level predicate of the wterpreter. Here, cach arguinent
nieans the following,

Goal: The goal to be exeeuted in the shien ”

Control: A stream from outside of the shden to the shéen interpreter, through which commands
for controlling the execution of the interpreter are sent.

Report: A sirram from the shoen interpreter to outside of the shoen. through which various
messages are sent from the shoen interpreter to report status of the eompulation

Here, the word stream actually means a Lst stroctore used for stream-like conununication between
processes [17]. Each argument will be described further in detail below *

FThe word “shien” {or = 448 ") is a Japanese word that means “manm” in English.

T ehe actnal inplementation, it is represented by 2 arguments; s pomter to the executable code and an argument
vector. See 262 for this design choice,

*Actually, the rrecate pritive has ssveral more argumenis, wlich also will be described below .



The grals derived from the original goal given to n shien on ks creation form a logical conjune-
tion independent of the goals outside the shoeu. Onee a shden s created. 0 execution 18 controlled
throngh the confrel stream. Status of the execntion of the shoen s gotified from the report stream.
Thus, as far as execution contral s coneerned, a shien 15 a blackbox witl one input stream and
one oulput streaim.

The onginal goal given at the creation of a shoen. however, can have variables shared wilh
poals cutside of shown as its arguents. Goals o the shoen can instantiate such variables, thus
sending information our: goals out of the shéen may also instantiate such variables, thus sending
mfursgation o the shoens D lers ol vicloal interpeeter assumplion. this means that the variables
i the interpreted program is represented by the variables of the language in which the interpreter
i= written. as is usually the case with Prolog mterpreters,’!

2.2.2 Coptrolling the FExecution

[weention of a shosu victual wterpreter can be coutrolled by sending the following messages to the
cordrel stream of the shoen

Start: Start (or restart) the execution of the shoen. ATter its creation. the execution of the shorn
15 suspended untl this message 1= first recerved. The same message resuines the execution of
the shoen suspended by o step message deseribed Delow

Stop: Stop the execution of the shoen. The execution s suspended until o sferf message s
received. To allow efficient implementation. the langnage allows arbitranly long (but finite)
delay aunil the execution s actually stopged.

Abwrt: Abort Che exccution of the shoen, The execution 15 aborted and (unlike i the case of the
stop mwssage ] can wever he resumed afterwards Again, arbitrary finite delay is allowed heve.

L addition 1o those listed above, commmands Tor fesonree management are also sent through the
sanne sTreain (s 20)

2,23 Heporting Status

Fhe status of the shoen are reported through the repord stream by the Tollowing essages.
Started: Heports the reception of a starf conmnaml,

Stopped: Heports the reception of a stop comanad,

Aborted: Reports the reception of a ghard conmuand,

Terminated: Reporis (he lermination of the execution. The termination takes place when all the
goats in the shoen are reduced. Alternatively, the shoen may have been forced to terminate
b an abort message

The fiest theee in the above st are used for decsling the order of commands reception and other
imternal events, For example. when a fermonated report 1= made after an ebor? message 15 sent
o a shoen thers snay be two cases: when (ie caccution is aborted by the command, and, when
all goalz e the shoen has heen reduced suceesstuily beforr receiving the gbor! nessage. These
twa eases can be distmguished by the arder of the aborted and fermenated messages m the report
=Hlream

I addition to those listed above, messages o peport exceptions and resource consumplion
siatug ape also sent to the the report steeam (see 2538 awl 7.0).

Note thal fadfure is nol ineluded in the abese list, o KL1, failure is treated as a kind of
exception {sinilar to arithmetical averflow ), The ineta-level program decides whether to abort the
crecution (by sending an aborf message) or try to make it recover from the failure (see 23}

TUsing thes efficient bat simphe miechanizm, howevey . uoexpected mstantiation of vaciables in the chject-level
iiiay cause failure in Che metadevel. Lo the PIMOS, i s wolved by the protection filter technique described in &4
with the help of the unification order rules deseribed w2205,



2.2.4 MNested Shiens

To aliow Hexible nwta-prograiming, shoeus can nest by arbatrarly many levels.

As the sensntie model of a shéen is a virtual interpreter, the semantics of nested shoens
is Lhe sanw as when an interpreter is interpreted by another interpreter. 1t may be naturally
understood thar suspending the outer shoen also suspends the inner shien; stopping the cuter
shoen is stoppiig e nerpreter that interpretively executes the inner interpreter. Resuming the
outer shoen will also resume the inner shaen. Similarly, aborting the execution of one shoen also
abarts the execution of itz offspring shaens,

With this semantics, the meta-level program can supervise abject-level programs without being
aware of ans lower netafobject layvers.

225 Urder of Unifications

No order hetween distiet unifications s defined in the original GHO langoage.  For example,
consider the following WL program

P :-ogla).
qiX} == X = b.

Naively considering, when the predicate p is calied, the unification X = b the predicate g will
fail. However, The first clause is considered to be equivalent to tLe following clause in the definition
of original CiHC

P - X=a, gqlk),

The order of the unification "X = a” and the invocation of the predicate g ts not defined. Thus,
the untfication “X = & may be executed prior to the unification “X = a” in the predicate p, which
will fail if this is the case

This theoretically clean semantics brings in a problem in proteciing the meta-level using the
sharn meelanism, The sanw failure may occar even when the predicate q is called wrapped up in
a shaen ronstruct as i the following clause.

p - execute(gla), ...).

To avaid the abowe and similar problems, the following order of unification 15 assumed in the
KL langwage.

o When there are bwe or more accurrences of the same variable, for exaniple, several oecurrences
of & vanable 1. i one elause, they are angfied before the hody goals are imvoked,

o What are passed as arguments to a body goal are the arguinents as written in Lhe program,
ratlier than variables which will be unified with the written argnments later.

o When s atructure appears in the body part, its elements are initiated with the values written
it the program. rallier than variahles which will be unified with the written ones later.

Fortunatelv, there seein 1o be oo reasons for an optimized implementation to violate these rules,

2.3 Exception Handling

Exeeptional events during the execution is reported to the report steeam of one of the surrounding
she s

2.3.1 Causes of Exceptions

Typical causes of exceptions are the following.

e When invalid arguments are given to a built-in predicates in the body part of a clause. For
example. giving nou-numerical arguments to arithmetical built-in predicates. giving argu-
merts that camse arithmetical overflow,® giving an index value that is out of the range of the
given strueture. ere., fall mto this category.

" Arginents which casse arilhmetical overflow are considered to be tneclid here,



& When the guards of all the candidate clanses for a goal are known to fail
o Wlhen an active unification” {ails,
Budle-in predicates appearmg mthe guard of a claose will neser couse exceptions. Instead . when
a bt prediease, sav addition. s given an mvalid argument. say an atom, it simply fails rather
tlian generating an exception. Built i predicates appearing in the guard part are considered to
e abibrestatons of wnfication patterns. For exanple. ronsicder the fullowing clause
plx, ¥ - x> Y | gq(Xx).

Thus = comsidered fo be an ablhreviation of the fallowing infinitely many elauses.
e ! )

pli., 0} - gqli}.
pi2, 0} - gi2).
piz, 1} - q{2).
pi3, = q{3).

k3
o
]

2.3.2 Nieporting Fxeeptions

When an exceptional event is found . o niessage as shown below is sent to the repori atream of one
of the shorns surrounding the goal thar ransed the exeeplion

exception{Info, Goal, New(oal)
Each argument of the exception infornmtion bas the following meaning.

Infor “The reason of the exeeption,
Goal: [nformation on the goal whicl raused the exception.”

NewGoal: A vaiable to specifv @ gonl that will he executed 1 plare of the original goal that
catksed Lhe exeeption.®

There wiay beany number of shaens :-le.L'J'-)LlIlding the gesl Lhal caused the exceplion, but only
ane of them receives the exceplion nwssage. Exeeplions are classified into several categories and
each category is associated with some Sog (one word bic patterni. Ou the other hand, every shoen
alsit s o fag. which s specified on its creation by an additionsl argnent 1o the crecule primitive.
The exception s reported Lo the inneemost shaen wliose tag mafches the tag of the exception.
Twotags match when their bit-wise conjunction yields nonzero. Using this mechauism, one shocn
fussisilor can handle only evriain kinds of exraptions, lﬁa\rjng athers handled h."" the memitors of
outer shoenps.

2.3.3 Recovering from an Exeoption

When ai exception report is generated | he cxeeulion of the goal that cansed the exception (a built-
i predicate goal or a failed goal) is replaced by 2 new goal That goul waits for the instantiation
of Yew@iond i the exeeprion report message and. after its instantiation, execates it. As this new
goal Lelongs to the same shoen as the origingl goal, the execution of the shoen will not terminate
successfilly before che Acwdloa! argument is instantiated.”

The =canantics of the language can be partly custonuzed by specifving an appropriate New(foal
w the shoen momtor program. The semantics of unification can be extended. for example, by
giving e dlelined unification routine a= the ¥ewGoal for a unification failure exeeption.

Even wlhen an exeeption is repeated 10 Lhe rieporl stream of A .=ull'olmding shien, the execution of
othier gonts i the shoen will el be snspended,. Wiether to gtop the exeention or mot s deterine
by the monitor program of the shoen v e condrol steeam of the shoen. 1o parallel implementation
of the language, 1t is practically impos=ible in anyway 10 stop the execution unmediately.

“Aetie undfication is one appearing o the oy pant of & clauss. which can instantiate unbeund varinbies.
Passrve unifie alion sppearing in the head or the gnard pant of a clanse will never give valoes Lo variahiles.

Tl il st iplemeant ation. it is given b two Berms: a cnede pointer and an argument vector.,

fLike tlie gug! information. two wariahles Ge mocode pointer and an argumenl vector are used in the actoal
imprleniene atiom

* A bartim is pomsible Al any tines,




2.4.4 Deliberate Generation of Exceptions

An exception report can he intentionally generated using the following primitive,
ranse| lafe, Data, Tag).

Each argument has the following meaning.

Info: Any data identifying the exception. The generation of Lhe exception is deferred until this
arguient is instantiated completely to a ground term ™

Data: Any dara. This argument sy be instantiated, smnst antiated or partly instantiated.

Tag: An integer to specify the Lag of the exception, which, m turn. specifies the shoen whose
mcptor handles the exoeption,

When an object-level program sends some information to its meta-level, the part of the data
that is mspeeted by the meta level should be guarantesd 1o be mstantiated. Otherwise, the objert-
level program may fail to instantiate it. causing the neta-level program wait for it forever. The
argument fnfo is used for this kind of ioformation.

On the other hand, the argument fafe is used to pass data that are nef inspected by the
meta-level program They are usually passed directly to the goal that is executed in place of the
goal ratse. by including 1t w the term unified with the Newdroal argument of the exception reporl.
As the substitute goal s execated in the ohject-level, the problem of deadlock i the meta-fevel
will not appear,

A typical usage of thus frature is for establishing a conunication path from a user program
to the PIMOS, deseribed i seetion 6.2

2.3.5 Implicit Stream Argument

The excepriom mechanism of KL1T ran be explained by assuming one additiomal implicit stream
argument to each goal, This unphoit argument s unified with [1 when the clause has no body
goals. When it has body goals, an implicit merger goal i= inserted in the body which merges as
many streams as the nuber of body goals to the implicit siream argument | and pass one merged-in
stream to each of the body goals as their nuplicit stream arguments,

For example, a clanse such as:

pix, 2} - qli,¥), r(¥V,2).
is ronsidered to represent a clause:

P{I,Z.E:l Hinl
ql{X,¥,51), =(Y,2,52), merge(st, 652,85},

The saie rule applies also to built-in predicates i Lhe clause body, This implicit stream is
virtually merged into the report stream of the shoen, through whicli exeeptions are reported.

2.4 Priority Management

For specifying saphisticated problem solving strategy thit can fully utilize the available computa-
Lional resources in an effective manner, it is essential to mtrodoce the notion of priority between
goals that can be executed in parallel and between clauses thal can b chosen non-deterministically.

2.4.1 Requirements

I the original GHC language. the execution order of two goals can be either of the following two.

e The order is not speaified. The order is lefi to the nogplenentation. and the implementation
may sequentially execute one after the other. or may execute them in parallel.

Wy he actual implenentation, the mechanism of deforming the caeption report s implemented by & KLY pred-
jeate, However, it is a languags feature from the wsers” point of view



& The order is detersoimed ]r}. clata li-l-"l.?ll-'ILlI.F’IH'__'-' Oue can e executed only alter ihe other
niakes some data available

These two tiay be euough as far as Lthere s no limit in the available resource. because. iy that case,
evervthing that ran run in terms of data dependency can really proceed. Howsver. in an actual
implementation where only limited resouree oust be fully unlized, the Tollowiog skrategy = oflen
desirable.

e The two goals may be executed in parallel. as far as both can be,

o If there i= not encugh computational resoures | processors, for examgple), exerulion of one
should have priority te Lhe ot bier,

Consider. for exampde, the alpha-heta tree search algorithi, B essential in Che algorithog Lo
search ope branch thoroughly as carly as possible, (o utilee ds result for prawing other branches.
If the search should have been made i the breadih-first order, no prumog procedore would be
passible,

When programmed i sequential programming languages, strict doplie-fiest search order is spec-
ified. The same kind of steict sequentiality can alsa he specified fu GINC using data dependency,
m which cage. however, the algorithnn cannot make use of otherwise available idle processors

'I'o salve the problem. more Hexible notion of erecofion priordy s required, in addition te the
strict ordering enforced by dala dependency. When there are several compntations ready to be
executed in terme of data dependency but with different priorities, and the computationst resourece
is available cnly for some of then. ones with higher priovity will be executed lirst, The essential
difference with the strict ordering is that all the compmtation may he tried in parallel if abundant
resonree s available.

Prierity 15 nor something 1o be abeyed stretly butomerely s guideline suggested 1o the i
plementation 1o deterimne Ve execation order of gonds. Thos, goals with lower priority may be
execubed even when I.h-‘rt— -'xi.ﬂt gn.:-ih- wil li ]II_!_;"U"F }:-rinl'il_x rrad}' to be executed, How vwch rhe
prioriy s respecied deternunes bow good the noplementavion s, and not whetler the inplenwnta-
fiem i correct ar nol. F'rngru.nl.- Thal want be execuled correctly without the priority S}n""iﬁrﬂliﬁll
are worrert KL programs.

If priority specification should be strictly abeved e a parallel mnplenwmiaton, the whole system
mmst be inspected 1o each execulion step to ensare that there exist no goals with higher priority,
IF thus should have been done. the locality of computation would be totaily lose.

2.4.2 TPriority Specification

Two levelz of priority specification are provided in KL1 Shoen by shoen coarse specification and
goal by goal finer specification

When a mera-tevel program controls the priority of ohject-level programs (for example. when
the operating svstem specifies the priority of user programs|, shaen by shoen specification is the
recommended wav, Priceity of the shoen is specified a= the minimum and the maximnnn priority
allowed for goals and children shoens i1 They are given as additional arguments of she erecute
primitive when the shoen is created

When the object-level program controls the execntion of wselt depending oo detailed olsjere-level
knowledge {for example, when heunstics are used), goal by goual specification may be appropriate.
The priority of a goal can be specilicd by allixing o priociy pragma to the invocation of the goal
{see below Tor details) When no priority pragina 1= given, the prioviey of the parent goal is used as
the default value. When s pew shoen s created, its bop level goal will bave the maxionon priority
allowed 10 the ghoen,

In both tyvpes of specification. the prionoy 15 spectfied relative to the priority wminm and
mesimume of the inunediately surroundmg shoen and Ue curvend prionity (the priority of the goal
currently beiug reduced ). There are two ways i this relative specification.

o Sprcifying by ratio i the range of priocity msinum and maxinen of the surrounding shen.

n the current impplemencation. onee a shiven s ooreated, it piscity cange cannot be changed afterwards. An
alternative implementation which allows 11 s being mvestigated.
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Figure 2 Prionity Pragma

* Specifying by ratio in the range of the current priority and the maxinum (or the nunimum,
when a negative value 1= specified) prioriy of the surrcunding shoen

Th!—" rat,im.-; are giw-n hy an inT.ngr T, where rrf"iﬂﬂﬁ i= the artual value of the ratio”.
For example, priority pragma for goals 1s given as lollows.

plEW) -
qix,Y)@priority_in_shoen{4085),
r(Y,Z)opricrity_to_current(-16€),
s(Z,¥).

Here, the goal gCx, ¥ will have the highest priovity allowed in the shdéen, and the goal T(¥,Z) will
have the prionty somewhat lower than the eurrent priority, e, that of the parent goal p(X W),
As g(Z,W) las no priocily pragma, it will have the same prionty as the parent goal.

Specifving priorities relatively, rather than absolutely, has the following ments.

e Local relative priority specifications are properly respected without any change when the
program 15 run i a shocn with more global prionty specificataon

e Different implementations may have different physical prionity ranges Helative priority spee-
ification can be free from such umplementation dependency.

2.4.3  Tmplicih FairnessT

Iy s wplepentation of a parallel bogoage with linited rmnputal:ic-nal resources, execution of
ohject-level programs may make the neta-level program wait for at least a while. Tu a naive
unplenwntation, even if the meta-leve] progean is about to stop the object-level program. the
meta-level sy nol be sxernted forever | waiting for an infinite loop in the object-level program to
terminate and vield the required resourees hack.

A simple mwthod o solve this problem is to introduce implicit fairmess to the scheduling
strategy. A farr scheduling here mieans, any goals that are ready to be excented will he reduced
at least by one step sometime in a finite tuoe pecod. To implement this, breadth-first scheduling
or introducing depth limit to depth-first scheduling has been proposed.

(3 the other hand, the problem can also be solved hy the priority mechanism, by specifving
the priority of object-level prograns explivitly not to heeome higher than the meta-level progran.
Tmnpelicit fairness is not required in this case. An important merit of not adopling oplicil Gairmess
iz that, when all the ready goals have the same priority (that means almwost all the tune when a
simple application program is runuing withont nmch conumunicating with the operating systemy),

120 s better undersiood as representing A fised-poine resl el
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the implementation = allowed to choose Uhe most efficient scheduling. Tully utilzing the locality
Letwern goals. Fortunately, simple depth-tirst secheduling is known 1o yvield the best results usually

To mssure that the neta-level prograom can stop infinite loops of the objeci-level programs, the
priority must he respected at least a hittle by the nnplemeniation. What i requested 15 that a gl
with the highest priority should be reduced al least by one step within a finite time period.

24.4 PFPrority Betwiaen Clanses

in the crigimal CGHO, when mubliphe clanses can beoused for reduction of a goal, the iplemeatation
is atlowed re choose whichever rlanses for the reduction. Ulis semanties allows the implewentation
16 chovse 1he miost efficient reduction strategy. Consider. for example. the following two clauses,

mi(¥[X], ¥, W&l :-

WZ = [WIZ], miX, ¥, Z).
miy, [W|Yl, WE) :-

wZ = [WlZ), m{X, ¥, Z).

When the first arguient s an a remote processor and the second argument is already kuowin 10
he instantiated 1o a list cell on the currentls exeenting processor. the implementation is allowed
to choose the second clanse without even trying to access Vhe first arguent,

With this mechanizim. howsver, preference betweon chses cannol e specified 1 the program
For example, agam i an alpha-beta search prograne when s new maxinun (or o | wvatlue
15 found by a child node. that dara shonld be used 1o control other chatdren nedes mors «fi i+'11l|}
If that value ig nor yer available, the goal will cominne with the abready koown maxinounm (or
mimmun:). In this case, the clise waiting for the report of pew maxununy/mininum values
should live priority to cther clauses.

Specification of priority between multiple candidate clauses are thus introduced to the KLI
langusge. bor example. the above merger program will becosue a priorily meeger by adding priori
specilication between clauses as follows,

mi[WiX], ¥, W2) -
Wi = [W|Z], m(X, ¥, Z}.
alternativaly.
m(k, [wivl, Wz :-
¥Z = LWIZl, =(X, ¥, Z}.

Note that the second clanse is tried not ouly when the Grst clanse fails but also when o swsponds
Thus it is wot something like the sequential QR feature seen in Parlog or the otherwese feature n
Concurrent Prolog.!?

Sinilar to priority between gosls | the impleientation does not have to fully obey the priority
.-.-'|'.|Pi.':|'ﬁl:'.1.li.'_\-l'|_ ]If'l [|'|_1_- ;I,l:o‘l.'t- t"l.:,1||1|:|1_' L‘lf ||||'- I::I‘l-.)l.']t}' nwrerr I he HPI'!!I[III 1']3l14|" may hﬂ' chosen
even after the firest argumeni 1 alecady imstantiated 1o a list cell Exeeution efficiency will be
rn;_':nsj_d.-‘-[ahl}' In;_;gr.l i_n i_:|||||+'|||_r~|:||,.:1|iull:’-‘ i ]'rarallv:. hﬂl‘li?ﬁ'ﬂ?“ ||. ||11' HI_'H'FI.ﬁI:'E'ItILI'LIi st hF f]lr!"_’l."ll'{l
perfectly. What s reguested i that the first clause will be chosen sometine within a finite time
pericd even when the second clause can e chosen for finitely many times.

In e sroglennentatum level s the olause wil h priority will alwavs Tee wsed [ the reduction as
far as all the required data are availabie within the processor reducing the goal. Otherwee, the
werpned clrse may be ysed bt ferrhing of the data pequired For reduction by e liest clanss fromm
remole pruressors s iobiated, even though 12 = not reguired for this particular reduction. 1t will
eventually make the first clanse peady Lo be clioses

2.5 Quantitative Control

Az described ahove, nformation swch as the termmation of the computation or emergence of
exceptions are notified to the meta-level through the report stream of the shoen, Execution confrol

"The KL language als: provisles the seepential O feature. The sequential 008 and asheraine directives can,
fiowever, Lo peplaced by woaiting negation of the ganed paris of all the precedong clauses, Thus, although simch
language sonstrueis are quite uselul. they mevely provide a syptactie convention without eatending the essential
dlescpiptive poser af the language.



of shaens to suspend, resume or aborl the execution of a shoen is also provided through the control
stream.

These features are gualitative in that the controlled shaen either can proceed or not. To control
the meta-level hehavior of the object-level program more into its detail, features to guantilatively
control the object-level eomputation are required, in addition to the gualitative control features.
Quantitative control is to control meta-level quantities of computation, such as how mauch compu-
tation shonld be allowed for a shéen.

The quantitative control features cannot he efficiently realized easily without certain language
level support. The KL1 language thus provides not only the qualitative meta-control, but also
guantitative meta-control fealures as it= language primitives.

2.5.1 Principles

The zhoen, whicl s the unit for qualitalive pyeculion contral, &8 also used as the umt for quan-
titative control, Using Lhe sanw shien mechanisn is profitable in making additional overhead
sinialler

Although each program runs differently depending on the problem and the algorithm, lower level
notions such as how neh processing fioe or how much memory area the computation consumes
can be reasonable common measares for all kinds of programs. Thus, such lower level quantities
are rontrolled by the feature,

The simplest method may be to report each execution step in the ohject-level Lo the meta-
level, This method, however, requires large a anwunt of communication between two levels. In
KL1, the meta-level sets same limit to the resource consumption of the object-level program, and
the ohject-level only reports the resowrce fow status to the meta-level when the allowed amount
of resource has almas!? been consued L If the resource rnusumptian &{'[-llﬂull.}' reaches the limit.
then the exerution is suspended until the hmit s raised by the meta-level program.

Rereiving the resonree_low report, the meta-level program ean choose from the following.

o Aded sone more ta the limit 1o make the object-level computation continue,
¢ Abort the object-level computation by sending an ebort message to the control stream.

e Suspend that computation but freeze the computation stalus as il s by simply et adding
any more to the lmit), untd possible futare resumption,

When the computation should be conupued, the meta-level program will add some more amount
tor the resource consumption limit. However, there may be some delay due to computation required
lor such a decision or for communication between processors. Thus, the report is made somewhat
before the given resource is tonlploh"l}' exhansted. This allows pipelined resource supply.

Setling small resource consumption limil and adding Lo it a small amount frequently, tnore
accurale resource consumuption contrel i possible. However, it may require more resource handling
ovechead The accuracy of resoarce malkagemant 13 a paranieter of the system that can be defined
by the meta-level prograns considering this trade-off.

2.5.2 MNested Resource Managemeut

The resource management principle of K11 is also based on the assumption that shéen is a machine-
level interpreter. The virtual Interpreter is assutned to be counting the resource conswmption.

The virtual interpreter 1s considered 1o be made so ellicient that interpretation of a program
comsumes only the same amount of the resource as when the interpreted program is executed
directly.

When shoens are aested, the inner inlerpreter is mterpreted by the outer interpreter. If the
cuter interpreter detects that the resouree consumption limit has been reached, it will suspend
interprotation until some more resonres consumption 15 allowed. Naturally. the inner interpreter
is forced to stop there,

With Lhis semantics, the meta-level progeam can control resource consnmption of the object-
level programs without heing aware of lower level metafobject layers.
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2.5.3  Controlled Quantities

INTTR 1'0“1:'.1'i.u:__' are the candidates of resources controlled by the pinize lisin s
Time: Hew ek CPU G can be used for the exeeution of the shoen.
Space: How iich menery can be used for the execution of the shoen.

i stead of measuring the CPU Gime, the current implenientation counts the number al reductions
as 115 estimae. The current irnphementation does not eount the memory consamption.

Far aboai nwiors eonsmmpbion, the garbage collection mechanism makes fair managenent
ditfienlt. &s the sauw eniory area can be wade available again by garbage collections. such rewse
should wot be connted as covswmplion. However, a data structure created in one shoen may be
passed Lo another amd Hhen garbage-colleeted, Memorizing all such data transfer has too mweh
dition, notifving garbage collecior of the affinity of memery blocks 1o shoens will

everhiead, o ad
e guite costly,

Apcther difficulty b= in unbalaneed resouree consumption. When multiple processors are avail-
alsle, o PrOETRLE IIAY  COlSETEe mueh NEMOTY 0N One Prodressor bur not on others. To TOpE
with such rases. nemory consimption management in termes of total amount of allocated memory
5 never ctough: =ope amount of memory consumption in one processor i ot egquivalent to that
amennt of consumption in another processor. This problem is left over as a further rescarch theme.

2.5.4 Resource Management Moessages

Conununication required for resource management is effected Lhrough the control and report
streanss of shoe.

When the resoures consumption [mil is reachisg o s shaen, a reseurce doie message is sent 1o
ihe report steeam. Adding some amount 1o the resource limit of a shoen s efleeled B sending an
add s searve f Anaaa ) nwssage. Do pesponse 1o Uis nessage, a resoroee added mcssage i3 sent 1o
the report stremn Watehing the order of this message and a resowree_low message, 1L is possibile
tor kiow whet her pesonree el s found to be low before the resource addition is nude or it became
loow weven affer the addizion

To guery the pesoiree consumplion stabus, the contral message sfafisfics can be used, As a
direel rrEspr e 1o [ 1N RRALY, t he .liiu‘IffHHl_':i_.'sfd'Tft'lf messaAEe 15 sent baek [rorn the n‘-|*.-:.url strean.
Boanet e abier that, a stafestu tf..ﬁ.l'ﬁ.f'l'd.'i__nl 1= senl bo the reqiort. mhream. !Hll'lg.“'lg the resoures £on-
swnplion statstics i its argient, The reported resource consumption status is that of sometime
i hetween bhe two time points &t which These niessages are issued

2.6 Executable Code

Ter be a self-containmi computer system. programs in the systenn must be handled by the system
itacdf. The KLI language thus provides fealures to handle executable codes as data.

2.4i.1 Module amd Code Data Types

A hlock of ahjeer code for KL progranes can be handled as a data object ol type maodale . One
moduic may contain eaeentable coales [or several predicates, Predicates declared T be prblic in the
sesbre progean arc pegistered inoa certam table o the corresponding module data object, which
can be aecessed s o bl peedieale . Such predicates entries can be andied as a data ohject
of type code . Other predicates are focal and can be mvoked only Troa msule of the module.

Module and code data olgeers are treated basically the same as data objects of other types:
they can be passed as arguiments, stored i structures, garbage-collected o no access path remains
o then. eic.

A module data structure consists of two parta: GO part where pointers Lo other data are swored
and mon-00 part where only atomic data, mainly executable KL1-B eode [L1], are stored. All
accessey o data onisade of & |_'|:|{1d1,l||“' s made vin pﬂiﬂh"rﬁ sbored o Lhe GO part. The GU prard
can contain poipters o ummstagtiated variahles Thus, when created. inodules can contain an
invocation of a nwutule that is ot defined vet, Accesses to such a module before its definition
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will be simply suspended. Later instantiation of the variable will make it proceed. it 1s along the
privciple that executable codes should le treated the sanw as other data objecls.

The non-GC part of modules contains lower-level machine code. Thus, if module data objects
#an be arbitrarily created, any protection mechanism above the KL1 language level may be viclated.
T svoid this. the built-in predicate for creation of modules is not made av milable to user programs.
This is realized simply by nob nchading it in the built-in predicate table of the compiler when it 1s
in the applicalion program compilation mode. User programs can emly ereate module data objects
by asking the PIMOS for compilation of source programs. which will never generate problematic
rowles,

Creation of a module & suspended until all of the elements of its non-(307 part becomes instan-
tiated, and they are fully dereferenced during the ceeation: the low-level execution mechanisi can
safely assume that executahie machine code is already there.

2.6.2  Higher Ovder Mechanisim

The rode vbiject can be used for execntion by the built-in predicate apply, The apply predicats
takes two arguments: The code for a predicate and a vector of arguments. When either one of
these are still uninstantiated on an invoration of apply, it is suspended until both get instantiated.

The apply buili-in predicate is a ligher order extension to the language. The shoen feature
deseribed above also 1akes this higher order approach for treating executable code. Some it her
copeurtent logle programming languages adopt niet a-level mechanism, in which usual data strue-
sures such as p(X} are treated as executable code [6] This approach. however. assumes that
the mapping from predicate nane ithe atom p} to the corresponding raccutable code is available
coripletely e the language imphanentation level,

When the higher order invoeation mechanism is available, the meta-level feature can be mple-
wiented in the software. allowing full Rexibility in name/code mapping to the software. Section 4
deseribes how such mapping is inplemented i the PIMOS.

2.7 Other Extensions

In addition Lo the extensions reguired for meta-level programming, several other extensions to the
ariginal GHE language are made in the KLL language. They are mainly for providing efficient
privtives, which, however, affecied the design of the PIMOS considerally.

2.7.1 Random Access Structures

Many of the implenentation level optimization of the KL1 language are based on the lowe-level
wiechanism that distinguishes muliiple and single reference paths to data objects. Such informa-
tion is kept i pointers using one bit tag called the multiple reference bit (MRH) [4]. At the
implementation level, the information s used mainly for incremental garbage collection. When the
sole reference path to an ohject is known to be required no longer, that object can he reclaimed.

This singie reference information can be utilized to implement efficient random ancess struc-
tures, The KL1 upuage has one-dinensional aeray struciuee data type called rector. Updating
an element of a vector can be effected by the fllowing built-in predicate.

set_vector_element (1Y, N, OIJE, NewE. NewV)
The arguinents have the following meaning.
1dV: The ariginal veelor siructure,
M: Indes of the element to be wplated.
OLIE: The Nth elerment of the original veclor
NewE: The Nih elenwnt of the newly created vector.

NewV: The newly crealed veeton with the same length and cleinents as the original veclor, except
that the Nch element is repinced with New f7

4 gnal functor structares such as “F1E017 are alsu represented uang the veetor seructures such as " if, I}
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As far as the semanties s coneerned . tlas predicate has uo side effectie. It allocates a copy of
the original veetor with ¥th element altered Lo Newt A naive fait hul implementation of this,
however. requires Lime and space proportional to the size af the veetor. When the reference path
tes the original veetor is known b be the Tast one. that data steactore can e destructively updated
i constant time with oo memory allocation. without disturbing the pure SEILANTICS.

The senntics of the language s not allected by the existencs of such an optimization. However,
when such an opetation i= known to be efficient. use of random access slrnetures s stromgly
encouraged and the programming style of kLL niy become drastically diflerent

There exist segquentiality hetwern elemnent arcesses (o (phyveically) the same (but logically dif-
ferent) vertor. The upeated vertor can b aceessed only afier the npdate procedure is connpleted.
The exeention of e sefvectorelemint predicats is antomatically suspended ungil its first and
second arpuments become wstantiated . Note, fowever. that the AeaF argument need not be
mstantiated on update. The corresponding element ol the new vector will simply becoms that
aninstantiated variable. Consider, for example, the fllowing process-like progran

tablel [update(K, X)15], OV) -
set_vecter_element(OV, N, OE, HE, NV),
compuze(0E, X, NEJ,
table(3, WV).

The compute precicate computes the pew elesnent value from it previows value and the data
supplied with the miessage. In 8 parallel implementation. the call uf compute and the recursive
call of table can be cxecuted in parallel. If the next message i= updating the same element. it will
be suspended naturally because data required for compute ix not avalable set 17 it is updating
a different element. however. sompute for that message can be cxecuted in parallel with the first
LTS

2.7.2 Morger

As streamelike compunication using list structures oo freguent Iy usedd programming techuigoe
[17]. the efficiency of strean: merge operalion can e n ke af the overall efficiency of the system.
Thus. & streaa neerging mechanisi s boilt into Lhe syetem. Again. it doss pol aflect the sernantics
of the language but does afleel the prog amming style romsiderahly

A mwerger process s created by the following built-in predicate,

neerze |l Chat)

lmwdiately after the mvocation. the nwrger is merging only one mput stream o the outpul
sireaw (Uhis, of course. is nob & pwerger veth s semantics can given by the following clanses.

mergel[], oy =0 = 0.
merge{ [KIL], KO} :- XD = [x|0], merga(I, O).

More inpit streams can be added by unifying the amput streaim argioent to a vector giruchire
whese clements are sleeams ta be merged v This feature can be described by the following
additional (infinite ounder of 3 clanses (eorly brackets are wsed to dewete recter sbructures)

mergei {7}, oy :=0=[1.

mergel{L}, 0} :- merge(I, OJ.
merge({I11,T2}, 0} @ merge(Il, IZ, O).
margn{{Il,IZ,IE}, 0y :- merge{Ii, I2, I3, O}).

e merge predicates with three or more argnments also have clauses for increasing the nuuber
nf |'r|1-'|'_|'.1'n.‘|. streamie, 1 addition Lo the elauses for actual TNCTEIE

This deseription in the K11 language gives the semantics but the acvual nuplementation is of
course quite different. It s highly optionsed nsing the MEB information.

For inrreasing the number of input streams, the vector structure 15 el dlipectly as the arguiient
of nwerge '™ This aclene is advantageons o the schenw using a speeial message for that purpose

" Apy structures other than Tty could have been wsed here. The vector stiuctore i= nsed only because of e the
tesst efficently handled strueture
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[21] in that no reserved message is used. addition of nerged streams is specified by the arguiment
itsclf rather than the rar part of the st structure, where a message should be. Uninstantiated
inessages can go through the merger. because, although being umnstantiated, they are known to
be a message that goes through the merger and not something controlling the merger. The basic
mechanisin of the stream communication using list structures is that, communicaiion control is
done by the edr part which is a list cell or nil. and the car part brings a message. The scheme
adopted in KL keeps this principle of using only the edr part for controlling the commnunication.

3 INPUT AND OUTPUT

This section describes how physical 1/0 devices are modeled i KLY what kind of logical 1/00
interface the PIMOS provides 1o the user. and how they are realined.

3.1 Model of Physical Devices

1/ dieviees can be mudeled by processes of kL1 Inoa certain layer of the PIMOS. [/D deviees
behaves the same as h L1 processes,
A one-line display deviee can be modeled by the following K11 clauses,

line_display([display{3}IR], E, _} :-
wait(s) |
line_display{R, E, S5).
alternatively.
line_display{k, E, 5) :-
E = [photons{S}|E1],
line_dieplay{H, E1, 5).

The device is always radiating photens nwssages descnibing the string displayed to the ¢ther (via
the stream E in the prograin). The displayed string can be changed by recelving & request display
fromn the host (via the stream B) with as argument heing o new string.

A& character input devies can be modeled by the following KL clavse.

char_input{0, [stroke(C)|K]) :-
o= [CiD1],
char_input(01, K).

Talike in the ease of cutpul deviees, (he commmnication stream (0 in this case) Hows from the
device 1o the host. The device sunply sends all the characters typed in W ils oalput stream.
Buffering is imphicitly effected by the outpul stream.

An explicitly buffered character inpul deviee can be modeled by the following KLL clauses.

char_input(R, [streke{C)|K], B, T}
T = [CIT1],
char_inputiR, K, B, T1].
char_input([get(X) IR}, K, [CIB], T) :-
=4,
char_input{R, K, B, T}.

In this wodel dicection of the stream s from the host to the deviee, Characters typed in are
buffered in this process, using the thied and the fourth arguments as A difference list representing
the buffer. They are sent to the host on get request by wmfying the argument of the partially
mstanbiated reguest essage,

Amang the above Lwo models for mput devices, the PIMOS employs the latter, mainly because
devices for input. outpat and hoth can all be handled uniforimly. The request strean fron Uhe host
to the device is called the devser controf stream.

3.2 Device Control Scheme
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3.2.1 Completion Status

All the 170 conmmand mwessnges sent to a device contrel stream have an arguinent to which the
devier process nnifies a value indicating whether {he command was nermally compleled or not. This
argurent is called the compietion status of the commiand. Synchronization with the completion of
a command can also he possible by waiting instantiation of this arguoen

3.2.2  Inkerrapi

With cnly the control stremun, there s no way 1o send infornation actively from the devier process
to the lost. Besidles the control streans, a reverse direclion commmmnication path called the allewfion
fine a prowided. The attention hine s actually o shared varable among the hasl presesss and the
deviee. The deviee iy instantiate it when asynehronous copmumnicition to the host is required

3.2 Command Abortion

Sometimes, caneellation of conunands already =ent to the control stresun is desired. L the FIMOS.
all the 170 deviees have an additional communication path from the host o the deviee, called the
aboriion five, which is actually o shared varable among the host proeess and the deviee When the
host snstantintes this variable. the deviee ahorts the execution of the command woder execution
and =hips any snbsequent commands in the deviee control stream until a resel message appears in
the stream. The rompletion status of the ahorted and skipped commands will beconw aborfed.

A resrt measage has the following argiuments.

Abort: New ahort line
Attention: New atlention hore
Status: Completion status of the woscd conmanl
Alter the pesel (IessAEs 15 rereived. _-‘.uhsr-qur*'nl conmmands are prnn-':-'m"t‘l normally usug the

pew abort and attention lies specilisd in the message.

3.3 Lower Level Implementation

In the current implementation on the Mult-PSI version 2, the above-described conmmnication
protorol (based upon the wedel of phy=ical devices s KL processes) is almost lathiolly realized
by Lhe 1/ O frunt-end processars. The KL language tnplementation iz ot awure of the existence of
such specialized front-end processors: the fromt-end and the host communicate to each other using
the same protorols nsed in the communieation between twi processors of the host. In this scheme,
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the message handling mechanism for KL language implementation nst he implemented also on
the front-end processor. The merit of the scheme is that it makes the langusge implementation
gimpler, which was quite smportant in this prototype mplementation

In other implementations in the future, realizing lower levels on Ahe host machine and naking
10 processor simpler iiay hecoms advantageous, In that case, a lower level model of devices with
rlean sernantics will be required.

3.4 Logical Devices

Logieal deviees are provided by the processes called desece deioers of the PIMOS. A higher level
abortion moechaniam which allows retrying of onee ahorted commands is provided here,

The device driver 1= a kind of filier. Filters are processes thal receive nwssages from 105 mput
streani, process them somehow depending on the nature of the lilter, and send the processed
IR T P e il shreaamn.

The device driver remembers aborted /() commands. They can be sent again to the physical
deviee by s resend connmand, Alernatively, Lhat memory can be eleared by s canee! command.
This decision van be delayed aebitearily tong, even uotil after another abortion. Thes, nultiple
sich memories for mulriple groups of aborted commands are required. The resel message in this
level has an additional argument (2 to which the sdentifier of the innpediately preceding aborted
comtsnd group s celurned. Thes sbentidier s used o resend o caweed commands tooadentify an
aborted command group.

This feature is quite useful in programs where two or more tasks share one device, For example,
programs running under a conunand interpreter shell ofien share a display window with the shell
itaelf for standard inpot foutpot. When such a program is suspended by an interruption, there
may he multiple 1[0 requestz already sent o the window logical deviee bl not processed yet. In
sueh @ case, Lhe shell aberis Uhe processing (throngh the aborton hioe) and sends a resef niessages
to Lhe window device doiver, and then uses the window normally for ks own porpose. All the
1A0O pequests of the suspended program are also suspended and remenibered e the deviee driver
preeess rather than Lemp discarded, When the suspended program s to proceed again, sending
A resend nmessage to the deviee driver wilb continue the Processing of the suspﬂnded lI.I'D requests
When it is to be killed, 0 cancel message is senl instead.

3.5 Buffering

The 1/0 commands can be desigied to send one command for each character or sinilar small units,
which may be convenient for most application programs. Applying Lhat fine-grained protocol to
all the communication channels e systemn, however, the commmication overhead may hecome
problematic. Where there @& a considerable per-message overhead for communication. for example,
w conumunication hetween the host machine and ihe 1/ devices, one message should bring as
mmch data as possible, as far as communication delay will not becone a problen, to attamn higher
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throughput To realize this without chauging the end-user inlerface. the well-known technigue of
hafTering is widely used in conventional operating systems. Sumply by buffering n characters, the
per-nwssage communieation overhead can be reduced to Lin.

The PIMOS provides the luffering mechamsn in the process called 170 wtility filter, which is
a filter placed betwesn the device driver and the user progran.'” Thus, the command protocol of
this buffer is the only ane sl casual users are coneerned. Bufferng can he made guite efficient
nsing updatahle random access structures {in this case, updniable character strings).

The size of the boffer is a parameter of the sysiem which should be determined depending on
il hard ware parameters. Iy addition to the buffering featare, this filter aiso provides parsing and
wnparsing features for operalor precedence graninars,

4 MANAGEMENT OF PROGRAMS

I the KLI language level, stoms do not have any association with their name strings nor any
other properties such as executable codes. They are merely sdenlifiers oo ats original meaning. It
v the PIMOS that associates atoms and their nanw strings or any other corresponding properties.
“This seetion describes the databases the PIMOS provides for storing such information and how
ey are used

4.1 Atom Name Database

Atoms and their names (character strings) are associated by the afom name datubase provided by
the PIMOS This database is accessed when such an association is required: for example, on Prolog-
like read or write operations. The database is impleriented as a KLI process, which msintains
two hash tabies: One for mapping names o atons and the other for the reverse, These two tables
are always kept consistent . Nash tables can be quite cllicieatly wnplemented using the rundomly
acressible and updatable array structures described in 2510

If this single database i used by all the programs running under the PTMOS each time they
need the information. the process realimmg the datahase can be a performance bottleneck of the
wvstenn. Fortunately, the atom name duatabase is monotonic: new atom/name pairs may be ieleledl
1o the database but thers s ne deletion nor update. Thus eaching of the atom name database is
Hm e FALY.

A cache database 1« created as an cipty database. Wihen a guery 15 made to a cache, the query
i« sent further 1o the ceniral atom name database (or another cache database} and the answer
i« reowembered in the cache. Amy subsequent querics wade on the same atom can be answered
without accessing the contral database. No other synchronization is Eeguiresd

Note that the assoriation of atoms and their names are provided solely by the software, rather
than the language implementation. Thus, the ston/wame association provided by the PIMOS is
merely the standerd and not the only possible one. Users can use their own dutabase for specific
appliestions 1o also pessible to ereate unigque atons not associated with any names, if ouly
sl nbedy 18 of imterest,

4.2 Module Database

v deseribied in 261 a block of abject code for KLL prograsus is handled as a data object of type
wredule . The modube database provided by the PIMOS associates module pamwes {atoms rather
oo s strings, actually) with the corrsponding wodule data ohjects

Caching the module database s not as casy as that of the aton name datahase, becanse nwodules
iy be updated . Nonedeterministic parallelism makes keeping of consistency difficult. Fortunately,
access Trequency is considered to be much lower in this case. Thus. the PIMOS currently does not
prowide any caching mechanisin lor the medule database

A& mwdule whicl is uot defined et can alao be registered do the mudule database. Such a
winlule s represented by an uninstantiated variable. When a guery to obtain such a n winle s
wiade. that variahle is returned  Accesses to such a module will be simply suspended, as deseribed
ill ".’.ﬁ. | .

It P fyere are ather Blbers in berween Lhe device driver and the |70 utilicy Hlier, whch will be explainesd below,
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Note that the association of modules and names provided by the module database of the PIM-
0% iz merely & sfandaod also and pot the only one, as in the case of atom/name association. When,
for example. a Lhigher level language system is to be built upon the PIMOS, it may or may not use
Lhe staudard association,

When the nomber of nsers coneurrently using the PIMOS increases, the module database may
hecome a performanes bottleneck. In such a case, providing a private module database for each
user may be advantageous. Comrooly used modoles, such as those provided by the PIMOS,
should be stored iu o connnon database which does not allow any update, to enable caching 1n
personal modale databases. The look-up mechanism will be sinilar to the package system provided
by Common Lisp [1s].

4.3 Linking Modules

There are two types of inkage herween modules

The basic lnkage mechanisin i fired linkage provided by the language system. When linkage
is pade Lhis wae, a0 module containing a invoeation of a predicate in another module has a pointer
to the invoked module object.’™ This i= the most etficient mechanisni provided for invacation of a
predicate i a toreign module.

A drawback of this efficiency 15 that wmodules cannot be updated independently. For example,
wien a module A calls another module B, updating the module B o 87 will not miake the module
4 call the vew module 7. The newly created module 87 i merely replacing B in the module
database, wihont changing already existing pointers to the nodule 8 elsewhere Inosuch cases,
the scdule A4 st e linked again with 87,

Lu the woee flexible linkoge mechanism implemented in KL1 software, modules are not divectly
referenced but designated by their somes. Lach time an invocation s made usmy this linkage
scheme, a guery Lo the module database 15 made. When this soft lnkage s used | each module can
b updated independentlv. Efficiency drawhack, of course, 15 not small.

Fixed hinkage 15 normally wsed. Name linkage is used in cases wlere programs are in anyway
invoked by their names, For example, the command interpreter shell uses this on mvoking programs
that run under it Name linkage may be profitable also in the progeam development phase, where
linkage efficicns v may be more important than execution efficiency.

5 RESOURCE TREE

Controlling conputational resource is the most important role of an operating system. Using the
shoen feature, consumption of basic resources such as execution time can be controlled. There arc,
however, other resources, such as /O deviees, which are not rontrolled by the language primitives
and shoald be contralled by the operating system.

Thiz sertion deseribes how management of such resourees s realized in the PIMOS. The most
crucial part of the resonree managenent is i releasing resourecs allocated during some computation
on abortiom of that computanion.

5.1 HResources

The shoen featnre provided by the KLE language is capable of controlling basic resources such as
execution tvime The kinds of resources controlied by the shien featore is called language-defined
pesources. U e other hand, other resources such as 1/0 devices cannot be controlled only by
the shaen featare, Such resources are called OS-defined resources,

5.2 Tasks

Tasks are units of resource managemwnt i the PIMOS. Tasks are a shoen specially recognized as
a task by the PIMOS,

U There can be wiany copies of cor moduls on different processors, bt they all are logically eguivmben .
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As the shoen fratire is provided by the lauguage. shiens can be arbitrarily created at any time
hy any program. Tasks on the other hand. can only be ereated by asking the PIMOS, because it
is the only way a shoen can be recognized as a task by the PIMOS.

I'he control and report streams of a usual shden are directly connected to 1ts crealor. while
those of a task are ronnected to a PIMOS process corresponding to the task, called fash handler.
The creator of the 1ask can only indirectly control the task and receive reporis of the task through
streams connecked Lo the fask handler process

5.3 Resource Loop

Wlhen a task is aborted, all the OS-defined resourees allocated o the task are freed. Ths is
casential to allow abortion of Lasks salely withont disturbing subsequent processing.

Ta renhize this, all the O8-defined resources allocated to the task must be remembered some
Low, All necesses 1o OS-defined resourees from user programs are made through a stream that
i= comupectad to oo process in the PLMOS. called device handler. The device handler process is a
filter, throngh which various requesis are sent to the deviee driver. This handler processes can
thins control users” accesses to the OS-resources.,

Al phie OSegdefined resourees are associated with another PIMOS process called device montar.
The mionitor provesses for resources allocated o a task are connected by a stream in @ loop stracture
calied resouree fogp ** The monitor process and the handler process have communication streans
i both ways. Resources allocated in a task can be released o its termination by sending a message
notifving the termination via the resource loop to the monitors. and then to each rorresponding
handlers Handlers will close their output stremms when when the message is received . When a
resonires i released mdividually {when a file is ¢ losed. for example), thal resonrce can be elimimnated
from the loop using the well-known short-cireurt technigue [L0]. Queries on the resonrce alloration
slatus can also be processed along the same path

A nwmitor and the corcesponding bandler are made as distinet processes in Lhe current imple-
mentation for keeping the modularity of the sy=ten: all the monitors are wdentical but the handlers
depemd on the deviee they handle. It may be possible, however. to nerge these Lwo processes,

5.4 Resource Tree

[ the PIMOS, tasks are also considered 1o e OS-defined resources. A task handler iz 8 kind of
d?'l'l'“" J]EI.JL:"!‘I.' whn_q.a. r:]rwﬁl}nﬂ{[]ng r!r*-r[f‘n“ |_'L.:l||ir|+-|_-|_5, Lir |-|f\. a Sl‘lbﬂ'n. -]'ﬁsk.s are diﬂﬂrrilﬂ. fI'D]Tl UT.I"I!“T
deviees in that they may bave children resanrees,

A Jeop structure similar g0 the messuree Joop of PIMOY can alsn be found in the Logix operating system {10]
for controlling user programs. In vase of Logis. however, the unit of comirol is each goad to be reduced. as there is
w0 mdion ol goal growps such as shoen in the language level,
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As children resources of o task can he tasks again. all the device monitors and handlers form a
tree of resources. Ulus is called the resource free. All the resourer managetuent of the PIMOS 15
through this resouros Lree.

6 COMMUNICATION MECHANISM

As there 15 only one variable binding environmeut. the operating svsteis PIMOS and user prograns
can share variahles. Communication hetwesn the PIMOS and user programs i5 made throwgh such
shared variables. The user program instantiates a shared variabie 1o a data structare for making
s request to the PIMOS. and the PIMOS imstantiaies certain elements of the strueture o relurn
values Lo the user progranm,

This section describes how sueh conummnication is made, how the rommunication patl s -
tially established. and how the comuanication is made in a fail-zafe way 1o prolect the PIMO=
from aceidental or intentional erroes of application programs.

6.1 Basic Communication Mechanism

The communication mechanisin between the PIMOS and the user prograes is based on the scheuwe
Pn:pnﬁpd in ['I ﬂ.'
The structure of the tap lovel of the PIMOS may be as follows.

beot -
pimos(3),
executelnser(3), ...).

The variable § is shared helween the user progran: and the PIMOS and used as a sleam for
sommunieation betwesn the user progeam aud the PIMOS,

For simplicity, we assuime here that the PIMOS provides only one deviee: A character inpul
deviee. 1n this rase. the clause s predicate of PIMOS for handling one character ipUL reguesis
may be defined as follows.

pimos{ [get{C1I5]) :-
read _keyboard(C1),
cC =41,
pimos(S).

llere. the read keyboard predicate iz assunwd to de the physical input procedure and unifies the
typed-in character with ite argument. When i iessage get ix received, physical input operalion
is performed aml the typed-in character is unified with the argument of the get message.

In the above program, the user program may be as follows

user(8) :-
5 = [get(C)I51],
usari(C),
userl(0’a) :- .
eserl(0'bl} - ...

The uger program sends a partially defined get requesh nwessige 1o the operating systemn, and then
determines ils lurther processing depending upon the result. The predicate usarl implicitly waiis
for instantiation of the variabie w which the operating system is returning a value by unificaton.

L order of the comumands sent to one message stream is kept in the stream, for 1t 1 determined
by the data structure, wit by the order of aperation.” This guarantees, for example. two messages
to e displaved are displayed i the desired arder,

HWhen mergers are jnsevted, the ceder of messages from originally different streans Letampes MoT-det e ic,
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Accesses to databases provided by the PIMOS are also made in the sane manner. In this ease,
the stream obtained by request the PIMOS is an access path to a database, in which commands
are ordered.”"

6.2 Establishing Conununication Paths

For conmmunication vsing the above-deseribed method, the part of the user program which requires
some service of the PIMOS must have a stream connected 1o the PIMOS (or one that merges into
it} As there 15 no notion of global vanable in the language, such a stream mwst be passed all
!]‘lruugh the chain of invocations from the top level to where actual communication is quuirpd.
This overhead may be too laree if conununication is needed only in rare exceptional cases: only in
caze of rror reporis, for example.

The PIMOS provides an alternative way of establishing o commmunication path to the PIMOS.
This ran be done by deliberately generating an exception using the mose primitive [see section
LA My spesifving an appropriate fag o this this meese . the exeeption report indicating the
pegquest goes directhy 1o the report steeam of the shoen used for realizing 4 task, The repon stream
of a task shoen 12 momitored hy the rask handier process of the PIMOS. and there, the request is
processed. Thus, shaoens mouser prograne can oesl il]’hlLrH.r_‘_. murnber of levels wilhowt |:3\5m5 iLhe
dirert .a.x'a'ﬂahi]if}' of the services of the PIMOS,

It 15 also possible for & user progran to create a shoen specifving a tag corresponding to some
requests to the PIMOS This way, all or pari of the requests to the PIMOS can be caught by
the program monitoring the report stream of such a shoen, If the monitor program emulates the
PIMOS, the program in the shoen runs exactly the same as wlen if is dieectly run under the
PIMOS. This s the way virtual machine operating systemes are noplemented uncer the PIMOS,

There are three lavers of communication streams between user programs and the PIMOS,

Dheviee Level: This s the bowest level where conerete 170 commpuanel messapes are senl 2l

Device R.ﬂqm‘&ﬁ-l Loewvel: This s che leve] where conunand PSS toobtain deviee level stroams
are sgent. Tor -anmp]-ﬂ, a file request strean acoepls messages a.ulcing Lo apeny files and return
the device level stream connected to the file.

General R.(-qul:eﬁt Lowvel: This s the Lo level where command tiessges Lo ahitain device redesl
alreams are sont.

Whal b dipeetly obtained by maeseng an exeoplion 2 a general request streans All Lhe seeviees
provided by the PFIMOS are available through this peneral request stream.

6.3 Protection Problems

With the simple mechanism described above, however, intentional or accidental error in user pro-
gricne miay cause a system failure, This section describes the problems in shared variable comm-
nication between vser programs and the operating system,

.31 Multiple Writer Preobilem

Az far as the user program 18 properly weilten as deseribed above, there will be po problems. IC
however, an erroneous user program such a= follows is executed, a system faillure may take place.

wzer(5) :=
5 = [get(C)IS1],
useri(ch,
user1(c) :-
£ = 0'a,

H\When two o ore arcess paths are created. synchronization of twa pocess paths should be made by the com-
pletiom staces argument. of comeomand messages.

A gome devices may also aceept commands which creates a4 new device, For example, a il direciory devies can
create o file deviee,
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Here. the nser programs unifies the variable €. 1f this happens before the unification “C = €17 in the
PIMOS. (he anification in the PIMOS may [ail. Even if it were possible to check that the variahle
C ix uninstantiated immedaiely preceding the unitication®. the unification in the user program
can he cxeeutbed in between the check and the unification in a parailel system.

The Parlog Programming System (PPS) provides a simple solution to this problens 7], The
problew arises because the value-returning unification is executed i the PIMOS, The PPS solution
is to make the unification done in o metacall (a mechanism similar to shoen). Using this scheme,
the code far the PIMOS will be as shown below.

pimes{[get(C)|S]) :-
read_keyboard{C1),
wvali_and_unify(Ci, C},
pimos(S).

wait_and_unify{C1l, C} :- wait{Ci) |
executel(C = C1, ...},

Waiting the value of C1 is essential because utherwise Lhe order of the mnvocation of the predicate
read keyboard snd the execution of the shoen will not be defined in the language. and thus, without
waiting for the value of €1, the unification in the shoen can be executed before the invoeation of the
read keyboard predicate. This solution is simple but requires frequent metarall invoration. one
metacall per one commumeation from the operating system o the neer is regquired. The metacall
mechanisn rannot be optimized casily by compilation and other optimization efforts. Thus, this
salutiot may be reasonable for imterpretive implementations of the language where the metacall
mwchanisn is relatively inexpensive. but may not be the best when the reduction mechanisne is
highly optimized.

The problem may also be solved by introducing the atemic commatment mechanism provided
by Coneurrent Prolog [15]. Implementation with atomic commitment spechanmsm. however. may be
nest as effivient as one without it. The problem is that the cost of atomic conmutment mechanisi
i not only in the communicalion with the aperating svstem but also u every goal realwetion i Lhe
avstim where such mechani=m s uot required.

6.4.2 Forsaken Reader Problem

Aucther problem appears when the user program fails 1o instantiate a shared variable inspected
by the PIMOS, For example, consider the following clause

wser{s) - 5 = [_|581],

As the message (o the PIMOS is not instantisted. she PIMOS process will wait for o te be
instantiated forever. When the message has an argument. which specifies more details of the request
ia character code Lo be output, for example), the same problem ray oceur i Lhe argument level,
too, A similar siluation alo arises when the execution of the user program is aborted nsing the
shiwen mechaniems described above, even i e user program is properly writlew,

This problem cannot he solved using the shoen mechanisin nor the atomie conmmtiomwnt mech-
anisn.

6.4 Protection Filter

Tor solve tiwe abene-described problems, a Blicring process called the profection filter is sertel i
ihe strean s between user programe and the PIMOS. This filier i cxcented o the user shéen rather
than i the PIMOS.

The user sends ressages to the protection filter stream, not directly to the PIMOS The pro-
tection filter translates the user messages into a different form which does not cause failure i the
PIMOS, and sends il Lo the PTMOS

The eonerete Tunetions of the protection Alter are as follows.

2The K11 language does not provide & builtsin predicate for vanable chech, such as ear in Prolug. Swch a
predivate can only gearanter that its argiment was not istantiated sometinue before m parallel implrmentations,
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# 1t waits for instantiation of variables which the nser should instantiate. The nessage 1s sent
to the PIMOS only after that, Thus, when a message 15 sent to the PIMOS, the values of
tivese variables are guaranteed be instantiated. For structures, it wails for instantiation of
only certain elements of it which are required to be instantiated, allowing partially defined
INEsEAERS 0 [1ARS through the filter.

» 11 replaces vanables which the PIMOS should justantiate with new unhound variables. 1t
also initiates processes each of which waits for instantiation of one of the newly created van-
ables. and then unifies the corresponding oniginal variable with 1. Thus, ali value-returning
unifications in the PIMOS will always be with unbound variables, which will never fail

The protection Glter for the alove example will be as follows,

filter{[get(C)is], 0S8) :-
0= = [get{C1)ios1],
wait_amd unify(C1, C),
filter(sS, 0OS1).
wait_and_unify(05V, UserV) :-
wait(0SV) |
Uger¥ = QSV.

The filter process will not proceed wotil the wessage becomes instantiated to the form get (C1h:
the wait_and unify predicate unifies the variable supplied by the user program (UserV) with the
variable to which the operating system returns the result (05%) only after its nstantiation.

The key point here is that the protection filter process is in the shien of the user and thus the
unification “UserV = 03¢ is executed in the yser chaen. Its failure can be safely handled by the
shoen mechanisn.

The top level of the PIMOS with this protection filter mechanism will be as follows.

boot -
pimos{03),
executel [uzer(8), filter(5,08)), ...).

As the protection filter s inserted automatically, the user program may not be aware of Lhe
existenee of such a filter, as far as it is properly u=ing the communication strean.

Mot that, the two ocourrences of the variable 5 in the above program must be wnificd prior to
the invocation of the shoen. Otherwise, this unification may fail. The proper unilication order is
guaranteed by the rules described in 2,25,

6.5 Protocol Campiler

A disadvantage of the protection filter scheme is that the lilwer must kuow all the details of the
message protocol. 16 may be common in conventional operating systems that the interfacing
cole knows all the details of the communication protocol. It may. bowever, mmke the syston
maintenance cost considerably higher because the code of Lhe protectin filters for vanous devices
may be lengthy, taking a large parl of the PIMOS which is relatively compaet,

Fortunately. given the commumeation protocol of the FIMOS and the user programs, the code
for the protection filters can be generated antonatically. This gencrator program is called the
protocel compiler. Using the protocol compiler. s compact specification of the communication
protocal with fair readability can be nsed as ihe =ource code of the PIMOS. It is also possible 1o
generale the devics handler code using the same tochnique ™

6.6 Summary of Communication

The communication path from a user program 1o a physical device is summarized in the figure
B Allbough 170 nessages goes through several filters as shown in the figure, 1/O requests are
tuffered at the utility filter which comes the first, keeping the commmnication cosl to a reasonable
level. Also note that all the filiers can be executel in 2 pipelined mauner.

0 the version of the PIMOS available when this decwent is being prepared. all the protection v and deviee
handler codes are hand-written yel,
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Figure #: Comnmpication Fillers

6.7 Allocation of Filters

The current version of the PIMOS lets the user determine all the job allocation. All the filters
in the commmmication path from the end user to the device driver are allocated imitially to the
processor where the user program first requested for the communication path This makes the
communieation rost mininwin as far as the user program stays in the same processor, §he user
program can make filters migrate to other processors by sending a reallocation message to Lhe
stream afterwards. Filters will not migrate automatically following the user process, for it ay not
be desirable, The user progrien e move among processors often but actual [/0 may he required
omly after many migrations, in which #ase only cne migration of filters before massive LAY reguests
i5 desirable,

Allocation problem of the processes of the PIMOS should be solved somediy with the general
load balancing prolilem, which s one of the most importanl research topic in the future.

7 DEVELOPMENT ENVIRONMENT

This section describes the progeanming environment provided for the development of IPIMOS.
Some of the utilities described here may be also usclul in development of application programs.

7.1 PDSS and Micro-PTMOS

Prior to the develapment of the KL1 language implementations on parallel mference machines.
an implementalion of the language for conventional computers was made m the langunge C In
addition to the language nuplementation. s primitive operating system is akso boilt upon it. The
system 1= called the PIMOS Developinent Support Syatem, or PSS in short, and the operating
systern is called the Micro-PIMOS [13]. The primary objective of the development of the PSS was
to provide a program developrment environment for the KL1 language that enables the development
of the PIMOS in parallel with the development of the parallel inference machines.

The PDSS is a peeudio-parallel implementation of the language. Although real parallelism i
not in the implementation, all otler essential features of the KLL language are provided by the
systemn. The PDSS implementation thus also played a role of a prototype for wnplenrntations on
the parallel mference sy=tems. Many of the compilation and other fundamental implementation
ideas developed for the k1. languasge were verified through this unplementation.
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The KL] extensions to the FGHU lnguage were actnally vtilized in the Micro-PIMOS. For
example, the shoen feature and the priority management feature were extensively used in the
Micro-PIMOS and have been proved to he effective. The sanie applies to the various optimizations
in the implementarion level.

The PDSS svstem peovides varions debugging features including the following.

» Reduction by reduction stepwise execution with symbolic frace output. Selective tracing
somewhat similar to Projog delbuggers including the spyeng feature 1s also provided

s Deadlock detection feature during program execution based upon mmitiple reference man-
agement and during garhage collection. A goal is recognized as deadlocked when it 1s found
to be waiting for a variable to whicli no otlier goals have access paths

o Fxecution 'I:'r"-"ﬁ-]-illl-’; feature couns mny pumbuers ol invorations of FJF:"(HL'R[-!"!S Useful for Program
funing,

e Sialic program checkers suck as void variable detection and predicate dependency analysiz.

The system has been revised many tines on need adding new features during the development of
the PIMOS. These debugging features acrolerated the development considerably.

As the parallelizm. the only crucial difference between the PDSS and parallel implementations,
is implicit on prineiple in Ghe KLL langnage, transporting of the PIMOS from PDSS to the Multi-
P51 insplementation was extremely easy. As was expected. almost no software synchronization
problent was found. This was the greatest menit of wreiting the system in a logic-hased concursent
programning b guage

7.2 KL1 Compiler

The campiler for the KL language was also weitten firat for the PDSS. As the PDSS implementa-
tion and mplementations for real parallel ioachies are hoth based on the KLI-B abstract machine
[11]. basically the same compiler could he used for both of thens. For parallel implementations,
several featires were added for enabling parallel execution, but it was quile easy.

7.3 Pseudo Multi-PSI

The Pseudo Mult-FS1is an implementaton of the KL language on single-processor PSI-IL mia-
chines [14]. The PSI-I machine is a logic programming workstation, developed earlier in the FGUS
project, which s alse used as the front-end processor for the Multi-FST and probably for other par-
allel inference systems. The processor of the PSI-TT s also used as the processors of the Multi-PS1
mschine

A peeudao-parallel system for the KL language is implemented on the PSEI by storing two
distinet set of microcodes i the microprogram storage: One required for KL1 and the other for
KLU, which 1= the machine langnage for a sequential logic programming language ESP [1], originaliy
used in the PST machine * As the same hardware and the firmware are uaed, the pseudo Multi-Ps1
attaing almest the same performance as tie M ulti-PSI system consisting of only one processor.

Oue processer of the Multi-PS] s enwdated by one process on the prendn version. Pseudo
processars are switched when given numbeer of reductions are completed. The scheduler can specify
arbiteary scheduling, including random ones. An advantage of pseudo-parallel implementations Lo
real parallel implementations is that the same execution sequence is reproducible. Even af the
scheduling is random., it is only pseudo-random; giving the same secd, the same random mimher
sequence can he obtained. This makes bug locating much easier. Symbolie tracing feature of the
PSS was also made available on the psendo and real Multi-PSI.

The PIMOS was first trausported frona the PDSS to this Pseudo Multi-PSI and then to the rval
Multi-PSL As the PSIL hardware is nch mwore compact and inexpensive than the Multi-PS1
debugging of many parts of the PIMOS sl more importantly, debugging of the firmware conld
be carried out in parallel. The smne woulid apply to future improvements of the PIMOS and the
language implementation, and also to development of application programs.

i the artual implementation, two versioms o the micromodes are overlaved due Lo lack ol slorage capacity.
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8 CONCLUSION AND FUTURE RESEARCH PLANS

The developent of the PIMOS showed wot only the feasibiliy but also advantages of using
concurrent logic programming languages as the hasis of operating systems.

As we already experieneed during the development of the SIMPOS {the operating system for
the logic programming workstation PST) o a carlier stage of the project, there ate various merils
i using a symbolic programming language for description of an cperating system [3]. The same
[MET1E Wers L"‘I't.‘-"['l-'l'l! “L.’.” l."I”Iil'IE 1_|:"_. 'il'.‘"ﬂ."ll.'ll."l'il""'llj thie FFIH.,‘I{J:;-} 'I-hl:'- EQUrce p|'{)grﬂﬂ15 l'Ull]l:I I'rF‘
written 1 a gquite teadable fornn An miteractive sy ibedic debugger was made available from the
sarliest stage of the developmeni . providing trace output guite casily connpared with the souree
program; withoul this symbolic trace. the development would have heen much more toilsome.

The most notable ohservation made during the development of the PIMOS was that almost
no synehronization problem was found in the debugging phase, Using conventional procedural
Iu,uguagr\s,_ datz-Jow s_'.']l._'h]'o|_1|:.1al'|r_1|j st e transtormed inte control-Mow H}'nchmnization h}'
the programmers. which is the largest souree of bugs in develapment of operating systems. Using
a concurrent logic programming language. the system designers have to he aware omly of the flow
of data and almost nothing of svnchronization, as data-fow svnchironization is implicit in the
janguage. This was the largest merit of usiung the LI language

There are several problems which are yet to be selved in luturs research

One of the most important problems left unsolved is baluncing romputational lpad of processors,
Tu the current version of the PIMOS, load halaneing is specified by the user programs and the PIM-
0% merely faithfully obeys that {see section 6.7). A semi-automatic Joad halancing scheme was
proposed [4] and the basic hardware mechanism required for e scheme was provided [19], but it
is ot utilized in the current version of the PIMOS and its effectiveness has vet to be evaluated.

Another problem left is in the memory management. The garbage collection mechanism and
the guantitative memery management scheme proposed m this paper dowot necessarily go together
well, A new tuodel of memery conswmption may be required here.

In the current version of the PIMOS an the Multi-PS1machine, the front-end processor provides
a high-level T/O interface, Lhis scheme gives rlean semiantics to the physical IO, bot it may b
iaying too much burden ou the back of the front-end processor. A decent model of lJower-evel /0
spetations. which also can be nnplemented more elliciently, = desirable.

Tuning of varions patameters of the PIMOS. conununication buffer aize or resouree inanagrment
aceuracy. for example, are not eartied wee ver. Such parameters should be determined through
future experienees witl the system and parallel application sofbware.
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