ICOT Technical Report: TR-482

TR-442
Unfolding Rules tor GHC Programs
by

K. Furukawa, A Okumura &
M. Murakami

June, 989

{1989 1COT

Mira Kokuszal Bidg. 21F (03 456-3191~5
I' D I 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Mew Generation Computing, 6 (1988) 143-157
OHMSHA, LTD. and Springer-Verlag

i) OHMSHA, LTD 1988

Unfolding Rules for GHC Programs

Koichi FURUKAWA, Akira OKUMURA
and Masaki MURAKAMI

ICOT Research Cenier.

Institete for New Generation Compuier Techrolog)y,
I-4-28 Mita, Minato-ku, Tokyoe 108 Japan.

Received 17 March 1955

Abstract This paper presents a set of rules for the transformation of
GMC (Guarded Horn Clauses) programs based on unfolding. The propoesed
set of rules, called UR-set, is shown o preserve freedom from deadlock and
to preserve the set of solutions to be derived. UR-set is expected 1o give a
basis far various program transformations, especially partial evaluation of
GHC programs.

Keywords: GHC, Unfold /fold Transformation, Partial Evaluation

§1 Introduction
It is expected that fruitiul results will follow program transformation

research in parallel logic languages such as GHC,® PARLOG? and Concurrent
Prolog.* Several preliminary results have been reported, including the applica-
tion of partial evaluarion to meta-programs in FCP (Flat Concurrent Prolog) to
obtain a realistic operating system® and program transformation to fuse two
concurrent processes Lo increase efficiency.”

However, there are two problems caused by the guard/commilt mecha-
nism in the program transformation of parallel logic languages: synchronization
and nondeterminacy. In parallel logic languages, causality relations exist
between unifications due to the guard/commit mechanism. Therefore, careful
handling is necessary for transformation, such as changing not only body parts
but also guard patrs of original programs. For example, let us consider the
following GHC program:

(CO) pliA|Inl. O) = true | g(A, In, O)
(C1) g{A, In, O} — true | O=[A|Out], r{In, Out)
(C2) w[Bllnl, O) - true | O=[B]

K. Furukawa, A. Okomura and M. Murakami

By unfolding the clause, (C1), at the goal, r{In, Out), the following clause is
obtained. (The definition of unfolding used in this note is given in the next
section.)

(C1)y q(A, [BlInl, O) - true |
O=[AlOut], Out=[BL.

The problem is thal the behavior of program {(C0), (C1), (C2)} differs
from that of {(C0), (C1)'}. In the former program, the output variable, O, of p
can be instantiated just after the instantiation of the first element of p's first
argument, whereas in the latter case, it is delayed until both the first and the
second elements ol the same argument are instantiated. The delay of output
variable instantiation may cause a further problem. Let us add a clause

(C3) s([X|Xs], In} = true | In=[b[inl],
and consider the goal
(G) 7-pllalin], O), s(O, In).

Then, the second element of p's first argument cannot be instantiated before goal
s(0, In) 1s executed and In is instantiated to [blInl]. However, the instantiation
of p's second argument, O, is necessary for the goal, 5(03, In), to commit.
Therefore, goal (G) will cause a deadlock when it is executed under program
L), (C1Y, (C3)h

Nondeterminacy is another source of difficulties in unfolding. A careless
application of unfolding may limit some goals 1o commit to particular clauses
even if there are other alternatives, because determinacy cannot be judged by its
textual appearance during program transformation.

Thus, the unfolding based transformation of GHC programs needs much
consideration. We have been researching this topic, and have obtained a
plausible answer, UR-set. UR-set is a set of transformation rules from one GHC
program to another. Each rule preserves a single step of the transformation, and
multiple application derives further transformation. These transformations do
not change what solutions can be found nor freedom from deadlock of the
source program.

Section 2 introduces the rules of UR-set. Section 3 argues the correctness
of UR-set. Section 4 gives an example of transformation.

§2 UR-set

UR-set is a set of transformation rules for GHC programs. A program is
a sel of clauses, and UR-set provides a plausible transformation [rom one
program Lo another. Each rule mikes a single step ol the transformation, which
is based on replacing & clause of the source program by zero or more new
clauses. The new clauses are mainly derived by goal substitution of the source
clause by unfolding.

=

[ndolding Rules for GHO Programs

First, several terms which will be used to describe UR-set are defined.

Definition: unfolding
Consider clauses P and @) as

P Hp - Gp | Bp
Q Hq - Gqg | Bg

where Hp and Hy are atomic formulas which have all distinct variables for their
arguments, and each of Gp, Bp, Gaq, and Bg is a sequence of goals. If there is a
substitution, &, which makes Hq the same as a goal, A, in Bp, unfolding clause
P al goal A by clause Q is defined as to obtain a merged clause, K, which is

R : Hp :- Gp, Gq#é | Bp', Bg#
where Bp' is Bp without goal A

Definition
A clause for a given goal is

satisfied if its guard is already true without further argument instantia-
tions.
candidate if the goal is not sufficiently instantiated to judge whether the

guard is true or nol.
unsatisfiable if the guard is already known to be unsatisfiable.

Example

For a goal, p(1.A),

(p(X, Y) = X=1) is satisfied,
(p(X, Y) - Y=1]..) is candidate, and
(p(X, ¥) = X=2..) is unsatisfiable.

A goal 15 immediately executable if there is no candidate clause for that goal.

Definition: input related

A variable is input related if it is an input variable appearing in the head of a
clause or there exists a guard goal which contains both that variable and an
input related variable.

UR-set defined as a set of rules is divided into two groups: the first group
(Rule | and 2) handles immediately executable goals appearing in the body part,
and the second group (Rule 3 and 4) prepares for further unfolding, In UR-set
shown below, the differentiation of input and outpur variables is assumed.

UR-set is for GHC clauses whose head arguments are all distinct vari-
ables. It is easy o understand that the same effect as any double occurrences of
the same variahle or constant parterns in a head can be implemented hy its guard
poals instead. The clause so implemented 15 called the normal form of its
ariginal clause.

K. Furukawa, A, Okumura and M., Murakami

Example
(p(A, B, C) = A=1, B=C ! ..) is the normal form of

(p(l, X, X) — true |).
UR-set

Rule 1 Unification Execution/Elimination

An explicit unification (= /2) appearing in the guard or the body of a clause, C,
is symbolically executed within the body part; that is. a further instantiated
value substitutes corresponding variable occurrences within the body. If a
unification in the guard fails, the clause is eliminated. Furthermore, if neither
side of = includes any variables which also appear in any other literal of the
clause, the unification goal is eliminated after the substitution. Thus, a new
clause, C, is derived from the original C. A new program is derived by replacing
C of the original program by C".

Example
(p(X) - X=a | q(X))

is substituted by (p(X) = X=a | q(a)).
(p == true | X=a, q(X))

is substituted by (p - true | g(a)).

Rule 2 Unfolding at an Immediately Executable Gogl
Let a clause, C, be of the form:

A= Gl, G2,Gm | Al, A2, .., An

C is unfolded at an immediately executable body goal, Ai, by all 1ts satished
clauses, Cij (1=<j<1; | is the number of satisfied clauses). The resulting clause,
Dij, is obtained from the original clause, C. by replacing goal Al by the body
of Cij. D] is a guarded resolvent of C and Cij whose guard goals are the same
as C, because the guards of Cij must be true. Thus, a new program is derived by
replacing clause C of the original program by all of Dij.

Example
i{p = true | q, a(1), 1)]
15 substituted by

{p = true | g, b, ¢, 1),
{p = true | g, d, e, 1)}
where

a(X) - I|lboe
(a(X) - x*:-n ld e
(a(X) - X=2|Mg

Rule 3 Predicate Introduction and Folding

Unfolding Rules for GHC Programs

Let the clause, O, be defined as
P~ Gl G2, ., Gm | UL U2, | Up, N1, N2, ..., Ng

where Ui (0<1<Ip) are output unifications and Nj (0<]<q) others. Further-
more, let the intersection of a set of variables appearing in G1, G2, ..., Gm, Ul,
U2, .., Up and that appearing in N1, N2, ., Ng, be X1, X2, ..., Xr. Then, a new
clause, Cl, of newP 15 introduced as

newP(X1, X2, ., Xr) = true | NI, N2, ..., Nq.

Then, the sequence of Nj of C is falded by Cl and a transformed clause, C, is
obtained as

P - Gl, G2, .., Gm | Ul, U2, .., Up, newP(X1, X2, ..., Xr).

Thus, a new program is derived by replacing clause C of the original program
by CI and (. This rule is used to transform clauses into forms where Rule 4 can
be applied.

Example
(p(X, Y) = X>0 [Y=[X[Z], q(Z), 1)
is substituted by

Hp(X, Y) = X>0]| Y=[X|Z], newP(Z)),
(newP(X) = true | q(X), r)}.

Rule 4 Unfolding across Guard
Let a clause. C, be of the form:

C:A-GI1 G2 ..,Gm| AL A2, .., An.

It Rule 1 cannot be applied to C and no Ai is an output unification, C is
unfolded at each Ai simultaneously. Let Cij (1< j<mi; mi is the number of the
clauses) which is satisfied or candidate for Ai be of the form

Aij = HI1, H2, .., Hp | I1, 12, .., Iq.

Furthermore, let Dij be the result of unfolding C at a goal, Ai, by Cij and let
be the substitution used to derive Dij from C and Cij.

If there exists a guard goal, Hid, in Dij which is false or contains
variables of Ai but not input related variables of A, then discard the Dij.

A new program is derived by replacing clause C by all of Dij (1<i<n,
I=j=mi) which arc not discarded.

Example
(p(X) = true | g(X), (X))
is replaced by

{(p(X) = X>3 | g1, r(X)),

K. Furukawa, A. Okumura and M. Murakami

(p(X) = X=3| g2, r(X)),
(p(X) = X<2 | q(X), ri),
(p(X) == X=21 g(X), 12)}

where

{q(X) == X>3 | ql),
(q(X) - X=3 | q2),
(r(X) = X<2|rl),
(r(X) - X=2 | r2)).

§3 Informal Discussion of the Correctness of UR-set

A rule of transformation must provide some equivalence. The follwing
properties are expected between the original program, P, and a transformed
program, P, for any goal, G, in P.

(al) If G has a solution in P, it has the same solution in I
{a2) If G has a solution in I", it has the same solution in P.
(a3) If G can never lead to a deadlock in P, neithr can it in P".

The above properties do not allow for cases of deadlock, failure, or infinite
loops in the original program. However, we consider those programs as mis-
takes, and have not considered them. This section gives an informal discussion
showing that UR-set provides these properties.

Note that property (al) is related to soundness and is often called partial
correctness of the transformation. Also, properties (al) and (al) together are
related (o completeness and are called total correctness. (a3) is a special property
related 1o concurrent programming languages. These three points are discussed
separately. In the following discussion, arguments for Rule 3 are omitted
because it is obvious that it will keep the above properties.

3.1 Partial Correctness (al)

If commit operators are ignored, then every rule in UR-set is a kind of
unfold/fold rules of Prolog programs. Therefore, the same argument as [TS 84]
can be used to show its partial correctness except for the control issue.

There are three problems related to the control issue. The first problem is
that some of the nonterminating GHC programs, such as an operating system,
are still useful and cannot be exclude {rom the discussion. One possible way o
avoid the problem is to approximate every nolerminating program by an
appropriate terminating program just by adding a clause for termination. The
resulting program will terminate if its input is finite.

The second problem is that commit operators will reduce the solution
space by throwing uncommitted clauses away. It is necessary to show that any
transformed program, P, will not compute any solution which is not included
in the solution set of the original program, P. If guard conditions in P are

Unlalding Rules Tor GHC Programs

weaker than those in P, then I might compute a larger solution set than P.

Since Rules 1 and 2 do not change any guards, they will not weaken
guards. In Rule 4, an atlempt is made to form a new guard by combining the
guard of the original clause, C, with the guard of a clause, Cij, 1o be called from
some goal in the body of C. In some cases, the original guard may be combined
with a guard having a unification with no input reluted variables of C. If the
clause is committed, then the meaningless unification will compute solutions
other than those in the original program, P. However, since resulting clauses
containing meaningless unification are discarded, this problem does not arise.

The third problem is that some program which will cause deadlock may
be transformed to a terminating program. Since these programs are excluded
from this discussion, there are no problem.

3.2 Total Correctness (a2)

To prove the total correctness of the UR-set, it must be shown that the
solution space will not be shrunk by the transformation. There are three possible
causes of shrunk solution space:

(1) the guard conditions have been strengthened,
{2) scheduling nondeterminism has been lost, and
{3) commitment nondeterminism has been lost.

Since the usual unfold/fold rules ignoring the treatment of guards are
used, guard conditions in total are not logically changed. Therefore, the guard
conditions are not strengthened by the applications of UR-set,

Some considerations for the scheduling nondeterminism are required. In
the case of Rules | and 2, any ordering can be selected by applying Rules | and
2 1n a certain order, because unifications within a guard or body and immediate-
ly executable goals can be executed at any time independent of other goals’
status.

In the case of Rule 4, each new clause abtained, Dij, is a result of the
(guarded) resolution of the original clause, C, and a clause, Cij, 1o be called
from some body goal of €. To solve the guard of Dij, the first goal to be
executed after committing C in the original program, P, must be specified.
Therefore, it seems to lose scheduling nondeterminism. However, since the
application of Rule 4 unfolds at all the possible body goals of C, there are also
candidate clauses corresponding to specify other goals to be executed first.

Next, commitment nondeterminism is discussed. To avoid too early
commitment to some of the clauses for a nondeterministic goul, we excluded
those goals having “candidate” clauses from immediately executable goals.
Therefore, those goals arc unfolded by Rule 4. Since unfolding by Rule 4 does
nol perform any commitment, no nondeterminacy is lost.

K. Furukawa, A, Okumura and M. Murakami

3.3 Preserving Freedom from Deadlock

Preserving freedom from deadlock is the most critical problem, particu-
larly for concurrent languages like GHC. Mote that, the entire behavior of a
program is determined by conditions of such output unification, because only
output variables affect to other processes. Therefore, unless those conditions are
changed by the transformations, freedom from deadlock is preserved. The only
rule changing guard part is Rule 4. However, the clauses for which Rule 4 is
applicable are only those without output unifications. Therefore, no rule appli-
cation causes deadlock between the goal which calls the transformed clause and
other and-goals. Also, no rule produces any clauses the call to which will
deadlock if the original program, P, is deadlock-free.

One further comment is on the possihle interaction between nondeter-
minism and change of output unification conditions. Suppose that the unfolding
of an executable branch of & nondeterministic goal produces a new output
unification. Then, application of Rule 4 at another goal will change the guard
conditions for the output unification to be executed. However, the nondeter-
ministic goal is also unfolded at during the same application of Rule 4, and
there is another clause which will perform the output unification at some proper
time. Therefore, deadlock can be avoided in this situation.

§4 Brock-Ackerman Problem

This section presents an example of the application of the proposed set of
rules, called the Brock-Ackerman Problem." Consider the porgram below (i=
1. 2).

plI([Alln], Res) = true | Res=| A,
p2([A. B|_’, Res) - true | Res=[A, B].

dup([A|T], Res) (- true | Res=[A, A1

merge([A|X], Y, Z) = true | Z=[A|W], merge(Y, X, W).
merge(X, [AlY !, Z) = true | Z=| A|W |, merge(Y, X, W).
merge([], Y. Z) i~ true | Z—Y.

merge(X, [|, Z) = true | Z=X.

si{Ix, ly, Out) - true |
dup(Ix, Ox}, dup{ly, Oy), merge(Ox, Oy, Oz), pi{Oz, Out}).

ti(Iln, Ourt) := true | si(In, Mid, Our) plusli{Out, Mid).

The clause of p2 can be derived, if the clause of pl at pll(In, Out) is

Linfalding Rules for GHC Progrums

unfolded by the clause of pll. sl and s2 have the same set ol solutions.
Therefore, in this sense, that unfolding is correct. However, t1 and t2 has a
different set of solutions, and it turns out that the transformation may cause
trouble.

Owr rules cannot provide unfelding at the goal, pli(In, OQut). We con-
sider it impossible to obtain an unfolded clause which behaves correctly in all
contexts. However, the rules provide fair transformations in certain contexts.

If we start with the clause of ti with a mode declaration as tif -, —), then
the contexts for pi are limited and therefore the clause can be transformed as part
of the total wansformation.

The following shows the transformation sequence. (Clauses are handled
in their normal form.)

u{ln Cll.,ll} - true | 51{In Mid, Dut] plusl{Out Mid).
- . - R2
u{In, Qut) - true | f’*ul{ln Mid, OQut).*/
dup(In. Ox}, dup(Mid, Oy), merge(Ox, Oy, 0z), pi(Oz, Out),
plual{{:}ut "\-’Iid}
- - - - RS RS SRS SSm————————————— R4
l:([A| 1, Out) :~ true | ;*dup (In, Dx}*s’
Ox=[A, AJ, dup(Mid, Oy), merge(Ox, Oy, Oz), pi(Oz, Out),
plusl{Out, Mid).
................................ e rammams A E .- R]
t([Al_], Out) == true | /FOx=[A, A]*/
dup(Mid, Oy), merge([A, A, Oy, 0z), pi(Oz, Out),
p]ub][Uut Mld]
- il B
tl[[Al_J, Out) - true | dup(Mid, Oy),
Mmerge([A, A, Oy, Oz),*/
Oz=[A|0z1], merge([A], Oy, Ozl),
pi{Oz, Out), plusi{Out, Mid).
ti([A[_], Out) = true | dup(Mid, Oy).
M0z=[AlOz1] */merge([A], Oy, Ozl),
pi([A0z], {.}m] plusl(Out, Mid).

ti([A] |, Out) == true !
dup(Mid. Ovy), merge({A]. Oy. Ozl),
pl{A|O21], Out), plusl{Out, Mid).
............ N - 1
ti(l ALl Out) — true | dup(Mid, D}'} mf:rgf:[[ﬁk D:-,', Ozl),

K. Furukawa, A, Okumora and M, Murakami

SEpl([AJOz1], Out),*/pl1(0z1, Outl), Out=[A[Outl],
plusl!Dul Mu]]

tl[[Al_:l {}ul} — true | dup(Mid, 0}} merj,-:{rh] O} Ozl).
pl1(Ozl, Outl), Out= [A|Outl],
plua] |A}Dutl] Mld]
- R3
tl[[Al_] Uut) = Lrue | tl1(A, Outl), {}ut_[M{}uII]
t11(A, Outl) == true |
dup(Mid, Oy), merge([A], Oy, Ozl),
p]t{ﬂ?l Outl), pluak[EﬁIDullj Mid).
........................... Rd

t1HI{A, Outl) = true | dup{’ﬂad Qy).
/*merge([A], Oy, 0z1),*/0z1 = [A|0z2], merge([], Oy, Oz2),
pl1(Ozl, Outl), plusl([AlOut1], Mid).
ti(A, OQutl) = Al:=A+1 |
dup(Mid, Oy), merge([A], Oy, Ozl),
pl1(Qzl, Outl),
f*plusl{f-ﬂ.|0u11] Mld]* Mad'[m .
---------------- cemsmsmmseseeeoocoooo R to each
tLI{A, Outl) = true | dup(Mid, Ov),
/*¥Oz1 = [Al0O22] * /merge([], Oy, 0z2),
pll([A}Oz2]. Outl), plusl{[A|Outl], Mid).
tH(A, Qutl) = Al:=A+1 |
dup([Al], Oy), merge([A], Oy, Ozl),
pl1(0z1, Outl)./*Mid=[A1].*/
..................................... B2 10 each
tl11{ A, Out) - true |
dup(Mid, Oy), merge([], Oy, 0z2),
/*plI([AIOZ2], Outl),*/Outl =[A],
plus1({[A|Qutl], Mid).
(LA, Outl) == AlL=A+1 |
[*dup([AT], Oy)."/Oy=[Al, Al],
merge([A], Oy, Ozl), pl1{Ozl, Outl).
----------------------------------- =------- Rl to each
t1 (A, Outl) -~ true |
dup(Mid, Ov), merge([], Oy, Oz2),
Outl = [A], plusl([A, A, Mid).
tll{A, OQutl) - Ar=A+1 |
MOy=[Al, Al *
merge(fA] [A] AI , Ozl), pl1{Oz1, Outl).
R R R e e LR LRk - = R3 io the Ist
th A, Outl) = true | t1I2{A), Outl=[A].

.]{J_

Unfolding Rules for GHC Programs

tl A, Qutl) — AL=A+1]|
merge([A], [Al, Al], Ozl), pl1(Ozl, Outl).
t12(A) - true |
dup(Mm 0};}, merge([] D:-,r 022] plusl[[A AJ Mrd}

R4

tlE{A} — true | dup{Mld D_",f]

S¥merge(| |, Oy, 0z2).% /02 =0y,

plusl{{ A, A], Mid).
U2AA) — Al=A+1]

dup(Mid, Ov), merge(| |, Oy, 0z2),

f*plusl{LA A] M1d] */Mid == [AI]

cemsmnacmmmeeeececeeeo- R to each

tI"{A] - true | dup(Mld Ov),
/022 =0y,*/plusl{[A, A, Mid).
(2(A) - AlL=A+1 |
dup([Al], Oy), merge([], Oy, 0z2).
,f*Mld [AL]*/
_______________ sememeeemciciccisianeaseee---- R4 to the st
tI2(A) — AL=A+1 | dup{M:d 03}
Mplusi([A, A, Mid).*/Mid=[Al].
t12(A) — Al=A+1|
dup [A]] O'y:l, merge{[] 0} 021]
) - Rl to the Ist
I;IE{A} _Al=A+1 |
dup{[Al], Oy)./*Mid=A1].*/
tI2(A) — AlL=A+1 |
dupl{fAI] O}f]. merge([], Oy, 0z22).

. -- R2 to each
[12{;"1} - Al:=A+1 |
SEdup([A1], Oy)*/Ov=[Al, Al
H2(A) = Al =A+1 |
/*dup([Al1], Oy).*|/Oy=[Al. Al],
mcrgc{[] Dy Dzl}
----------- Rl to each

tlZ[f-"h} - Al=A+1 | true.
FOy=[Al AlL]*/

H2AA) = Al=A-+1]
[*0y = AL, Al]*/merge([], [Al, A1], Oz2).

R2 to the 2nd at merge repeatedly, and unification for 0z2 is eliminated.
tI2AA) = Al:= A+ | true.
t2(A) = Al:=A+1 | /*merge([]. [Al, Al], Oz2).%/true.

K. Furukawa, A, Okumura and M. Murakami

fmm e e e immeme—smEsmTEo-- - iissmEmss=os--EsEEmmEEmaos—-—--- R rﬂcﬂl]. tll
t11(A, Outl) = true | t12(A), Outl =[A].
til{A, Outl) — Al=A+1 | merge[[A], [AT, Al], Ozl1), pl1(Oz1, Outl).

tll{h Outl) := true | t12(A), Dut]-Ih'
(T1{A, Outl) .= Al:=A 11| /*merge([A], [Al, Al], Oz1).%/

0z1=[A, Al, Al], pl1{(Oz], Outl).
tI(A, Outl) = A=A+ 1| *merge([A], [Al, Al], 0z1).%/

Ozl =[Al, A, Al], pl1(Ozl, Outl}.
tII(A, Out) = Al:=A+1]| /*merge([A], [AL Al], Oz1).*/

-‘:rzi—[m Al, A] pil{Dzl Dul‘.l]
............... emm-tEssmammmrSsSammsa ‘R] to 2-41:]-.
t11(A, Outl) = true | IIZ{A] Dutl-—[].
t11(A, Qutl) — Al:=A+1| /*0zl=[A, AL, All*/plHA, AL, Al], Ourl).
tI1(A, Outl) == Al -n+1|;*ozl—fm A, AL */plI{[A1, A, Al], Outl).
lum Outl] Al:=A- 1] /*0zl=Al, Al A] *fpll(rm Al, Al, Our).

S RLRCTTTTTEPELSILLE ~---- - R2 to 2-4th

t11(A, Outl) = true | l]l{h] Outl = [A]
1A, Outl) - Al:—A 1| /*pli([A, AL A1}, Outl)*/Outl=[A].
tl1(A, Outl) = AI:AA-IFI | *plI([Al, A, AL, Out]).*/Outl =[Al].
LII{A Outl) = Al:=A lif*pn([m Al, M ouu)*mmi—[m'

Thus the pmgmm of the case 1 1s as fniluwmg
I{IAl] Out) — true | t11{A, Outl), Gut-—[hlﬂutl}.
t11(A, Outl) := true | t12{A), Outl: (Al
t1(A, Outl) - Al:=A+1 | Qutl= [A].
t1I(A, Outl) == Al:=A+1 | Quil=[Al].
t12(A) -~ Al:— A+ | true.
e eemmeoeeasismmsessesisicsoss-emmmes [Ua_gg 1 gnd_]

|—rE{Tr¢m <a—}}

...........................

11[[A|__ﬂ Dut] - {rue |
dup(Mid, Oy), merge([A]. Oy, Ozl),
pl{ [AI Dzl] Out), plusl(Oul, Mid).

t2(] A.l] Dut} — true | dup(Mid, Oy).

f*mf.rgL{[A] Oy, 0z1),*/0z! = [A|Oz2]. merge(([], Oy, 0z2),
p2([A]Oz1], Out), plusl(Out, Mid).

12 —

Unfolding Rules for GHC Progriams

t2([A|_], Out) = true | dup{Mid, Oy),
/*0z1 = [A|0z2]* /merge(] |, Oy, Oz2),
pzt[,e\ A'OEE] Dul] plusl[(_}u: Mid).
AI_] Dut} ~ true | dup (Mid, Oy). mergc{[] Oy, 0z2),
Sp2(LA, AlOz2], Out).*/Our=[A, A],
plusIEDut M:d}

t2([Af_], Out) == true | dup(Mid, Oy), merge{[_] Oy, DFZ}

Out—[A, A, plusl{FA r'«] M1d]

t2([ALL Dut] —true | 121(A), Out—[A, A]
t21(A) - true |

duptMld O} merge[l_] G}f 012] plusl{[A A] M:Id}

T.EIEPL} - true | dup(M:d Oy},
/*merge(| |, Oy, 0z2),%/0z2=0y,
plusl{[A, A], Mid}.

121(A) == Al:=A+1 | dup(Mid, Qy), merge([], Oy, Oz2),
/Fplusl{[A, A], Mid).*/Mid= [Al]

121{A) == true | dup(Mid, Ov),
J*¥0z2=0y */plusi{[A, A], Mid).

(21(A) == Al:=A+ 1 | dup([A1]. Ov), merge(] |, Oy, Oz2).

I*M d=|Al | *

LZt(,&] = truc | dup(Mid, Ov), p]usll{[h h] Mid).

t21(A) = Al:=A+1 | /Fdup([Al], Oy),*/
Oy=T[Al, Al] merl.,i.'[[I U} 022}

t21{A) - lrue'dup[Mld Oy), plu#l[lA AJ Mld;

21(A) - AL=A+1]
[AOy=[AL ALL*/merge((], [Al, Al], Oz2).

121(A)} =~ true | dup(Mid, Oy), plusl{| A, A], Mid).

121{A}) = Al:=A+1 |
[Fmerge([], [ALL ﬂ\l] {'}?2}*;02"—“‘“ Al

121(A) = AlL=A+1 | clup{lﬂld Oy),
/plusl{[A. Al Mid).*/Mid=[Al].

- R2

- R1

R3

R4

- RI to each

- B2 to 2nd

- Rl to 2nd

R4 10 the st

K. Furukswn, A Okumora and M, Murakami

t21{A) - Al:=A+1]0z22=[A1, Al].
------------------------------------ R1 to each
(221{A) — AlL=A+1 | dup([Al], Oy)./*Mid=[A1]*/

21(A) - AL=A+1 | /*022=[Al, Al].*/true.

21(A) = A=A | 1 | /#dup([Al], Oy).*/Oy=[Al, Al].

121{A) — AL=A+1 | true

e iiiaaiiaseesaseeeeeceeeemcaeaeaeaeaaeeoo—ceeaae--- R 0y the 2nd
21{A) — A=A+ | HFOv=Al, Al */truc.
2IA)Y - Ali=A+1 | true.

Thus the program of the case 2 is as following.

t2(AL, Out) == true | t21(A), Qur—[A, A
121{A) = Al:=A+1 | true.

seeoiseemeecsecicencecoooooooooo- [case 2 end]

§5 Conclusion
This paper presenied a set of rules, called UR-set, for the transformation

of GHC programs. It seems to be powertul enough for many applications. To
evaluate its efliciency, we need 1o perform further experiments such as process
fusion, leveling of a metainterpreter and its object program, or program synthe-
sis from naive definition.

Recently, we found a problem related to the notion of “input related”. It
is now being solved based on the elaborate formalization analyzing the direc-
tion of unification. This formalization also allows us to leave the input/output
modes of variables unspecified.”

To realize an automatic partial evaluation system, we must find a valid
control strategy to apply UR-set. We are interested in implementing such a
system in GHC. We believe it will take the form of cooperation of several
unfolding processes.

Acknowledgements

We would like to express special thanks to Yup Matsumoto. This study
owed a great deal to his detailed investigation. We would also like to thank
Kazunori Ueda and Akikazu Takeuchi for their helpful discussion.

References
17 Brock. 1. T3 and Ackerman, W. B, “Scenario: A Muodel of Nondeterminate Computa-
ton," in Formalization of Programming Concepts (1 Diaz and 1. Ramos, ed.), lecture
Notes in Compuier Sctence, Val N7, Springer-Verlag. 1981

Unfolding Rules for GHC Programs

2y Clark, K L. and Gregory, 5., “PARLOG: Parallel Programming in Logic,” ACM
Trans. Program. Lang. Sysi. 81

3} Furukawa, K and Ueda, K., “GHC Process Fusion by Program Transformation,” Proc.
ithe Second Annual Conference of Japan Society of Softwate Science and Technol-
agy, 1985,

4} Shapiro, E. Y., "A Subset of Concurrent Prolog and lts Interpreter,” ICOT Tech.
Report, TR-003

51 Shapiro, E. Y., "Concurrent Prolog: A Progress Report.” TEEE Computer, Vol 19 No.
& 1986,

6} Ueda, K., "Guarded Horn Clauses,” Proe. Logic Programmiing "85 (Lecture Notes in
Campuier Science, Vol 221), Springer-Verlag, 1986,

T Ueda, K., et al, “Transformation Rules for FGHC Programs,” fortheoming, 1988

— 15

