ICOT Technical Report: TR-476

TR-476

A Formalization of Modcling on Relational
Data — Uulization of Constraint Logic
Programming for Problem Solving

by
K. Hiraish:

May, 19384

©1989, ICOT

Mita Kokusai Bldg. 21F i03) 456-3191~5

l G DT 4-28 Mua 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Abstract

We propose a mathematical formalization of modeling which is based
on the relational data model. A model is described as a set of functions.
each of which represents the functional dependency in each relation. A
wide wvariety of models can be described with this formalization.
Moreover, operations for models are introduced. These operations enable
flexible approaches of modeling. Capabilities of this formalization are
demonstrated by a model description language MODEL/R and its
interpretation system on a constraint logic programming language CLP(R).

1. Introduction

Modeling is an approach to problem solving and decision making.
Various kinds of models are proposed in many fields, especially in
operations research and management science. Computer-based decision
support systems(DSS) available in markets usually store these models as
program packages, and provides functions to call them and display/print
their results in suitable formats. However, the task to choose an
appropriate model and to write down the problem in the form specified
for the model is left to users.

Model Management Systems(MMS) have been proposed to support the
process of managing models, and to provide functions of creation,
manipulation of and access to models. Several frameworks for model
representation have been proposed to implement MMS, such as predicate
calculus[Bonczek 81], production rules[Holsapple 86], semantic
networks[Elam 80], frames[Dolk 84] and relational model[Blanning 86].
These approaches pay more attention to managing models than describing
models,

Structured Modeling[Geoffrion 87] emphasizes the process of
expressing user's problems, and proposes ‘a framework of describing
models in a unified manner. Structured Modeling is based on the
assumption that a model is an essential conceptual unit. This paper takes
the same standpoint as Structured Modeling, and proposes a mathematical
formalization of modeling which is based on the relational data model. A
wide variety of models can be described with this formalization.

In Section 2, the concept of modeling is described. A model is defined
as a mapping from a data structure to data occurrences in the real world.
The relational data model is used for the data structure. Relations are
assumed to be in third normal form and a model is described as a et of
functions, where each function represents the functional dependency of
each relation. In Section 3, modeling is formalized on relational data. In
Section 4, problem solving through modeling is discussed. In Section 5,
operations for models are defined. These operations enable various kinds
of modeling approaches. Moreover, we specify the model description
language MODEL/R and implement its interpretation system on a
constraint logic programming language CLP(R). Brief instruction of
MODEL/R and some examples are shown in Section 6.

2. Data Structures and Models

In the data base theory, data models are proposed for formalizing and
expressing data in the real world. In other words, the data model theory
aims to define a data structure which reflects semantics in the real world.
A data base is considered to be an extension (or instantaneous value) of
the data structure. In science and engineering, modeling aims to construct
a mechanism which explains how data observed in experiments are
generated. Therefore, we can consider a model as an iniension of the data
structure. Fig.1 shows the relation among a data structure, data
occurrences(data base) and a meodel.

Real World

Data Model Data Set I
7 , .

Structure lntension (Data Base} l
Extension

Fig.1 Concept of Modeling

We use the relational dara model as 2 data structure. A relation R 1s
defined as a subset of a cartesian product set RC A x...xA,, where
Aj;(i=1,---,n) is called an ateribute. We write R[A,---,A;] to indicate
attributes of a relation R. Let X and Y be any collections of attributes.
Then Y is called functionally dependent on X if the value of Y is uniquely
determined by the value of X. Functional dependency is not a temporary
property. It is always satisfied as a semantical constraint in the real
world. '

A relation is decomposed into simple relations by using functional
dependency. The third normal form(Boyce-Codd normal form) [Codd 74} is
the most popular decomposition. A relation R is in third normal form if
the following holds for any attribute collection X:

"If any attribute not in X is functionally dependent on X, then all
attributes in R are functionally dependent on X."

A relation takes various values in various situations. Considering a
relation STUDENT [Number, Name, Address], every school has its own
value for STUDENT. Moreover, even in the same school, the value differs
every year. In this case, schoel and year represent situations for STUDENT
to take different values. We use the word index for such a description
that determines an extension of a relation, e.g., a set of school names is an
index for the relation STUDENT. An intension of a relation R[A{,---,Ap] is
described as a function from some indices to the power set of A;x--.xA_,

A relation R can represent the situations specified by an index i by
adding 1 as a key attribute. For example, the relation STUDENT[School,
Number, Name, Address] includes information about students in each
school. From the meaning of an index, the attribute for an index is not
functionally dependent on other attributes.

Let R be a relation in third normal form, X be a set of key attributes of
R, and Y be the set of attributes not in X. Since the value of Y is uniquely
determined for a given value of X, X is considered to be indices for Y.
Moreover, F: can be described as an intensional form

R={<xy> | xeR, A y=f(x)],

where R, is the projection of R to X, R, is the projection of R to Y, and
fiRy—> R, is a function. A model for R is expressed by the function f,

3. Formalization of Modeling

In this section, we formalize modeling on relational data mentioned
above.

3.1 Schema and Maodel

We first define union of funcrions for preparation. Let {:X,— Y, and
f5:X5>—= Y, be functions such that f,(x)=f,(x) for any xeX NX,. Then the
function f;Ufy: X, UX,—=7Y,UY, is defined by
i) fUfs(x)=f,(x) for any xeX,;

i) f,Uf;(x)=f5(x) for any xeX,.

We define the schema description language S which specifies data

structures. S consists of the following symbols:

i} the set of primitive types P:=[p.p2., |
it} the set of derived rypes T:=[t,,ty, = |
iii) the set of relation names Ni={rl_g 15,729 15 Tlog 25.T%6p 2507
ri{n.m}vrz-m,m:u'“ b
iv) the set of constraints Ci={cy,co.... }:
v) connective symbols: 1, [,]1.,=,:,.
S has two types of (ormulas:
i) "t=t'lc" is called a tvpe formula for tif teT, t'ePUT and ceC:
i) "t ma=8y, 8180, 0 Raa)" I8 called a relation formula for ¥ n s i
¥, moeN and aePUT(i=1,-,n+m). In the case n=0 or m=0, we write
™ ma=li8n, o 8nem] OF Koy mo=[ay.-.a5:], Tespectively. ay,-.a, are called key
atrributes of ™o, o, and ag,q,.8ne, are called non-key attributes of L
A set of formulas G is called a schema if the followirg holds:
1} G has at least one relation fermula;
i1} G has exactly one type formula for every teT appeared in G,

Let T denote the set of symbols in T which appear in a schema G, and
similarly for Ng. B=<U,r> is called a primitive model if U is a nonempty set
and ©:PUC—2U is a function, i.e., n(x)CU for each xePUC. A primitive model
specifies semantics for primitive types and constraints. For a schema G, let
D be a non-empty set such that DCU, and p be a function such that
i) the domain of p is TgUNg;

i) p(t)<D for each teTg;

iii} for each ¥, n,eNg, w(rk, o) is a partial function from Dn to D™,

where Dk denotes Dx-..xD(k times) for a nonnegative integer k. Let p~
denote pUmn. M=<D,p> is called a model for G if the following holds:

i) p(H)CSp+(t"Nx=(c) for each type formula t=t'lc in G;

i) p(rx)Spu*(ay,)*-xp*{a,) for each relation formula r={a),-.aga;,1,
2,.m] in G and each xedomy(r), where domy(r} is the domain of p(r) in
wH(ay Jee-xut(ag).

Let M=<D,u> be a mode! for a schema G and r=[a;,a, 85,1, 8p+m] be 2
relation formula in G. Then the extension of r in M is defined by

exty (D= { <X X Y 1o Y™ | <Xy, Xp>edomy(T)
A <Y Y= (<X x>) |

where exry is a function which maps each relation name in G to its
extension in M. We call exty the solution of M. Let rangey(r) denote the
set pH(a,)x--xp*(ay,). Clearly exty(r)Srangepm(r).

3.2 Example of Modeling

An example is used for illustrating the modeling process defined
above. Feedmix model[Geoffrion 87] below describes how to blend
nutrients with animal feed. There are two kinds of nutrients, protein and
calcium, and there are two kinds of materials, standard and additive. The
minimum daily requirement is given for each nutrient. Unit cost and
quantity are given for each material. Analysis indicates quantity of each
nutrient biended with each material per unit.

We first define a schema:

pounds = real | 20;

dollars =real | Z0;

nutrient = chr | true:

material = chr | oue;

MIN = [nutrient : pounds];
UCOST = [material : dollars]:
Q = [material : pounds];
ANALYSIS = [nutrient, material : pounds];
NLEVEL = [nutrient : pounds];
TNLEVEL = [nutrient : boolean];
TOTCOST = [: dollars],

where ‘chr’, 'real’ and 'boolean' are basic types, 'true’ and 'Z 0' are
constraints such that wm(true)=U and n(=0) is the set of nonnegative
numbers in U. NLEVEL indicates the quantity of each nutrients in feed.
T:NLEVEL is wue if the value of NLEVEL is greater than the value of MIN
for each nutrient, otherwise false. TOTCOST is the total cost used for feed.
No key attributes are assigned to TOTCOST. This means that TOTCOST can
take only one value in this schema.

A model M=<D,u> for the schema above is defined as follows:
i) D=RUW, where R is the set of real numbers and W is the set of words:
11} p is defined by
pounds —={x | xeR n x=0};
dollars =[x ixeR A x20);

nutrient = {protein, calcium};
material - [standard, additivel;

MIN — {protein=> 6, calcium—>4};
UCOST — {standard—> 1.2, additive—>3};
Q —> {standard-> 2, additive—>0.5];

ANALYSIS = {<protein, standard>— 4,
<protein, additive>— 14,

<galcium, standard>— 2,
<calcium, additive=—1];
TOTCOST = SUM{{p(UCOST)Hm)*u(Q)m) | meu(material)});
NLEVEL - [neu(nutrientj—}
SUM{{w(ANALYSIS) n,m)*u(Q)(m) | meu{matarial}})];
true if WUNLEVEL Y n)2u(MIN)(n); -I

TNLEVEL - [nEL;{nu[ricnt}"? {fulse otherwise

where x—2 y denotes the mapping from x to y, and SUM(R) denotes the

function which returns the summation of each element in R,

3.3 Dependency among Relations

In Feedmix model, p(NLEVEL) refers to w{ANALYSIS) and u{Q). Hence.
values of ANALYSIS and Q determine the value of NLEVEL. We use the
word dependency for such a relation. In this case, NLEVEL is said to be
dependent on ANALYSIS and Q, and we wrte NLEVEL>ANALYSIS and
NLEVEL>Q to indicatc the dependency. Fig.2 shows dependency among
relations in Feedmix model. An upper relation is dependent on lower
relations connected with lines.

TOTCOST T:NLEVEL
NLEVEL
UCOST Q ANALYSIS MIN

Fig.2 Dependency among Relations
in Feedmix Model

We can explicitly write the dependencv with p(T:NLEVEL) by the

following form:

w(T:NLEVEL) : u(nutrient)x2"3rgey(NLEVEL)y jrangey,(MIN)
= n(boolean),

which is defined by

. true if xZv
W(T:NLEVEL)(n,exty(NLEVEL)},exty(MIN))= { false otherwise

where neu(nutrient) A <n,x>eext((NLEVEL) A <ny>eexty(MIN).

Similarly,

W(TOTCOST W exty(UCOST),extpy(Q))=
SUM({x*y | 3mzp.{material}:c:m,x‘:»eexzm[UCDST} A
<m,y>eexty(Q)}),

RINLEVEL)(n,ext)(ANALYSIS),exty;(Q))=
SUM([x*y | Hmﬁu{maieriai}:{n,m,x}aeﬂH(ANALYSIS) A

where nep(nutrient).

Let r=[a;,....,a,'a,.,,....85,m] be a relation formula in a schema G.
Considering the dependency of r, pu(r) can be described in the following
form:

R(r) : pH(ag)x--xp+(a,)x27angep(rxprangey ()
= ut(ag,)x--x p-+{an+mj'u

where r; is a relation name in G such that r>r(i=1,--- k). By this definition,
exty(r) 1s expressed by

exty(r)= <X, X0, Y10 V> <Xy, X > edomp(r)
AN <X »"me?h”*d'm}:i-l(?ﬁ] B EI:M(TI },'",Exfm(l'k}:l} .

Dependency among relations satisfies transitivity, i.e., r>r; and r>ry
imply ri>ry. A model M for a schema G is called acyclic if rj>r; does not
hold for any two relations r; and rj in M such that r;>r;. If a model M for a
schema G is acyclic, then we can obtain the solution of M by the following

algorithm.

lAlgerithm]

1. Let E be the set of relations in G.

2. Select relations which are minimal in E for the dependency '>', where r
is called minimal in E if there does not exist xeE such that r>x. Compute
exty(r) for each minimal element r and go to 3.

3. Let E:=E-{r}. If E=¢, then the solution is cbtained. Otherwise. g0 to 2.

Since Feedmix model is acyclic, the solution is obtained by the
following process:

[n the first recursion,

L E={MIN, UCOST, Q, ANALYSIS, TOTCOST, NLEVEL, T:NLEVEL].
2. MIN, UCOST, Q and ANALYSIS are minimal in E, and
exty(MIN)={<protein, 16>, <calcium, 4>},
exty(UCOST)={<standard, 1.2>, <additive, 3>},
exty(Q)={<standard, 2>, <additive, 0.5>},
exiy(ANALYSIS)=(<protein, standard, 4>, <protein, additive, 14>,
<calcium, standard, 2>, <calcium, aﬁditive, 1>}
are immediately obtained.
3. E=[TOTCOST,NLEVEL, T:NLEVEL).
In the second recursion,
2. TOTCOST and NLEVEL are minimal, and
exty(TOTCOST)={< 3.9 >},
exty(NLEVEL)={<protein, 15>, <calcium, 4.5>].
3. E={T:NLEVEL]}.
In the third recursion,
2, T:NLEVEL is minimal and
exty(T:NLEVEL)=(<protein, false>, <calcium, true>}.
3. E=¢.

If a model is cyclic, then there exists a relation r such that r>r;>ry>->r
and we must use an appropriate constraint solver to find the solution. For
example, if each function in a model is composed of linear equations or
inequalities, then the solution can be computed by a linear constraint
solver such as the simplex method.

4. Problem Solving through Modeling

One of the purposes of building Feedmix model is to find values of
quantity which minimize the total cost, satisfying the minimal daily
requirement. The notion of optimization is not included in Feedmix model.
Optimization methods are applied to Feedmix model for the purpose
‘minimizing the total cost”. There can exist various purposes which
require different solving techniques. in this section, we discuss methods
for problem solving through modeling.

4.1 Finding Solutions

In Feedmix model, one possible way to find optimum value is finding
solutions for various initial values of quantity. The what-if analysis, which
i1s a method to find effects of changing some parts of a model, and rhe
sensitivity analysis, which is a method to find effects of changing values
step by step, are conducted for evaluating effects of uncertainty. In
addition, the direct search method, which is a method for unconstrained
non-linear programming, can be used for searching solutions.

4.2 Extracting Formulas for Solvers

Feedmix model has two decision variables, which are X,:quantity for
standard feed and X :quantity for additive feed. We can easily extract
formulas expressed with X, and X, from Feedmix model.

Minimize
1.2X,+4X,
such that
4X+14X, 216
2X+ X, =24

This optimization problem can be solved by the linear
programming(LP) method. If an LP package requires a matrix form, these
formulas must be converted into matrices, If extracted formulas contain
non-linear terms, then an appropriate non-linear programming package

would be required. Since most solvers require formulas{or matrix forms),
the first step to use solvers is extracting formulas out of the model.

4.3 Constraint Programming

Constraint programming languages enable us to use constraint solvers
more easily. A constraint programming language is a computer language
that contains a solver in its processing system|Leler 88]. In ordinary
computer languages, such as C or Pascal, a program is an algorithm to be
executed step by step. In constraint languages, a program is a set of
relations between a set of objects, and it is the job of the constraint
satisfaction systemn to find a solution that satisfies these relations.
Describing a model on an appropriate constraint language, the solution is
automatically computed by the constraini-satisfaction system. Constraint
logic programming languages, which realize a constraint satisfaction
mechanism on the logic programming framework, is suitable for
representing relational data with numerical constraints. In Section 6, we
show some examples of problem solving by using a constraint logic
programming language.

5. Operations for Models

In this section, operations for models are defined. These operations
enable us to edit models without going into their internal descriptions, i.e.,
we can treat a model as a unit for editing.

5.1 Definitions of Operations

(1) Join

Join is an operation to combine some models together. Let My=<D,u>
and M,=<D,,pn,> be models for schema G, and G,, respectively. p;Up, can
be defined if i;(x)=p,(x) holds for any 1'{TGIHT61}U(NG1H NgG,). Then M=
<D,UD,, u,Up,> is a model for G,UG,. The operation to make M from M,
and M, is called join.

{2) Projection

Projection is an operation to make a model for projected relations. Let
M be a model for a schema G. We define the projection of M to a key
attribute teTg and vep(t). we make a projected schema Gp by i) replacing
each relation formula r={ay, a5, 4,854 12,80 041,78 4] i G, which has ¢
as a key auribute, with rp=[a,, .,a; 1,3;,1,.,8, 8, ,..,3,,n), 1) excluding
unnecessary type definitions. Let I\h'ﬁ be the set of replaced relation names
in Ng. A projection of M to t and v is Mp=<D ,up> such that
1) Kp(x)=w(x) holds for each xeTgp U NG\ﬁG;
i) Pp(Tp (<X, X X5y, X2) =p(r)(x) holds for each rEﬁG and each x=
<KXV X X2 edomyy(r), where r=[a;,«a; 1,025,180, e] 18
in G and its replacement in Gp is rp=[ay, 81,8141, 8p 841, Anem |-

A projection of Feedmix model for index attribute 'material' and its
value ‘standard feed' is shown as follows.

Projected Schema Gp :

pounds =real | 20:

dollars =real | 20;

nutrient = chr | true;

MIN = [nutrient : pounds];
UCOST = [: dollars];

Q = [* pounds];
ANALYSIS = [nutrient: pounds];
NLEVEL = [nutrient : pounds];
TNLEVEL = [nutrient : boolean];
TOTCOST = [: dollars],

Projected Model Mp=<D,up> :
pounds —{x1xeR A x20}:
dollars = {x | xeR A x20};
nutrient - {protein, calcium];

MIN - {protein—> 16, calcium—>4);
UCOST —=1.2;
Q -2

ANALYSIS - (protein—>4, calcium—>2};

TOTCOST = p(UCOSTy*u(Q);

NLEVEL = [nep(nutrient)-> p(ANALYSIS)(n)*u(Q)]:

true if W(NLEVEL)(n)=u(MIN)(n);]

TNLEVEL = [nep{nu[ﬁﬂnt)—} {fElISE otherwise

k]

(3) Enlargement
Enlargement is an operation to add an index as a key attribute to each
relation. Let M=<D,u> be a model for a schema G. We define the

enlargement of M with an index I and a value v. Let Ng be the set of
relation names in Ng which have I as an index. We make an enlarged
schema Gg from G by i) adding type formulas for I, ii) replacing each
relation formula r={a;,-, 258,41, "\8q4m] fOr TE Ng with rg=[I,a;,,ap 85,1,
1"'::.'I-]IHI'

An enlarged model with T and v is Mg=<D,up> such that
1) pg{xj=p(x) holds for each xeTg U Ng\ﬁg,

i) pelrei<v,x;, . x,>)=u(r)(x) holds for each rEﬁG and each x=<x;,,Xx,>€
domy(r), where 1=[a;,~,a, 8541, 8p+m] 15 in G and its replacement in Gg is
re={Lay, 858041, Anam]-

Assume that Feedmix model is described in consideration of pigs. Then
we can make an enlarged model by adding a key attribute 'animal’ and its
value 'pig' to relations in Feedmix model. UCOST and ANALYSIS does not
change because they depend only on matenals.

Enlarged Schema Gg :

pounds =real | 20;

dollars =real | 20;

animal = ¢hr | true:

nutrient = chr | true;

material = chr [true;

MIN = [animal, nutrient : pounds];
UCOST = [material : dollars];

Q = [animal, material : pounds];
ANALYSIS = [nutrient, material : pounds];
NLEVEL = [animal, nutrient : pounds];
TNLEVEL = [animal, nutrient : boolean];
TOTCOST = [animal : dollars].

Enlarged Model Mg=<D jug>:

pounds - (x| xeR A x20});
dollars —{x|xeR n x20};
animal = (pigl;

nutrient — [protein, calcium];
material — {standard, additive};

MIN - [<pig, protein>—6, <pig, calcium>—>4};
UCOST —» {standard=> 1.2, additive—>3};
Q - [<pig, standard>->2, <pig, additive>—>0.5};

— 17—

re

ANALYSIS — (<protein, standard>—4,
<protein, additive>— 14,
<calcium, standard>=>2,
<caleium, additives>—>1);

TOTCOST — [aeu{animal}*-}
SUM({p(UCOST m)*u(Q)a,m) | mEp(material}]}];
NLEVEL - [-::a,n:-'au(animal}xu(nutriﬂnt}-—}
SUM({uW(ANALYSIS)(n,m)*u(Q)(a,m) |
mEp.I[maturiul}}]];
TNLEVEL ﬁ[{a,n}eu{animal}xu(nutricnt}—}
true if W(NLEVEL)a,n)Zp(MIN)(a,n);]
{faIsc otherwise ’

{4) Extraction
Extraction is an operation to make a model for a subschema. Let
M=<D p> be a model for a schema G, and Gg be a schema such that GsCG.

Then a model for Gg is called an extraction of M. We will show an

extraction of Feedmix model, which is a model for the following schema
Gg. Gg is the subschema which neglects nutritional requirements for feeds.

Subschema Gg :

pounds =real | =0:
dollars =real | =0;
material = chr | true
UCOST = [material : dollars];
Q = [material : pounds];

TOTCOST = [; dollars].

Extracted Model Mg=<D,us>:

pounds 2+ {x1xeR A x20};

dollars —={x | xeR A x20};

material - [standard, additive};

UCOST — [standard—> 1.2, additive— 31},
Q - {standard—> 2, additive—>0.5);

TOTCOST —=>SUM([p(UCOSTYm)*u(Q}m) | mep(material)}).

5.2 Utilization of Operations

Operations for models and their combinations are utilized for various
purposes. Join is used when we make a large scale model in a bottom up
approach, i1e., we first make submodels and construct the whole model by
joining them together. Projection and Extraction are used when a
submodel for necessarv parts is required. Enlargement is used for
generalizing a model which is made under a particular situation, e.g., we
can treat various kinds of animal feeds in the enlargement of Feedmix

model.

6. Implementation

This section demonstrates some examples of modeling with
MODEL/R(MOdel DEscription Language for Relational data) and its
interpretation system, which are now under development on the
constraint logic programming language CLP(R)[Heintze 87]. CLP(R) is a
constraint programming language that has a capability of solving linear
constraints, linear equations and inequalities, in the logic programming
framework.

6.1 MODEL/R

We first show a description of Feedmix model by MODEL/R(Fig.3). A
description of a model is called Modelschema, which is composed of four
parts, Type, Relation, Function and Data. Type and Relation parts define a
'schema’, Function and Data parts correspond to a 'model' for the 'schema'.
Syntax of formulas in the function part are based on the relational
calculus, and are similar to database query languages. In each formula, 'in'
statement specifies the domain of wvariables used in the formula, and 'for’
specifies the domain for the function 'sum’. The first formula means that
'totcost’ is the summation of the value of ucost multiplied by the value of
q for the same key value of materials. Extensional descriptions of
relations are written in the data part. Details of the MODEL/R syntax and
semantics are omitted here.

modelschema 'Feedmix'

end.

type
nutrient = chr#X;
material := chr#X;
pounds = real# X if X>=0,
dollars = real#X if X>=0
relation
min := [nutrient]:[pounds];
ucost := [material]:[dollars];
analysis := [nutrient,material]:[pounds];
q = [material]:[pounds];
nlevel := [nutrient]:[pounds];
t_nlevel := [nutrient]:[boolean];
totcost = []:[dollars]
function

data

totcost#] |:[TC]:=
sum(U*Q, TC) in [ucost#{M]:[U], g#[M]:[Q]]
for [M] in material#M;

nlevel#[N]:[NL]:=
sum(A*Q, NL) in [analysis#[N,M]:[A], q#[M]:[Q]]
for [M] in matenal#M;

t_nlevel#[N]:[TN]:=
if(NL>=V, TN) in [min#[N]:[V], nlevel#[N]:[NL]]

material#[standard,additive];
nutrient#[protein,calcium];
min#|[protein]:[160] Jcalcium]:[4]];
analysis#|

[calcium,standard]:[2],

[calcium,additive]:[1].

[protein, standard]:(4],

[protein, additive]:[14]];
ucost#[[standard]:[1.2],[additive]:[3]];
g#[additive]:[0.5],[standard]:[2]]

Fig.3 Feedmix Model

We will show an example of problem solving by the interpretation
system of MODEL/R.

CLP(R) Version 2.02
(C) Copyright Monash University 1986

1 7- [mbss]. — consult the interpreration system
#kk Yag wEk

2 7- load_model{feedmix). = lpad Feedmix model

== Feedmix

W Yes e

3 ?7- solve(totcost#X,[],L). = find the value of totcost

X=[]:13.91
L = [totcost # [] : [3.9]]

ek RED’}' o o "}
o 2 Ma}'bﬂ B e
4 7- solve(t_nlevel#X,[],L). — find the value of t_nlevel

X = [protein] : [false]
L = [nlevel # [protein} : [15], t_nlevel # [protein] : [false]]

*k% Retry *** 7y = backtrack to find other values
X = [calcium] : [true]
L = [nlevel # [calcium] : [4.5], t_nlevel # [calcium] : [true]]

EE Rcu-y e '3‘

EEE Ma}'bﬁ E L E

The predicate solve has three arguments. The first one is for specifying
the goal. The second one is for specifying input data, which bhave the same
meaning as definitions in Data part of Modelschema. Computed values

during the execution are returned in the third argument. The predicate
solve searches values for the goal in the following order.

1. in input data,

2. in Data part of Modelschema,

3. in computed values during the execution,

4. by evaluating the function.
When the function is evaluated, subgoals are generated if the function
refers to other relations. It can be simply implemented by the backward
inference mechanism of logic programming language. We illustrate the

process of executing solve.

1. Goal: t_nlevel#X,
Funcrion t_nlevel#[(N]:[TN]:=
if(NL>=V, TN) in [min#[N]:[V], nlevel#[N]:[NL]],

[

L Subgoal: min#[N]:[V],
min#[protein]:[16] is found in Data part.

. Subgoal: nlevel#[protein]:[NL],
Function nlevel#(protein]:[NL]:=
sum(A*Q, NL) in [analysis#[protein,M]:[A], q#[M]:[Q]]
for [M] in material#M;
which is expanded in the form:
Function nlevel#[protein]:[A1*Q1+A2*Q2]:=
in [analysis#[protein,standard]:[A1], q#[standard]:[Q1]
analysis#[protein,additive]:[A2], q#ladditive]:[Q2]];

Laed

e

. Subgoal: analysis#(protein,standard]:[A1],
analysis#|protein,standard]:[4] is found in Data parit.

Lh

. Subgoeal: q#[standard):[Q1],
g#|[standard]:[2] is found in Data part.

6. Subgoal: analysis#[protein,additive]:[A2],
analysis#|protein,additive]:[14] is found in Dara part.

-~

. Subgoal: g#ladditive]:[Q2],
g#ladditive]:[0.5] is found in Data part.

8. Ewvaluate if(4*2+14*0.5>=16, TN),
and obtain t_nlevel#[protein]:[false].

- 17 —

6.2 Examples of Modeling

{1} Critical Path Method

We show an example of problem solving for a cyclic model. Cpm model
expresses the project network in Fig.4, which is in a sample program
distributed with CLP(R). The number attached to each arc in Fig.4 denotes
the time required for the task represented by the arc. The purpose of the
critical path method is to find the earliest start time and the latest
completion time for each node. 'if' statement in a formula specifies the
condition for applying the formula. For example, if there exists a tuple
[_N]:[_] in relation 'path’, then the first definition of 'es’ will be applied,
otherwise the second one will be applied.

Fig.4 A Project Network
Represented in Cpm Model

modelschema 'Cpm'

type
node = chr#X;
time := real#X if X>=0
relation
es = [node]:[time]; /* Earliest Start Time */f
le = [node]:[time]; /* Latest Completion time */
path := [node,nodel:[time] /* Node Adjacency */
function

gsf[IN]:[Es] =
max_(Es1+C.Es) in [path#[N1.N]:[C],es#[N1]:[Esl]]
for [IN1] in path#[IN1,NJ:[_]
if in path#[_NI:[_];

es#[N1:[0] if notin path#{_N]:[_];

Ic#[N]:[Lc] :=
min_(Lc2-C,Le) in [path#[N,N2]:[C],lc#[N2]:[Lc2]]
for [N2] in path#[N,N2]:[_]
if in path#[N,_1:[_I;

Ic#[N1:[T] := in es#[N]:[T] if notin path#[IN,_]:[_]
data

node#[nl,n2,n3,n4,n5,n6,n7,n8];

path#[
[n5,n6]:[91,In5,n7):[5],[n6,n7]:[0],[nd4,n7]:[4],
[n1,n2]:[2],[n2,n3]:[0],[n1,n3]):[6],[n1,n4]:(3],
(n2,n5]:[1],[n2,n6]:[4],[n3,n5]:[2],[n4,n5]:[0],
(n4,n8]:[3],In6,n8]:[4],[n7,n8]:[6]]

end.

Fig.5 Cpm Model

- 19

Earliest start time of node n7 and latest completion time of node n3 are
computed as follows,

2 ?7- load_model(cpm]).

== Cpm

EX ¥ 3 YES e ik

3 7 solve(es#[n7):X,[],L). =+ find the earliest start time for n7

X=117
L = [es # [n3] : [6], es # [n5] : [8], es # [n2] : [2], es # [n6O] : [17],
es # [nl] : [0], es # [nd] : [3], es # [n7] : [17]]

e e RCU‘}' E k] ",l

EES Yes S

4 7- solve(lc#[n31:Y.[].L). = find the latest completion time of n3

Y = [6]
L ={lc # [n6] : [17], es # [n8)] : [23], lc # n8] : [23], Ic # [n7] : [17],
Ic # [n3] : [8], Ic # [n3] : [6])

ok Retr}a ke "?‘
0y Y‘ES e e e

(2) Simple Expert System

The next example is a simple expert system for determining next
year's quota of sales in a book store. This example is described by an
expert shell 'Guru' in [Holsapple 86]. In Adviser model, each if-then rule is
transformed to a function for the data used in the rule. Therefore,
consistency is required for the set of rules, i.e., there should exist no rules
that give different values for one relation. In the following description,
read_data() read the data from the user when it is evaluated.

modelschema "Adviser

type
money = real#X;
year = int#X;
economic_outlook:= chr#X;
prod = chr#X;
strength ;= chr#X

relation
sales := [year,prod]:[monev];
base = [year,prod]:{monev];
quota := [year,prod]:[money];
economy = |year]:[economic_outlook];
growth := [vear]:[real];
efactor = [year]:[real];
lafactor = [year]:[real];
localads = [vyear]:[real];
unemployment := [year]:[real];
pfactor := [year,prod]:[real,strength];
newtitles := [year,prod]:[real];
oldtitles := [year,prod]:[reall;
rise = [year]:[real];
fall = [year]:[reai]

funection
f* R1

In case where the sales for this product exceeded the guota by more
than 15%, the base amount for thc mew guota is sct to the past quota
plus the excess sales amount.

*/

base#[Y ,PR}:[Q+8-1.15*Q]

if in [quota#[Y-1,PR]:[Q],sales#[Y-1,PR]:[S]]
where S$>1.15*Q;

/* R2

The base amount for the new gquota is the same as the past quota
because this product's sales did not exceed the past quota by more than
15%.

*/

base#[Y .PR]:[Q]

if in [quota#[Y-1,PR]:[Q],sales#{Y-1,PR]:[S]]
where S<=1.15%Q);

/* R3

When the local cconomic outlook is good, the economic factor is equal
to the economy's anticipated growth rate,

*

efactor#{Y]:[G] := in growth#{Y]:[G]

if in economy#|[Y]:[good];

/* R4-1
When the local economic outlock i1s fair, the economic factor is one
third of the growth rate.

*f
efactor#[Y]:[G/3] := in growth#[Y]:[G]
if in economy#[Y |:{fair];

/* R4-2
When the local economic outlook is fair, the local advertising factor is
1120000tk of the amount budgeted for local adverising.

*/
lafactor#[Y]:[L/120000] := in localads#[Y]:[L]
if in economy#[Y]:[fair];

/* R5

If the locali ecomomic outlook is poor, then economic factor should be
the lesser of the growth rate and the result of subtracting the
unemployment.

*/

efactor#[Y)]:[E] = call{(U1=0.85-U,G=U E=U;E=G))
in [growth#[Y]):[G],unemployment#[Y]:[U]]

if in economy#[Y]:[poor];

/* R6,7
The economic outlook is good because the projected unemployment
rate is below 7.6% and the anticipated growth rate is at least 4%, or
projected unemployment is less than 5.5% and the anticipated growth
rale is between 2%-~4%.
*/
economy#[Y]:[good]
if in [growth#{Y]:[G],unemployment#[Y]:[U]]

where (G>=0.04,U<0.076;G>=0.02,G<0.04,U<0.055);

/* RB
The economic outlook is fair because of moderate growth and
unemployment expectations.

=/

economy#[Y]:[fair] :=

if in [growth#[Y]:[G],unemployment#[Y]:[U]]
where (G>=0.02,G<0.04,U>=0.055,U<0.082);

/* RO
The economic outlook is poor because either the anticipated growth
rate is very low or projected unemployment is high or both.

*/

economy#|Y]:[poor] :=

if in [growth#{Y]:[G],unemployment#[Y]:[U]]
where (G<0.02;U>=0.082);

* RI10
When the economy is good and loecal advenising exceeds $2,000, the
local advertising factor is 1% for every thousand dollar expenditure,

=/
lafactor#[Y]:[L/100000]
if in [economy#[Y]:[good],localads#[Y]:[L]] where L>2000;

/* R11

When the cconomic outlook is poor and local advertising expendirures
for the product are modest, then the local advertising factor is
negative.

*/
lafactor#[Y]:[-0.015]
if in [economy#[Y]:[good],localads#[Y]:[L]] where L<1500;

/* R12

The local adveriising factor is negligible because of low advertising
in a good economy or a poor ccomomy coupled with substantial local
advertising for the product line.

*/
lafactor#[Y]:[0] :=
if in [economy#[Y]:[E],localads#[Y]:[L]]
where (E=poor,L>=13500,E=good, L<=2000),

/* R13
This is a strong product line. The product factor is based on the
growth in the number of titles in this line,

*/
pfactor#[Y ,PR]:[(NT+OT)/OT-1,strong] :=

in [newtitles#[Y ,PR]:[NT],oldtitles#[Y ,PR]:[OT]]
if member(PR,[computer,romance,scifi]);

/* R14
This is neither a strong nor weak product line. The product factor is
proportional to three fourths of the growth in the number of titles in

this line.
>/
pfactor#[Y PRI:(0.75*((NT+OTyOT-1),weak] :=
in [newtitles#[Y PR]:[NT],oldtitles#{Y PR]:[OT]]
if member(PR,[reference, biography,psychology,sports]);

/* R15

This is a strong product line. The base amount, economic factor, and
local advertising factor for calculating the new gquota are all known.
A subjective assessment of the expected sales inerease due to general
rising interest in the produect is reguired. The mnew quoa is then
calculared.

*/

quota# Y,PR]:[B*(1+E+LA+P+R/100}] :=
in [base#[Y ,PR]:[Bl.efactor#[Y]:|E] lafactor#[Y]:{LA]]
where read data(rise#[Y]:[R])

it in pfactor#[Y ,PR]:[P,strong];

/* R16

This is a weak product line. A subjective assessment of the expected
sales decrease due to gencrai declining inmterest in this product line is
requested. The new gquota can then be calculated.

*/

quota#[Y ,PR]:[B*(1+E+LA+P-F/100)] :=
in [base#(Y.PR]:[B],efactor#[Y]:[E],lafactor#[Y]:[LA]]
where read_data(fall#[Y]:[F])

if in pfactor#[Y,PR]:[P,weak];

/* R17

This is neither an especially strong nor weak product line. Its new
quota is calculated from the base amount and factors for the cconomy,
local advertising, and product line expansion.

*/
quota#[Y ,PR]:[B*(1+E+LA+P)] :=

in [base#[Y,PR):[B],efactor#[Y]1:[E],Jafactor#[Y }:[LA]]
if in pfactor#[Y ,PR]:[P,medium];

/* R18
This is a weak product line. The product factor is proportional to less
than half of its growth in titles

*/

pfactor#[Y ,PR]:[0.45*((NT+OT)/OT-1),medium] :=
in [newtitles#[Y PR]:[NT],oldtitles#[Y,PR]:[OT]]

if not(member(PR,[computer,romance,scifi,reference,
biography,psychology,sports]))

-— E‘ —

data
year#[1987,1988];
prod#[computer,romance,scifi,reference,
biography,psychology,sports];
economic_outlook#[good,fair,poor];
strength#[strong,weak,medium];
sales#[[1987,computer]:[100],[1987 scifi]:[80]];
quota#[[1987,computer]:[90],[1987 scifi]:[130]];
growth#[[1988]:[0.03]];
unemployment#[[1988]:[0.04]];
localads#[[1988]:[32401];
newtitles#[[1988,computer]:[7],[1988,scifi]:[6]]:
oldtitles#[[1988,computer]:[17],[1988,scifi]:[16]]
end.

Quota of computer in 1988 is computed as follows.
2 7- load_model(rules).

»» Adviser

*%F Ypg wd

3 7- solve(quota#[1988 computer]:X,[],L).
- find the quota for computer in 1988
>> Read rise # [1988]:[20]. = Read rise(%) in 1988,
where rise is a subjective assessment of
the expected sales increase.

X = [150.675]

L = [lafactor # [1988] : [0.0324], economy # [1988] . [good],
efactor # [1988] : [0.03], base # [1988, computer] : [90],
pfactor # [1988, computer] : [0.411765, strong],

quota # [1988, computer] : [150.675]]

EES S REU}' e e e ‘:.I'

o YES el

7. Conclusion

In this paper, we have formalized a model as a mapping from a
relational data structure to a set of possible values in the real world. A
model has been described as a set of [lunctions, each of which represents
the functional dependency in each relation. In addition, operations for
models have been defined. These operations enables various kinds of
approaches for modeling. Capabilities of this formalization have been
demonstrated by MODEL/R and its interpretation system on a constraint
logic programming language CLP(R). This system is one of the realizations
for implementing MODEL/R. Other realizations are possible by using
appropriate constraint solvers.

This research is a part of the work in the major R&D of the Fifth
Generation Computer Project, conducted under the program set up by
MITI.

Note. Research use of CLP(R) interpreter version 2.0 in our
organization(lIAS-SIS, FUJITSU LIMITED) is authorized by Monash
University.

ACKNOWLEDGEMENTS
I thank to Dr.M.TODA, IIAS-SIS, for many valuable discussions und
suggestions.

REFERENCES

[Blanning 86] R.W.Blanning: An Entity-Relationship Approach 1o Maodel
Mansgement, Decizion Support Svstems 2, 65/72 (1988).

[Bonezek B1] R.H. Bonczek, C.W. Holsapple and A B. Whinston: A Generalized Decision
Support System Using predicate Calculus and Network Data Base Management,
Operations Rescarch, 29-2, 263/281 (19§1).

[(Codd 74] E.F.Codd: Recent Investigations in Relational Data Base Systems”,
Information Processing 74, 1017/1021, Nerth-Hoelland (1974),

[Dolk 1984] D. Doik and B. Konsynski: Kaowledge Representations for Madel
Management Systems, IEEE Trans. on Soliware Engineering, 1006), 619/628 (1984).

[Elam 801 I.J. Elam, J.C. Henderson and L.W. Miller: Model Management Sysiems: An
Approach wn Decision Support in Complex Organizations, Proc. of the 1si Conference
on Information Systems (1980},

|Geoffrion 87] AM. Geoffrion: An Introduction to Structured Modeling, Management
Science, 33-3, 547/588 (1987).

[Heintze 87] N.C. Heintze et. al.: Constraint Logic Programming, 4th TEEE Symp. on
Logic Programming (1987).

[Holsappie 86] C.W. Holsapple and A.B. Whinsion: Manager's Guide To Expert Systems
Using Guru, Dowlones-Irwin, Illinois, U.5 A “935],.

[Leler 88] W. Leler: Constrained Programming Lanpguages, Addison-Wesley (1%88).

