ICOT Technical Report: TR-472

TR-472

On Learning Elementary Formal Systems:
Towards an Efficient Learning for
Context-Sensitive Languages

by
Y. Sakakibara (Fujitsu)

April, 1989
{1989, 1ICOT
Mita Kokusai Bldg. 21F (03) 456-3191~5
" :D | 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

On Learning Elementary Formal Systems:
Towards an Efficient Learning for
Context-Sensitive Languages

Yasubumi SAKAKIBARA

International Institute for Advanced Study of
Social Information Science (IIAS-SIS)
FUJITSU LIMITED
140. Miyamoto, Numazu, Shiznoka 410-03, Japan
E-mail : yasu%iias.fujitsu.junet@uunet.uu.net

Abstract

In this paper, we introduce a new class of expressions for learning formal lan-
guages defined by Smullyan's clementary formal systems. The class of expressions is
a natural extension of context-free grammars and the langnages defined by them lie
between context-free languages and context-sensitive languages. We demonsirate an
efficient algorithm to learn them in the framework of learning by using queries to a
teacher modeled on Angluin’s approach to learning k-bounded context-free grammars.
This algorithm may be viewed as a natural and powerful exteusion of the Angluin's
algorithm,

1 Introduction

We consider the problem of learning formal languages by using queries 1o a teacher. In
6] Angluin devises an elegant formulation of a teacher and learner paradigm and models a
learning situation in which a teacher is available to answer some queries about the material
to be learned. Several materials have been investigated to find an algorithm which can
quickly and reliably lcarn them from “reasonable” kinds of queries [2,3.4,5.8.13 14].

In this paper we are interested in formal languages for the target domains to be learned.
Formal languages are typically represented as regular expressions, [inite-state automata,
conlext-free grammars or transformation rules. Angluin [4) shows that the regular sets

can be learned by au algorithm using equivalence and membership queries, a combination

termed a minimally adequate teacher, in time polynomial. It is still an open question whether
there is a polynomial time algorithm for learning the full class of context-free languages using
membership and equivalence queries. Recently Angluin [2] gives a polynomial time algorithm
to learn k-bounded contexli-free grammars using equivalence and non-terminal membership
queries and Sakakibara [14] gives a polynomial time algorithm to learn deterministic skeletal
automata using membership and equivalence queries and applies it Lo the problem of learning
context-free grammars, Now there seems to be two directions to investigate. One direction is
to study the problem of learning context-free languages using membership and equivalence
queries. The other direction is to study the problem of learning a larger class of formal
languages in which more than membership and equivalence queries are available to the
learning algorithm. In this paper we take the latter direction.

We introduce a new class of expressions for the problem of learning formal languages
defined by Smullyan’s elementary formal systems [19]. The class of expressious is a natural
extension of context-free grammars and the languages defined by them lie between context-
free languages and context-sensitive languages. We demonstrate a polynomial time algorithm
to learn them using queries analogous to the ones introduced in Angluin’s approach [2] to
learning k-bounded context-free grammars. This implies that there exists a larger class
of formal languages than context-iree languages which is efficiently learnable by using some
“acceptable” queries. This algorithm may also be viewed as a natural and powerful extension

of the Angluin's algorithm.

2 Preliminaries

2.1 Phrase-Structure Grammars and Languages

An alphabet is a finite non-empty set of symbols. The set of all finite strings of symbols from
an alphabet A is denoted A*. The empty string is denoted e. The set of all finite non-null
strings of symbols from A is denoted A*. The length of the string w 1s denoted |w|. If Ais
a finite set, | 4] denotes the cardinality of A.

A phrase-structure grammar is denoted G = (N, L, 11, §), where N and ¥ are alphabets

of nonterminal symbols and terminal symbols respectively such that NN E = 4. Il is a finite
sct of productions; each production is of the form e — 3, where a € (VU X N(N U L)"
and § € (N U E)". Finally, § is a special nonterminal called the start symbol. If « — 3
is a production of P, then for any strings v and & in (N U Z)", we define vaé = 4386, =
is the reflexive and transitive closure of ==. The language generated by G| denoted L(G),
is {w | wis in X% and 5 =% w}. A phrase structure grammar G = (N, L,I1,5) is conteri-
sensitive if each production is of the form oAy — afy, where A € N, o,y € (NU Z)",
and 7 ¢ (N U). A phrase-structure grammar G = (N, 5,11, 5) is contezt-free if each

production is of the form 4 — @, where 4 € N and e £ (N U)",

2.2 Elementary Formal Systems and Languages

We give the notion of Smullyan™ elementary formal systems [19] and define their languages.
Let 2 be the alphabet of terminal symbols and clements in it be denoted by a, b.e,. ... Let
Voand [be alphabets, where &, V' and) are mutnally disjoint. Flements in V' are called
vartables and denoted by z, 2,24, .. ., and elements in [are called predicates and denoted
by PoQ, Py, Py, G, Qa, ... each of which is assigned a unique positive integer called its
idegree,

An elementary formal systemn (EFS, {or short} over an alphabet E s a gquadruple E =
(D, VX, M), where M is a finite set of expressions called (well-formed) formulas defined

below, which are called arioms of E.
1. Aterm t of Eis a string in (SUV)*, and by #(z,,75,...,2,) we denote a term in
which the occurring variables are precisely ry, a2, .., 2, (not necessarily distinct).

2. An atomic formula of £ is an expression of the form F(t,t;,.. .,), where [is
a predicate in D with degree m and t.ty,...,im are terms of £, I, 45, ... i,

are terminal strings in £*, then P({;,1;,...,1,,) is called ground

3. A (well-formed) formula of E is an expression of the form

Re— Ri&RM - &R, (n > 0)

where R, [t1, Ra, ..., R, are atomic formulas of E, and Ry, Ha, ..., R, are called

the premises of the forinula and R is called the conclusion of the formula.

In the following definitions, we assume that all predicates are monadic, that is, the degrees
of predicates are all one, because predicates with degree one are enough for us.

Let # be any homomorphism (with respect to concatenation) from terms to terms. We
denote the image of a term t by 8. If § maps any terminal symbols a in ¥ to itself,
then @ is called a substifufion. For a formula I = P{t) « Pylt)& - bz P,(t,), we define
Fo = P{t8) « Py(t18)& - - &Po(tal).

We say that a formula F = F(t) « Pi(t)&e - &ePaoy{ty-y) is provable from £ if F

satisfies one of the following conditions:

1. Fisin M,
9 F — F'f for some formula F' provable from E and some substitution #, and

3. two formulas of the forms F = P(t) « Pi(f;)é - &Py(ta) and P.(t,) + are

provable from E.

We say that a formula F is provable from E with n steps if F is provable from E by applying
ihe above three rules n times. We say that an atomic formula P(t) ie provable from [if the
formula of the form P(t) «— is provable from E. The language defined by an EFS E and a
predicate P, denoted L(E, P}, is the set {w]|wisin E* and Plw) is provable from E}. For
a predicate P, two EFSs E and E' are said to be P-equivalent iff L(E, P) = L(E', F).

Proposition 1 ([T])} The languages generated by phrase-structure grammars (type 0 gram-

mars) are defined by elementary formal systems.

3 Extended Simple Formal Systems

In this section, we introduce three restricted forms of EFSs, state their relations to other

classes of formal languages and show some closure and nonclosiire properties of them.

3.1 Restrictions of EFS

We first define a class of resiricted EFSs which preciscly define context free languages. An
EFS B = {(0,V,Z, M) is called a context-free form if every predicate symbol in I is monadic

and each axiom of E is of the form
Pit) e Pz)& - LPyx,)

where PO, L., Iy are predicates in D, (i) 7y, ..., z, are distinet variables, and (ii) t is a
term #{xy, ..., .} in which each of the variables «y, ..., r, occurs precisely once.

As we will show later. the languages defined by context-free forms of EFSs are precisely
the context-free languages.

In the definition of context-free forms of LEFSs, the axioms are restricted to the form
Pt} = Pz & &P (x,). where ! is a term containing the variables o, ..., x,,, and there
arc two conditions (i) and (ii) of syntactic restrictions on the form. R y releasing the condition
(1), we get the [ullowing class of restricted EFSs.

An EFS E = (D, V.E, M) is called a simple formal system (SFS, for short) if every

predicale symbol in [is monadic and each axiom of E is of the form
Pitlzy, ... 20)) = Pi(xy)ke - &Pz,

where I, /4y, ..., P, are predicates in [and Tiy... &y are distinet variables,
By releasing the both conditions (i) and (ii), we get the following class of restricted El'Ss.
An EFS E = (D VX M) is called an extended simple formal system (ESFS, for short)

if every predicate symbol in D is monadic and each axiom of E is of the form
Fl:fll_:l'l_. . ,I":I} — F1|:11}& o ’&Pn{xn}

where P, P ..., F, are predicates in).
In other words, the ESFS is an EFS in which all predicates are monadic and the terms
of the premises are variables. Note that from the definitions of context-free forms, SFSs and

ESFSs, the conclusion of an axiom which has no premise becomes ground.

A

The class of simple formal systems is firstly introduced by Arikawa [7]. The class of lan-
guages defined by SFSs properly contains the class of context-free languages and is properly

contained in the class of context-sensitive languages.

Example 1 Suppose & = {a,b e}, D ={PF, Py, Pa, Pa, 1,2, @3} and V = {z,21,22,.. -}

| Let Ey = (D, V.E, M,) be an ESFS such that M, is the set of the following axioms
P(z) — Pilz)&@u(z),
Py(zyz2) — Palzy)&ePax2),
Polach) — Pyx],
Fylab) «,
Pylez) — Palz),
File) =,
Qu(z172) — Qalz1)8Qa(22),
Qa(az) « Qalz);
Qala) &
Qalbzc) «— Qs(=),

Q@albe) — .
Then L(E,, P) = {a"b"c" | n = 1}, which cannot be generated by any context-free

gramimar.

2. Let M, be the set of axioms
P(2yxa7)) Pt[Il}&PIE‘Eﬂ-r

P,laz) — Plz),
Py(bz) — Fi(x),
Pylezx) «— Pilz),
Fi(a) &,
Py() &,

Fi(c) + .

Let By = (D, VX, M;). Then L{E2, P) = {zyz | 2,y € £*}, which is a patiern

language (the language generaled by the pattern ryz) in the sense of Angluin [1].

4. Let M5 be the set of axioms

P(zz) « P(z),
Fla) — .

Let E5 = (D,V,%, My). Then L(Es, P) = {a®" | n > 0}.

The size of the ESFS £ = (D, VX, M), denoted size(E}, is the sum of |D|, |Z], |M]|,

and the sum of the lengths of the terms in the conclusions of all the axioms in M.

3.2 Relations with Other Formal Languages

We first show that the class of languages defined by ESFSs contains some important classes

of formal languages.

Proposition 2 If L is a contest-free languages, then there exists a contecl-free form of EFS
E and a predicate P in E such that L(E, P) = L. Conversely, if E is a contezl-free form of

EFS and I’ 15 a predicate in E, then L{E, P) is a context-free language.

Proof. Let & = (N,E, 11, 5) be any context-frec grammar. We define the corresponding

context-free form F{G) = (D, VX, M) of EFS as follows.

D = N,

M

{ Alyoroyy - - Tayn) Bi(z)&e - LB, (z2.) |
A = yoBoyr -+ Buy, € T with By,... B, € N and yg,....yn € °}
We omit the simple inductive proof that L{E(G), 5) = L{G).
Conversely let F' = (D, V. E, M) be any context-free form of EFS. We define the corre-

sponding context-free grammar G(E) = (N, I, 11, 5) as follows.

N = D,

§ = F

I = {Q = HQu,...,Qx) | Qt(z1,...,2a)) « Qulz1)& - &Qulza) € M}

T

We omit the simple inductive proof that L{G(E)) = L(E, F). Q.ED.

Thus the class of languages defined by ESFSs contains the class of context-free languages.
A pattern introduced by Anglain in [1] is a non-null finite string of terminal and variable

symbols. The language of a pattern is all strings obtained by substituting non-pull terminal

strings for the variables of the pattern.
Proposition 3 Any patfern language is defincd by an ESFS.

TProof. Let L he the language of any pattern over Y. Anv pattern is a term in the
terminology of this paper. Let Hry,... 2} be a patlern (term) which generates L. We

construct the corresponding ESFS £ = (D, V] ¥, M) as follows.

= {r.Q},

(P((z1,...,24)) = Qlz1)& - - &Q(zn)}
u{Q(az) « Q(z) | a € X}

V{Q(a) —|a & T}

Then LI E,P)= L. Q.E.D.
Next we show that languages defined by ESFSs are recursive sets.

Proposition 4 There is an algorithm to deiermine, for an ESFS [2, a predicate P and a

string w € £°, whether w € L(E, P).

Proof. We prove it by exhibiting an algorithm which takes a terminal string w, the ESE'S
E = (D,V,Z, M) and a predicate P and determines whether P(w) is provable from E.

Let
L= {y|yis asubstring of wl.

There are at most (Jw] + 1)* elements of L, and L is easily computed in time polynomial in
|w]. Let
IT={Qy)|veL, Qe D, and Q(y) is provable from E}.

8

There are at most |D|(lw| + 1)* elements of I. Clearly, P(w) is provable from E iff P{w) is
in I. We compute T as fallows.

Initially, for each axiom of the form Q(y) + in M such that y is a substring of w, the
algorithm puts Q{y) in 1. Then the following process is iterated until the first iteration in
which no new elements are added 1o [,

For each axiom of the form
QUt(xy, oo xn)) = Q)& Qo (x,)

and for every n-tuple

{Ql{yljv "y Qﬂ-{yﬂj}

of elements of [such that gy =y; ilz, =x; for 1 < 4,7 <n, if #y,...,ya) i5 a substring of
w, then put Q(t{yy,...,w.)) in Iif it is not already there.

Since { s finite and the set M of axioms is also finite, this algorithm terminates, so we
prove that this algorithm computes 1. Let I’ be the set of ground atomic forinulas computed
by the algorithm on input w. It is clear that I' C I. Suppose Q(y) € I. Since y is of finite
length and M is finite, }(y) is provable from E with a finite number of steps. We prove
Q{y) & I by induction on the step n. When Q{y) is provable from F with ane step, the
formula ¢y} « is in M, so the algorithm puts Q(y) in I" in the initial stage.

Next suppose that Q(y) € I' for Q(y) which is provable from £ with n steps. Let Q(y)
be provable from E with n + 1 steps. Then either Q(y} = F# for some atomic formula
F which is provable from I with n steps and some substitution # or there are an ax-
iom Qi{xy, ..., xn)) & Qi)& &Q.u(2,) in M and atomic formulas Q4 (v1), ..., Qulya)
which are provable from E with n steps such that t{yy,...,¥x) = y. Since all atomic formu-
las provable from an FESFS are ground, Q(y) = F# = F. Thus @(y) € I' by the induction
hypothesis. Since yq,...,yn are substrings of w, @,(y,),...,@ulya} € I' by the induction
hypothesis, and since #(y1,...,y.) = y is a substring of w, the algorithm puts Q(y) in I".

This completes the induction and the proof of Proposition 4. Q.E.D.

Further we show that Janguages defined by ESFSs are context-sensitive.

Proposition 5 If L = L{E,F) for an ESFS E = (D, V,E, M) and a predicate P, then L
is a context-sensitive language.

Proof. Without loss of generality, we assume that each axiom of F is either of the form
QUi(xy, ... xp)) — iz)b &0, (x,) where the variables ., ..., x, are distinct or of the
form Q(x) «— @ (2)&Q4{r). Let k be the maximum number of premises of any axiom in M.

We define the corresponding phrase-structure grammar GS(£) = (N, I, 1L S) as follows.
N =D
LA, Jae X, 1 <n<k}
U{A, la € X}
U{Xo, X1y Xay o on Xey X, Xy Yo Yoo oo, Vi 70, Za, Za)s

§ = P,
I = {Q— XoQ Xy QuXat{Yy,..., Ya) Xy |
Olt(21,....74)) — Q{x)& - - &Qu(z,) € M} (11
U{aX, — X4, |e€ %, 1 <n <k} (2)

U{Aﬂnﬂ_'BAﬂnlaEE'rliﬂik-

BeXTU{Xnsre XNt {Y o Yoo Yo, Yad (3)
U{4s,Yn = YneA,, [a € X, 1 <n <k} (4)
U{A., Xg = Xg|ae D, 1 <n<k) (5)
U{ XX, - X, — Xy |1 <n <k} (6)
U{Xp — Xaul (7)
U{Xgpa — aXgy |a€ B} (8)
U {XgpY = Xpg |1 €0 Sk} (9)
U{ Xpa Xy — €} (10)
U{Q = Z:Q1Z:Q225 | Q(z) = Quiz)&Qa(z) € M} (11)
U{Za = 4,Z; | a € £} (12)
U{bA, — A,b|abe X} (13)

10

U{Z Asa — aZ; |a € T} (14)

U{z-|z-gz3—}f}, “5:]

where for @ € ¥ and 1 < n < k, the elements A, , A,, X, and Y, are new nonterminals
which are mutually distinet, Xo, Xg, Xgg, Z,, Z; and Z4 are additional nonterminals.
We can prove that L{GS(E)) = L(E, P} inductively.

Using (1), all strings of the form
Xowy Xy Xot(Vy, . Y,) X (16)

can be derived from @, where w; € X* such that Q,(w,) is provable from E (1 <1¢<n). By

(2), (3), (4) and (5), the string
XUXI~--Xnt['r’]t;:l,...,}"ﬁ?_-r.:n]l)f# (17)

can be derived from (16}. By (6), (7), (8), (9) and (10}, the terminal string t{wy, ..., w,)
can be derived from (17).

Using (11), all strings of the form
Zyun Zywa 7y {18}

can be derived from @, where w,, w, € £* such that () and Qy(w,) are provable from

L. By (12), (13) and (14), the siring
un EF.E;E;; {19;]

can be derived from (18) iff wy = w,. By (15), the terminal string w, can be derived from
(19).

Because these are only cascs where a derivation leads from Q to a terminal string, we
conclude that L{GS(F)) = L{E, P).

Further by the workspace theorem in [15], L{GS(E)) is context-sensitive. Q.E.D.

It is an open problem whether or not there are e-free context-sensitive languages which

cannot be defined by any ESFS,

Lastly we show the relation among the classes defined hy three restricted forms of EFSs,

11

Proposition 6 The class Cop of languages defined by context-free forms of EFSs is properly
contained in the class Csrs of languages defined by SFSs, and Csrs is properly conlained in

the class Cgsps of languages defined by ESFSs.

Proof. From the definitions of context-free forms, Sk¥Ss and ESFSs. it is clear that
Cep © Csps © Crsps. From the results in [7], CorgCsrs and the language {a"b”c" | n >

1} cannot be defined by any SFS. Thus l’?,c;;.-,‘_,-g;l?g_qu, Q.E.D.

3.3 Closure Properties

We show same closure and nonclosure properties for the languages defined by ESFSs.

Troposition 7 The class of lunguages defined by ESFSs is closed under the operations of

wnion, concalenation, Kleene closure, intersection and reversal.

Proof. Tet Ey = (D, V,E, M;) and E; = (07, V.5, M) be ESFSs. We may assume
that 12, and U are disjoint. Let L, = L{Eq, Py) and Ly = L{FEy, F;). Assume also that
predicales Py, Iy, P and Py are not in Dy or Dy,

For Ly L, we construct the ESFS E3 = ([hU D, U{P.}. V,E, Ma), where My is M, L M,

plus the axions
Pﬂ(Ij — }I]{ij-

FPylz) = Palx).
Then L{lia, T5) = Ly W Ls.
For concatenation, we construct the ESFS E, = (DU DU {P,},V, 8, M), where My is
M, U A plus the axiom
Pylrixg) — Pi{m)& Pul(z2).
Then L(E4, Ps) = {wqwg | wy € Ly, ws € La}.
For Kleene closure, we construct the ESFS Es = (D U {Ps), V,E, Ms), where My 1s M,

plus the axioms
Py(xyx2) — P1|:I1}&P5(Iz]»

P;l:ﬁ:l.
Then LI{E;,., Pﬁ.] = LI

12

For intersection, we construct the ESFS Fg = (Dhu I U {f’s},V,E., Mﬁ), where Mg 15
M, U M; plus the axiom
P!.’-{TJ - PJ{JE}-'E-EPE{I]

Then L(Fs, Pe) = Ly N Ly
For a term ¢, let ¥ be f written backward. For reversal, we construct the ESFS E; =
(D, V.E, M;), where
Qt(zy, ..,z) — Qy(z) e- - &Qy(z,) € M,
T QUG xa)) = Qo e - - Q) € My

Then L{E:, P) = {w® | we L]. Q.E.D.

Thus the class of languages defined by ESFSs (properly) contains an infinite hierarchy
of intersections of context-free languages [10].
In order to obtain a nonclosure property, we guote an important resull of a representation

theorem in [9].

Proposition 8 ([9]) For rach recursively enumerable set L C 5%, there erist deterministic

conterl-free languages Ly, L, and a homomorphism & such that L = o(L; N L;).
Using this result, we can show the following.
Proposition 8 The class of languages defined by FSFSs 15 not closed under homomorphism.

FProof. By I'ropositions 2 and 7, there is an ESFS F such that L(E, P) = L, N Ly for
any two deterministic context-free languages L, and L;. If the class of languages defined by
ESFSs were closed under homomorphism, any recursively enumerable set can be a language

defined by an ESFS, by Proposition 8. This contradicts Proposition 4. Q.ED.

3.4 Proof-DAGs

We introduce a similar notion of a parse-DAG in (2], called proof-DAG, for ESFSs. Let the

FSFS E = (D, V,E, M) be fixed.

13

A proof-DAG for E is a [inite directed acyclic graph that has a number of special prop-
erlivs. At each node there is a fixed linear ordering, called leff-to-right, of the edges directed
ot of that node. There is exactly one node with in-degree zero, called the root. Fach node
with out-degrec zero is called a leaf and the other nodes are called internal nodes. Every
node has a label consisting of a ground atomic formula of E. For each node d, the nodes d'
such that there is an edge from d to d are called the children of d. Finally, for each internal
node d. if its label is B and the labels of its children in left-to-right order are [y, ..., .,
then there is an axiom [in M and some substitution # such that Fd = B« Ihe- - &R,
and for each leaf node d. if its label is &, then there is an axiom of the form R « in M.

The size of the proof-DAG 1, denoted size(T), is defined to be the sum of the number
of nodes in T, the number of edges in T', and the sum of the lengths of the labels on all the
nodes of 7. The depth of a prool-DAG T' is the maximum number of nodes in any directed
path in T

For anv node of a proof DAG T, the sub-DAC rooted al d is the induced subgraph of T
on all the nodes reachable from d by a directed path in 7. Note that this is also a proof DAG
for the FSFS E.

A proof-DAG has the advantages similar to the ones which a parse-DAG has.

4 The Learning Algorithm

In ilis section, we demonstrate an efficient algorithm to learn ESFSs in the framework of
learning by using queries to a teacher modeled on Angluin’s approach to learning k-bounded
context-free grammars. The learning algorithm may be viewed as a natural extension of the
Angluin's algorithm in (2. The lemmas and theorems that follow are analogous to Angluin’s
results.

Let k be any non-negative integer. An ESFS E is k-bounded iff every axiom of E has at
most k occurrences of variables in the term of the conclusion and at most k premises. In this

section, we show that there is a polynomial time algorithm to learn any E-bounded ESFS

using queries.

b4

Suppose Ey = (D,V, 5, My) is the unknown k-bounded ESFS and P is a predicate
in Ep (that is the predicate which defines the language). This is the ESFS that is to be
learned (up to P-equivalence) by the lcarning algorithm. We assume that k, D, £, and P are
known to the learning algorithm, but My, the set of axioms, is unknown. The assumption
that the predicate alphabet is known to the learning algorithm is the same as Shapiro’s of

incorporating theoretical predicates into the model inference problem [17].

4.1 Types of Queries

A membership guery proposes a terminal string w and asks whether it is in L{Ey, P). The
reply is cither yes or ne.

A predicafe provable query proposes a ground atomic formula Q(w) of Ey and asks
whether Q(w) is provable from Er:. The reply is either yes or no. A membership query with
w can be accomplished by a predicate provable query with FP(w). Predicate provable querics
are analogous to non-terminal membership queries in [2.

An equivalence query proposes an ESI'S E and asks whelher LiEy, Py=L{E,P). The
answer 15 either yes or no. If it is no, then a counfer-crample is also provided, that is, a
terminal string w in the symmetric difference of L{Ey, P) and L(E. P). fw ¢ L(Ey, P) -
L{E, P), w is called a positive counter-example, and if w e LIE,P) = L{ Ly, F), it is called

a negafive counter-example.

4.2 Correctness, Incorrectness

We deline a formula Q(f(z,,...,1,)) — Q(z,)& - &Q,(z,) to be incorrect for an ESFS
F = (D, V,E, M) iff there are n terminal strings yi,..., ¥, in X7 such that for 1 < i < n,
Qi{w:) is provable from E, but Q(t{y,...,yn)) is not provable from 5. A formula is correct

Jor £ it is not incorrect for E. Clearly, every axiom in M is correct for E.

4.3 The Learning Algorithm for ESFSs

The form P(t{z),...,2,)) +— Pz &P,(z,) of axioms of ESFSs ensures an efficient

learning for ESFSs. The learning algorithm LEE for ESFSs is given in Figure 1.

15

Algorithm LEFE
Input : the teacher who knows the unknown k-bounded ESFS Fy and
can reply to predicate provable queries and equivalence queries;
Output : an ESFS £ such that L(E, P} = L(Ey, I');
Main procedure :
%% Initialization
The sct M of axioms is initialized to the empty set.
Then the algorithm iterates Lhe following loop.
%% Main loop
An equivalence query is made, proposing E = (D, V, X, M)
If the reply is yes, the algorithm outputs E and halts.
Otherwise, a counter-example w is returned, and there are Lwo cases.
Casc (a)
If wis in L{£, P), then a proof-DAG for E is found with reot label 1),
The proof-DAG is then diagnosed to [ind an axiom that is incorrect for Eir.
This axiom is removed from M.
Case (b)
If w is not in L{E, P), then the set C(w) of all candidate axioms 15 computed from w.

All of them are added to M.

Figure 1: The learning algorithm LEFE

16

The algorithm relies on three sub-procedures: proof, diagnosis, and the computation of

candidate axioms. These are described in the following three subsections.

4.4 Proof Procedure

We use the algorithm described in the proof of Proposition 4 for the proof sub-procedure.
We modify it so that on inputs a terminal string w, an ESFS E and a predicate P, if P(w)
is provable from F, a proof-DAG for E with root node labelled (1) is also returned.

The modification of the algorithm records information for a proof-DAG. The nodes of
the proof-DAG will be clements of 1. Suppase Q(y) is added to I because the algorithm

finds the axiom of the form

QUt{x1, .., z0)) — Qulzy)& &Qn(zn)

and the n-tuple of elements

{Qﬂy;‘ln ey Qn{ynj}

of I such that y = #(y;,...,y.) is a substring of w. Then for the element Q(y) the algorithm
adds an ordered list of n edges from Q(y) to the elements Q,(y,),.. .. Qnlyyn) of I.

At the end of the algorithm, if /(w) is in I, a proof-DAG is constructed as follows.
Discard from I all elements not reachable from P(w) by a directed path of edges. ‘Then the
label of each node Q(y) is just Q(y). The root node is P(w).

It iz assumed that & is k-bounded,

Lemma 10 There are a non-decrcasing polynomial py(z,y) such that the time used by the
proof algorithm en inpul E, P and w is bounded by p,(size(E), |w|) and a non-decreasing
polynomial py(x,y) such that the proof-DAG returned by the proof algorithm on inputs E, w

and P is of size bounded by po(| D], lw]).

Prool. Every iteration of the loop except the last adds at least one element to I, so there
are at most |D{(|w|+ 1) iterations of the loop. Each ileration of the loop considers at most
IM| axioms, and for each axiom with m premises, considers at most all m-tuples of elements

of I. Since E is k-bounded, m < k. Hence the basic operation of applying a substitution to

17

the term in Lhe argument of the conclusion of an axiom and testing whether it is a substring

of w 1s done no more than

IMI(IDI (o] + 175

times in all. The time for proving is bounded by a polynomial in the length of w and the
size of E (but exponential in k).

Next clearly the proof-DAG has at most [I] nodes, which is bounded by |D|(jw| + 1}
Fach node has a label of length bounded by |w| + 4, and each node has at most k cdges

directed oul of it. Thns the total size of the resulting proof-DAG is bounded by
D[] + 1) (lw| + & + 4).
This prove Lemma 10 Q.E.D.

4.5 Diagnosis Procedure

The diagnosis sub-procedurc finds an axiom that is incorrect for Epr of the current ESI'S
= (D,V,5, M) rejected by an equivalence query with a negalive counter-example. We
can use Shapiro’s diagnosis algorithm for Prolog programs [16] as the diagnosis procedure
for LSFSs, because the ESFSs can be regarded as logic programs over strings. Thus the
diagnosis procedure is essentially a special case of his algorithm for diagnosing an ncorrecl
output. The input to the diagnosis procedure is a correct proof DAG T for E such that
F(y) is the label of the rool and P(y) is not provable from Ey. The outpnt of the diagnosis
procedure is an axiom of F that is incorrect for Ep.

If the root of 7" has no child (that is, I’ consists of one node), then the diagnosis procedure
retnrns the formula P(y) «. Otherwise the diagnosis procedure considers in turn each child
of the root of T. If the child is labelled with Q(z), then the diagnosis procedure makes a
predicate provable query with @(z). 1 the reply is no, then it calls itself recursively with
the sub-DAG tuoted at the child, and returns the resulting axiom. If the reply is yes, then
it goes on to the next child of the root of T'.

If all the queries are answered yes, then the diagnosis procedure finds an axiom F of E

such that F8 = P(y) «— Pi(yn Mz - & Pu{ys) for some substitution &, where Pi(y1), .-+ Palyn)

18

are labels of the children of the root of T in left-to-right order, and returns F.

Lemma 11 When the diagnosis procedure is given as tnpul a proof~-DAG T for E that has
the root labelled Ply) such that P{y) is nol proveble from Ey,, it refurns an ariom of E that
is tncorreel for By Further, there is a non-decreasing polynomial ps(z,y) such that the time

required by the diagnosis procedure on input T 15 bounded by py(size(T), |M]).

Proof. Tf the input conditions are met on the initial call, then each recursive call preserves
the input conditions. Since each recursive call is with a proper sub-DAG of its input DAG,
the procedure must eventually terminate, and since the original DAG is a correct proof-DAG
for F/ (as is every sub-DAG), the diagnosis procedure always finds an axjom of E and returns
it.

Il the formula Py} ~ is returned, then it is clearly an axiom of £ and incorrect for
Epe. I the axiom of the form Plt{z,...,7.)) — Pz)& &P (r,) is returned, then the
querics have witnessed that there are n terminal strings vy,...,y, such that for 1 < i < n.
Filyi) 1= provable from F but P(#{y),...,y.)) = Ply) is not provable from £, that is, the
axiom P{t{xy,. .. xq}} — Pl)& - &Pyz,) is incorrect for By,

Next the number of queries made by the diagnosis procedure is at most k times the depth
of the proof-DAG. The diagnosis procedure considers at most | M| axioms to find the axiom
F. It is clear that a straightforward implementation of the diagnosis procedure runs in time

rolyvnomial in the size of the input proof- DAG and |M|. This proves Lemma 11. Q.E.D.

4.6 Candidate Axioms

The input to the candidale axioms procedureis a terminal string w such that w is in L{E};, P)
but not in L{E, P}, where E = (D, V. E, M) is the current ESFS rejected hy an equivalence
guery with a positive counter-example w, and the output is a set '(w) of axioms added to
E such that at least one element of C{w) is in My but not in M.

The algerithm considers in turn every substring v of w. For every m < k and every

factorization of ¥ into 2m + | substrings,

¥ = Uptpupiglz -+ - Uiy,

149

and for every 1 < n < k and every n + 1-tuple of predicates @, Q1,....Qn from D, the

formula of the form
Qugr Uy Ty - Im“m} = Q1':-'?1:|&5 T &Qn{i’u]

is added to Clw), wherezq,..., 7, are variables which are not necessarily distinct, 21, ..., 25

€ {ry,..., 7} and {r1.....20) C{z1,...s2a}, and the formula of the form

Qy) <
is added to Clw).

Lemma 12 Let the candidate arioms procedure have inpul w € L{(Ly. ') — L(E,F). Then
C(w) contains some aziom tn My but not in M. Further, there ave non-decreasing poly-
nomials py(a,y} and ps(z,y) such thal on input w the candidate wrioms procedure runs in
time bounded by ps(}D|, |w|) and produces an oulput set C(w) with al maosl el | D], |l ele-
ments. Moreover, every aziom in C(w) has a term of length at most [w| + k with af most k

occurrences of variables in the conclusion and at most k premises.

Proof, Since w is in L{Ey, P}, there is a proof-DAG T for Ey with root labelled Plw).
We show that every axiom used in T is in Clw).
Consider any sub-DAG T7 of T rooted at a node with label Q{y). Suppose the axiom

used at the root of T" is
Q(H{x1, o Z)) = Q))& - - - Qi (T)
There are mm substrings y1....,¥m of ¥ such that
¥ =t s Yl
Since y is a substring of w and m < k. the axiom
Qt{(z1,. .y &m)) & Gulz)8 &Qm(Tm).

will be generated from y using the above [actorization and choices of predicates.

20

Thus every axiom used in T is in C(w). If every axiom in C(w) N My were in M, T
would be a proof- DAG for the ESFS F witnessing w € L(E, P), a contradiction. Thus,
C{w) contains some axiom in My — M.

Next for each m < k, there are no more than (|wf+1)*™ factorization of the string w into
2m+1 substrings, and no more than m™ choices of m variables for the term of the conelusion
and k(m|D!)* choices of atomic formulas for the premises. Thus. the total number of axioms

placed in C(w) is al most
1+ k(fw] + 1) 285 DIE(E| D))"

Compufing these axioms takes lime bounded by a polynomial in [} and |w|. The term in
the conclusion of each axiom consists of a subsequence of the terminals in w and at most k
variables, for a total length bounded by |w| + k, which completes the proof of Lemma 12,

Q.ED.
4.7 Correctness and Time Complexity

Since M is initially empty and is only augmented by axioms output by the candidate axioms
procedure, E is k-bounded at all times, by Lemma 12, Clearly if the learning algorithm ever
termminates, its output is an ESFS E which is P-equivalent to Ep. This shows the partial
correctness of the learning algorithm, so we bound the number of iterations of the main loop

as follows,

Lemma 13 There are at most |My| iterations of the case (b) of the main loop with positive
counter-ezamples, and if Maz, 1s the mazimum length of any positive counter-ezample, then
there are ut most [My|ps(| D], Max,) iterations of the case (a) of the main loop with negative

counter-ezamples.

Proof. By Lemma 12, cach iteration of the case (h) with a positive counter-example
must add Lo M at least one axiom in My — M. This axiom is correct for Fy; and therefore
cannot be removed from M, because the unly elements removed from M are incorrect for
Ey, by Lemma 11. Heace there arc at most |My| iterations of the case (b) with positive

counter-examples.

21

Thus there are al most | M| positive connter-examples. say
W Wipees -y Wy,

where r < |My|. Let Maz, be the maximum value of |w,] fori=1,2,....r.

The total number of axioms added Lo M is hounded by
Cluny)|+ 1Cwg) |+ + O (w,)

which by Lemma 12 is bounded by

pal | D], Junl) + pal| D], lwg|) +--- + ps(| D], [w.l).

Since ps(x,y) 15 non-decreasing we have a bound of
|11'f{_:|p5“f}” ;]IIIIIFII

on Lhe total number of axioms ever added to M.

Fach iteration of the case (a) with a negative counter-example removes one axiom from
A, Hence (his can happen at most as many limes as there are axioms ever added to M,
which is bounded by

|ﬂ'f{.'| P.ﬁ{l-Dl. J'rrfﬂIp].

This proves Lemma 13. Q.E.D.

Thus the learning algorithm must terminate after at most
|My| + | Mulps(|1D], Mazy)

iterations of the main loop.

Let Maz, be the maximum length of any negative counter-cxample, and let Max be
the maximum of Maz, and Maz,. Maz is the maximum length of any counter-example
encounterced before termination.

We bound the time used by the learning algorithm as follows.

Lemma 14 The time required by the proof procedure at each teration of the main loop of
the learning algorithm is bounded by a polynomial in the size of Ev and the length of the

longest counter-ezample.

22

Proof. By Lemma 10 the time required to prove P{w) for each counter-example w is
bounded by py(seze(E),|w]). Clearly [w| £ Maz, but we need to establish a bound on
size(E).

We have

size(E) = |D| + [E] + |M| + L,

where [is the sum of the lengths of the terms in the conclusions of the axioms in M. By
Lewnma 13,

M| < IMylps(| D], Max,).

Each axioin in M has a term of length at most Max, + k in the conclusion, by Lemma 12.
Hence,

size(E) < |D| + |Z| + |Mu|ps(|2, Maz,)(1 + Maz, + k).

So the size of E can be bounded by a non decreasing polynomial in the size of Ey and the

length of the longest positive counter-example,
sizel E) < pglsize(By). Max,).
Thus at each iteration the time to prove P(w) for a counter-example w is bounded by
i pglsizel Ey), Maz,), Max),
which proves Lemma 14. Q.E.D.

Lemma 15 The time required by the diagnosis procedure al euch itevation in which if 1s
called is bounded by a polynomial in the size of Eyy and the length of the longest counter-

example.

Proof. By Lenunas 10, 11 and 13, the time required by the diagnosis procedure at each

ieration in which it is called is bounded by
palp2 (1D}, Maz), [My|ps(1 D], Maz,)),
which is bounded by

pal palsize(Ep), Maz), size{ Ey)ps(size(Ey), Mazy)).

23

Q.E.D.

Lemma 16 The time required by the candidate azioms procedury at each iterafion in which
it is called is bounded by a polynomial in the size of Fyy and the length af the longest counfer-

vrample.

Proof. By Lemma 12, the time required by the candidate axioms procedure with input

w is bounded by pa(| Dl]} < palsize(by), Mazx). Q.E.D.
Now we have the main theorem.

Theorem 17 There is an algorithm that learns an ESFS P-equivalent to any k-bounded
ESFS Eyr using equivalence and predicate provable queries ihat runs in fime polynomial in

the size of Eyy and the length of the longest counter-erample.
Proof. Putting the bounds from the above three lemimas together with the bound of
| M|+ | My |ps(1D], Max,)

on the number of iterations of the main loop of the learning algorithm, we conclude that the
total time used by the learning algorithm is bounded by a polynomial in the size of Ey and

the length of the longest counter-example. Q.E.D.

In the case that an ESFS Ey has only one predicate P, predicate provable queries reduce

to membership queries, so we have the following,

Corollary 18 There is an algorithm that learns an ESFS P-cquivalent to any k-bounded
ESFS Ey which has only one predicate P using equivalence and membership quertes that

runs in time polynomial in the size of Ey and the length of the longest counter-example,

In the terminology of [4], languages defined by k-bounded ESFSs which have only one
predicate can be learned efficiently from a minimally adequate teacher. Note that this sub-
class of ESFSs contains a class of EFSs introduced in [18], called primative formal systems,

which is learnable from positive data.

24

It is clear that there is no m-bounded standard form of FSFSs for any m, that is, no m
exists such that for any ESFS E there is a m-bounded ESF'S E' which defines the language
L{E,FP). Thus for any & the k bounded ESFSs arc strictly less powerful than the k + 1-

hounded ESFSs, that is,

o —
Ci-5srs2Ca-psisS GO0psrs TChi1-EsrsG -+,

where Cy-psps denotes the class of languages defined by k-bounded ESFSs.

5 Concluding Remarks

There has been no paper to investigate a computational learning problem for more than
context-free languages. In this paper we have proposed a method for efficient learning of
a larger class of formal languages than context-free languages. This is the first attempt
ta consider the problem to learn a large class of formal languages (e.g. context-sensitive
languages) in a reasonable amount of time in a teacher and learner paradigm, which is one
of central issues in concept learning. We have introduced a new class of expressions for
learning of formal languages defined in Smullyan’s elementary formal systems and shown
that this class has a desirable feature thal it contains some important classes of formal
languages like context-free languages and pattern langnages, which enables us to take an
unified view of learning formal languages.

The characterization of the class of languages defined by ESFSs must be investigated.
Especially it is important to analyze the relation between the context-sensitive languages and
the languages defined by ESFSs. We can also regard formulas in elementary formal systems
as Horn formulas in logic programming [11] over strings in which only tﬁe concatenation is
used as the function. It is inleresting to compare ESFSs with Definite Clause Grammars

[12].

Acknowledgements

The author would like to thank Dr. T.Kitagawa, the president of IIAS-515, Dr. H.Enomeoto,

the director of ITAS-5IS, for giving him the epportunity to pursue this work and warm

25

encouragement. Discussions with the colleagues T.Yokomori and Y. Takada were also very

fruitful.

This is part of the work in the major RE&D of the Fifth Generation Computer Project,

conducted under program set up by MITL

References

(1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer und

System Seicnces, 21:46-62, 1980,
[2] D. Angluin. Learning k-bounded context-free grammars. RR 557, YALEU/DCS, 1987.

i3] D. Angluin. Learning k-term DNF formulas using queries and counlereramples.

RR 539, YALEU/DCS, 1987,

i4] D. Angluin. Learning regular sets from queries and counter-examples. Information and

Computation, T5:87-106, 19587,

[5] D. Angluin. Learning with hints. In Proceedings of 1st Warkshop on Computational

Learning Theory, pages 167-181, 1988.
[6] D. Angluin. Queries and concept learning. Machine Learning, 2:319 -342, 1948,

[7] S. Arikawa. Elementary formal systems and formal languages - simple formal systems.
2] P A

Memoirs of the fuculty of science, Kyushu university, Series A, 24:47-7T5, 1970,

[8] P. Berman and R. Roos. Learning one-counter languages in polynomial time. In Pro-

ceedings of I[EEE FOCS '87, pages 61-67, 1987.
[9] M. A, Harrison. [ntroduction to Formal Language Theory. Addison-Wesley, 1978.

[10] L. Y. Liu and P. Weiner. An infinite hierarchy of intersections of context-free languages.

Mathematical Systems Theory, T:185-192, 1973,

[11] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984,

26

[12] F. C. K. Pereira and). 1. D. Warren. Definite clause grammars for language analysis
- a survey of the formalism and a comparison with augmented transition networks.

Artificial Intelligence, 13:231-278, 1980,

[13] Y. Sakakibara. Inductive inference of logic programs based on algebraic semantics. Re-
search Report 79, ITAS-SIS, FUJITSU LIMITED, 1987,

[ltl} Y. Sakakibara. Learning context-free grammars from structural data in polynomial
Lite, In Procecdings of st Workshop on Computlalional Learning Theory, pages 206—

310, 1985, To appear in Theoretical Computer Science.
[15] A. Salomaa. Fermal Languages. Academic Press, Inc., 1973,

[16] E. Y. Shapiro. Algarithmic program debugging. PhD thesis, Yale University Computer

Science Dept., 1982, Published by MIT Press, 1923,

(17} E. Y. Shapiro. [nductive inference of theories from faets. Technical Report 192, Yale

University Computer Science Dept., 1981,

{IS] T. Shinohara. Inductive inference of formal systerns from positive data. Hulletin of

Informaties and Cybernetics, 22:9-18 1986,

[191 1. M. Smwliyan. Theory of Formal Systerns. Princeton University Press, 1961,

27

